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1 Finiteness conditions

1.1 Finitely generated and Noetherian modules

Definition 1.1 (Generated submodule). Let R be a ring, M an R-module,
S Ď M . Then the following sets coincide

1.
#

ÿ

sPS1

rs ¨ s | S Ď S1 finite, rs P R

+

,

2.
č

SĎNĎM
Nsubmodule

N,

3. The Ď-smallest submodule of M containing S.

This subset of N Ď M is called the submodule of M generated by S.
If N “ M we say that M is generated by S. M is finitely generated
: ðñ DS Ď M finite such that M is generated by S.

Definition 1.2 (Noetherian R-module). M is a Noetherian R-module if
the following equivalent conditions hold:

1. Every submodule N Ď M is finitely generated.

2. Every sequence N0 Ď N1 Ď . . . of submodules terminates.

3. Every set M ‰ H of submodules of M has a Ď-largest element.

Proposition 1.3 (Hilbert’s Basissatz). If R is a Noetherian ring, then the
polynomial rings RrX1, . . . , Xns in finitely many variables are Noetherian.

1.1.1 Properties of finite generation and Noetherianness

Fact 1.3.1 (Properties of Noetherian modules). 1. Every Noetherian mod-
ule over an arbitrary ring is finitely generated.

2. If R is a Noetherian ring, then an R-module is Noetherian iff it is
finitely generated.

3. Every submodule of a Noetherian module is Noetherian.

Proof. 1. By definition, M is a submodule of itself. Thus it is finitely gener-
ated.

2. Since M is finitely generated, there exists a surjective homomorphism
Rn Ñ M . As R is Noetherian, Rn is Noethrian as well.

1 FINITENESS CONDITIONS 5



3. trivial

Fact 1.3.2. Let M,M 1,M2 be R-modules.

1. Suppose M
p

ÝÑ M2 is surjective. If M is finitely generated (resp.
Noetherian), then so is M2.

2. Let M 1 f
ÝÑ M

p
ÝÑ M2 Ñ 0 be exact. If M 1 and M2 are finitely

generated (reps. Noetherian), so is M .

Proof. 1. Consider a sequence M2
0 Ď M2

1 Ď . . . Ď M2. Then p´1M2
i yields a

strictly ascending sequence. If M is generated by S, |S| ă ω, then M2 is
generated by ppSq.

2. Because of 1. we can replace M 1 by fpM 1q and assume 0 Ñ M 1 f
ÝÑ

M
p

ÝÑ M2 Ñ 0 to be exact. The fact about finite generation follows
from Einführung in die Algebra.

If M 1,M2 are Noetherian, N Ď M a submodule, then N 1 :“ f´1pNq and
N2 :“ ppNq are finitely generated. Since 0 Ñ N 1 Ñ N Ñ N2 Ñ 0 is
exact, N is finitely generated.

1.2 Ring extensions of finite type

Definition 1.4 (R-algebra). Let R be a ring. An R-algebra pA,αq is a
ring A with a ring homomorphism R

α
ÝÑ A. α will usually be omitted. In

general α is not assumed to be injective.

An R-subalgebra is a subring αpRq Ď A1 Ď A.

A morphism of R-algebras A
f

ÝÑ Ã is a ring homomorphism with α̃ “ fα.

Definition 1.5 (Generated (sub)algebra, algebra of finite type). Let pA,αq

be an R-algebra.

α : RrX1, . . . , Xms ÝÑ ArX1, . . . , Xms

P “
ÿ

βPNm

pβX
β ÞÝÑ

ÿ

βPNm

αppβqXβ

is a ring homomorphism. We will sometimes write P pa1, . . . , amq instead
of pαpP qqpa1, . . . , amq.

Fix a1, . . . , am P Am. Then we get a ring homomorphismRrX1, . . . , Xms Ñ

1 FINITENESS CONDITIONS 6



A. The image of this ring homomorphism is the R-subalgebra of A gen-
erated by the ai. A is of finite type if it can be generated by finitely
many ai P I.

For arbitrary S Ď A the subalgebra generated by S is the intersection of
all subalgebras containing S
“ the union of subalgebras generated by finite S1 Ď S
“ the image of RrXs|s P Ss under P ÞÑ pαpP qqpSq.

1.3 Finite ring extensions

Definition 1.6 (Finite ring extension). Let R be a ring and A an R-
algebra. A is a module over itself and the ringhomomorphism R Ñ A
allows us to derive an R-module structure on A. A is finite over R /
the R-algebra A is finite / A{R is finite if A is finitely generated as an
R-module.

Fact 1.6.3 (Basic properties of finiteness). A Every ring is finite over
itself.

B A field extension is finite as a ring extension iff it is finite as a field
extension.

C A finite ùñ A of finite type.

D A{R and B{A finite ùñ B{R finite.

Proof. A 1 generates R as a module

B trivial

C Let A be generated by a1, . . . , an as an R-module. Then A is generated
by a1, . . . , an as an R-algebra.

D Let A be generated by a1, . . . , am as an R-module and B by b1, . . . , bn as
an A-module. For every b there exist αj P A such that b “

řn
j“1 αjbj . We

have αj “
řm

i“1 ρijai for some ρij P R thus b “
řm

i“1

řn
j“1 ρijaibj and the

aibj generate B as an R-module.

1.4 Determinants and Caley-Hamilton

This generalizes some facts about matrices to matrices with elements from com-
mutative rings with 1. 1

1Most of this even works in commutative rings without 1, since 1 simply can be adjoined.
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Definition 1.7 (Determinant). Let A “ paijq P Matpn, n,Rq. We define
the determinant by the Leibniz formula

detpAq :“
ÿ

πPSn

sgnpπq

n
ź

i“1

ai,πpiq.

Define AdjpAq by AdjpAqTij :“ p´1qi`j ¨Mij , where Mij is the determinant

of the matrix resulting from A after deleting the ith row and the jth column.

Fact 1.7.4. 1. detpABq “ detpAqdetpBq.

2. Development along a row or column works.

3. Cramer’s rule: A ¨AdjpAq “ AdjpAq ¨A “ detpAq ¨1n. A is invertible
iff detpAq is a unit.

4. Caley-Hamilton: If PA “ detpT ¨ 1n ´ Aqa, then PApAq “ 0.

aT ¨ 1n ´ A P Matpn, n,ArT sq

Proof. All rules hold for the image of a matrix under a ring homomorphism if
they hold for the original matrix. The converse holds in the case of injective ring
homomorphisms. Caley-Hamilton was shown for algebraically closed fields in
LA2 using the Jordan normal form. Fields can be embedded into their algebraic
closure, thus Caley-Hamilton holds for fields. Every domain can be embedded
in its field of quotients ùñ Caley-Hamilton holds for domains.

In general, A is the image of pXi,jqni,j“1 P Matpn, n, Sq where S :“ ZrXi,j |1 ď

i, j ď ns (this is a domain) under the morphism S Ñ A of evaluation defined
by Xi,j ÞÑ ai,j . Thus Caley-Hamilton holds in general.

1.5 Integral elements and integral ring extensions

Proposition 1.8 (on integral elements). Let A be an R-algebra, a P A.
Then the following are equivalent:

A Dn P N, priq
n´1
i“0 , ri P R : an “

řn´1
i“0 ria

i.

B There exists a subalgebra B Ď A finite over R and containing a.

If a1, . . . , ak P A satisfy these conditions, there is a subalgebra of A finite
over R and containing all ai.

Definition 1.9. Elements that satisfy the conditions from 1.8 are called
integral over R. A{R is integral, if all a P A are integral over R. The
set of elements of A integral over R is called the integral closure of R in
A.
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Proof.

B ùñ A Let a P A such that there is a subalgebra B Ď A containing a and finite
over R. Let pbiq

n
i“1 generate B as an R-module.

q : Rn ÝÑ B

pr1, . . . , rnq ÞÝÑ

n
ÿ

i“1

ribi

is surjective. Thus there are ρi “ pri,jq
n
j“1 P Rn such that abi “ qpρiq.

Let A be the matrix with the ρi as columns. Then for all v P Rn :
qpA ¨ vq “ a ¨ qpvq. By induction it follows that qpP pAq ¨ vq “ P paqqpvq for
all P P RrT s. Applying this to P pT q “ detpT ¨ 1n ´ Aq and using Caley-
Hamilton, we obtain P paq ¨ qpvq “ 0. P is monic. Since q is surjective, we
find v P Rn : qpvq “ 1. Thus P paq “ 0 and a satisfies A.

B ùñ A if R is Noetherian.2 Let a P A satisfy B. Let B be a subalgebra of A con-
taining b and finite over R. Let Mn Ď B be the R-submodule generated by
the ai with 0 ď i ă n. As a finitely generated module over the Noetherian
ring R, B is a Noetherian R-module. Thus the ascending sequence Mn

stabilizes at some step d and ad P Md. Thus there are priq
d´1
i“0 P Rd such

that ad “
řd´1

i“0 ria
i.

A ùñ B Let a “ paiq
n
i“1 where all ai satisfy A, i.e. adi

i “
řdi´1

j“0 ri,ja
j
i with ri,j P

R. Let B Ď A be the sub-R-module generated by aα “
śn

i“1 a
αi
i with

0 ď αi ă di. B is closed under a1¨ since

a1a
α “

#

apα1`1,α1
q if α “ pα1, α

1q, 0 ď α1 ă d1 ´ 1,
řd1´1

j“0 ri1,ja
pj,α1

q if α1 “ d1 ´ 1.

By symmetry, this hold for all ai. By induction on |α| “
řn

i“1 αi, B
is invariant under aα¨. Since these generate B as an R-module, B is
multiplicatively closed. Thus A holds. Furthermore we have shown the
final assertion of the proposition.

Corollary 1.10. Q Every finite R-algebra A is integral.

R The integral closure of R in A is an R-subalgebra of A.

S If A is an R-algebra, B an A-algebra and b P B integral over R, then
it is integral over A.

T If A is an integral R-algebra and B any A-algebra, b P B integral

2This suffices in the exam.
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over A, then b is integral over R.

Proof. Q Put B “ A in B.

R For every r P R αprq is a solution to T ´ r “ 0, hence integral over R.
From B it follows, that the integral closure is closed under ring operations.

S trivial

T Let b P B such that bn “
řn´1

i“0 aib
i. Then there is a subalgebra Ã Ď A

finite over R, such that all ai P Ã. b is integral over Ã Hence DB̃ Ď B
finite over Ã and b P B̃. Since B̃{Ã and Ã{R are finite, B̃{R is finite and
b satisfies B.

1.6 Finiteness, finite generation and integrality

Fact 1.10.5 (Finite type and integral ùñ finite). If A is an integral
R-algebra of finite type, then it is a finite R-algebra.

Proof. Let A be generated by paiq
n
i“1 as an R-algebra. By the proposition on

integral elements (1.8), there is a finite R-algebra B Ď A such that all ai P B.
We have B “ A, as A is generated by the ai as an R-algebra.

Fact 1.10.6 (Finite type in tower). If A is an R-algebra of finite type and
B an A-algebra of finite type, then B is an R-algebra of finite type.

Proof. If A{R is generated by paiq
m
i“1 and B{A by pbjqnj“1, thenB{R is generated

by the bj and the images of the ai in B.

Fact 1.10.7 (About integrality and fields). Let B be a domain integral
over its subring A. Then B is a field iff A is a field.

Proof. Let B be a field and a P Azt0u. Then a´1 P B is integral over A,

hence a´d “
řd´1

i“0 αia
´i for some αi P A. Multiplication by ad´1 yields a´1 “

řd´1
i“0 αia

d´1´i P A.

On the other hand, let B be integral over the field A. Let b P Bzt0u. As B
is integral over A, there is a sub-A-algebra B̃ Ď B, b P B̃ finitely generated
as an A-module, i.e. a finite-dimensional A-vector space. Since B is a domain,

B̃
b¨

ÝÑ B̃ is injective, hence surjective, thus Dx P B̃ : b ¨ x ¨ 1.
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1.7 Noether normalization theorem

Lemma 1.11. Let S Ď Nn be finite. Then there exists k⃗ P Nn such that
k1 “ 1 and wk⃗pαq ‰ wk⃗pβq for α ‰ β P S, where wk⃗pαq “

řn
i“1 kiαi.

Proof. Intuitive: For α ‰ β the equation wp1,κ⃗qpαq “ wp1,κ⃗qpβq (κ P Rn´1)
defines a codimension 1 affine hyperplane in Rn´1. It is possible to choose κ

such that all κi are ą 1
2 and with Euclidean distance ą

?
n´1
2 from the union

of these hyperplanes. By choosing the closest κ1 with integral coordinates, each

coordinate will be disturbed by at most 1
2 , thus at Euclidean distance ď

?
n´1
2 .

More formally:3 Define M :“ maxtαi|α P S, 1 ď i ď nu. We can choose k such
that ki ą pi ´ 1qMki´1. Suppose α ‰ β. Let i be the maximal index such that
αi ‰ βi. Then the contributions of αj (resp. βj) with 1 ď j ă i to wk⃗pαq (resp.
wk⃗pβq) cannot undo the difference kipαi ´ βiq.

Theorem 1.12 (Noether normalization). Let K be a field and A a K-
algebra of finite type. Then there are a “ paiq

n
i“1 P A which are alge-

braically independent over K, i.e. the ring homomorphism

eva : KrX1, . . . , Xns ÝÑ A

P ÞÝÑ P pa1, . . . , anq

is injective. n and the ai can be chosen such that A is finite over the image
of eva.

Proof. Let paiq
n
i“1 be a minimal number of elements such that A is integral over

its K-subalgebra generated by a1, . . . , an. (Such ai exist, since A is of finite
type). Let Ã be the K-subalgebra generated by the ai. If suffices to show that
the ai are algebraically independent. Since A is of finite type over K and thus
over Ã, by fact 1.10.5 (integral and finite type ùñ finite), A is finite over
Ã. Thus we only need to show that the ai are algebraically independent over
K. Assume there is P P KrX1, . . . , Xnszt0u such that P pa1, . . . , anq “ 0. Let

P “
ř

αPNn pαX
α and S “ tα P Nn|pα ‰ 0u. For k⃗ “ pkiq

n
i“1 P Nn and α P Nn

we define wk⃗pαq :“
řn

i“1 kiαi.

By 1.11 it is possible to choose k⃗ P Nn such that k1 “ 1 and for α ‰ β P S we
have wk⃗pαq ‰ wk⃗pβq.

Define bi :“ ai`1 ´ a
ki`1

1 for 1 ď i ă n.

Claim 1. A is integral over the subalgebra B generated by the bi.

3The intuitive version suffices in the exam.
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Subproof. By the transitivity of integrality, it is sufficient to show that the ai
are integral over B. For i ą 1 we have ai “ bi´1 ` aki

1 . Thus it suffices to show
this for a1. Define QpT q :“ P pT, b1 ` T k2 , . . . , bn´1 ` T knq P BrT s. We have
0 “ P pa1, . . . , anq “ Qpa1q. Hence it suffices to show that the leading coefficient
of Q is a unit.

We have

Tα1

n´1
ź

i“1

pbi ` T ki`1qαi`1 “ Tw
k⃗

pαq `

w
k⃗

pαq´1
ÿ

l“0

βα,lT
l

with suitable βα,l P B.

By the choice of k⃗, we have

QpT q “ pαT
w

k⃗
pαq `

w
k⃗

pαq´1
ÿ

j“0

qjT
j

with qj P B and α such that wk⃗pαq is maximal subject to the condition pα ‰ 0.
Thus the leading coefficient of Q is a unit. ■

This contradicts the minimality of n, as B can be generated by ă n elements
bi.

2 The Nullstellensatz and the Zariski topology

2.1 The Nullstellensatz

Let k be a field, R :“ krX1, . . . , Xns, I Ď R an ideal.

Definition 2.1 (zero). x P kn is a zero of I if @x P I : P pxq “ 0. Let
VApIq denote the set of zeros if I in kn.

The zero in a field extension i of k is defined similarly.

Remark 2.1.8 (Set of zeros and generators). Let I be generated by S.
Then tx P R|@s P S : spxq “ 0u “ VApIq. Thus zero sets of ideals corre-
spond to solutions sets to systems of polynomial equations. If S, S̃ generate
the same ideal I they have the same set of solutions. Therefore we only
consider zero sets of ideals.

Theorem 2.2 (Hilbert’s Nullstellensatz (1)). If k is algebraically closed
and I Ĺ R a proper ideal, then I has a zero in kn.
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Remark 2.2.9. Will be shown later (see proof of 2.4). It is trivial if n “ 1:
R is a PID, thus I “ pR for some p P R. Since I ‰ R p “ 0 or P is non-
constant. k algebraically closed ; there exists a zero of p.

If k is not algebraically closed and n ą 0, the theorem fails (consider
I “ ppX1qR).

Equivalent4 formulation:

Theorem 2.3 (Hilbert’s Nullstellensatz (2)). Let L{K be an arbitrary
field extension. Then L{K is a finite field extension (dimK L ă 8) iff L is
a K-algebra of finite type.

Proof. ùñ If pliq
m
i“1 is a base of L as a K-vector space, then L is generated

by the li as a K-algebra.

ðù Apply the Noether normalization theorem (1.12) to A “ L. This yields
an injective ring homomorphism eva : KrX1, . . . , Xns Ñ A such that A
is finite over the image of eva. By the fact about integrality and fields
(1.10.7), the isomorphic image of eva is a field. Thus KrX1, . . . , Xns is a
field ùñ n “ 0. Thus L{K is a finite ring extension, hence a finite field
extension.

Remark 2.3.10. We will see several additional proofs of this theorem. See
2.6 and 2.38. All will be accepted in the exam.

2.13 and 3.10 are closely related.

Theorem 2.4 (Hilbert’s Nullstellensatz (1b)). Let l be a field and I Ď

R “ lrX1, . . . , Xms a proper ideal. Then there are a finite field extension i
of l and a zero of I in im.

Proof. (HNS2 (2.3) ùñ HNS1b (2.4)) I Ď m for some maximal ideal. R{m
is a field, since m is maximal. R{m is of finite type, since the images of the Xi

generate it as a l-algebra. There are thus a field extension i{l and an isomorphism
R{m

ι
ÝÑ i of l-algebras. By HNS2 (2.3), i{l is a finite field extension. Let

xi :“ ιpXi mod mq.

P px1, . . . , xmq “ ιpP mod mq

Both sides are morphisms R Ñ i of l-algebras. For for P “ Xi the equality is
trivial. It follows in general, since the Xi generate R as a l-algebra.

4used in a vague sense here
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Thus px1, . . . , xmq is a zero of I (since P mod m “ 0 for P P I Ď m). HNS1
(2.2) can easily be derived from HNS1b.

2.1.1 Nullstellensatz for uncountable fields

The following proof of the Nullstellensatz only works for uncountable fields, but
will be accepted in the exam.

Lemma 2.5. If K is an uncountable field, then dimK KpT q is uncountable.

Proof. We will show, that S :“
!

1
T´κ |κ P K

)

is K-linearly independent. It

follows that dimK KpT q ě #S ą ℵ0.

Suppose pxκqκPK is a selection of coefficients fromK such that I :“ tκ P K|xκ ‰

0u is finite and

g :“
ÿ

κPK

xκ

T ´ κ
“ 0

Let d :“
ś

κPIpT ´ κq. Then for λ P I we have

0 “ pdgqpλq “ xλ

ź

κPIztλu

pλ ´ κq.

This is a contradiction as xλ ‰ 0.

Theorem 2.6 (Hilbert’s Nullstellensatz for uncountable fields). If K is
an uncountable field and L{K a field extension and L of finite type as a
K-algebra, then this field extension is finite.

Proof. If pxiq
n
i“1 generate L as an K-algebra, then the countably many mono-

mials xα “
śn

i“1 x
αi
i in the xi with α P Nn generate L as a K-vector space.

Thus dimK L ď ℵ0 and the same holds for any intermediate field K Ď M Ď L.
If l P L is transcendent over K and M “ Kplq, then M – KpT q has un-
countable dimension by 2.5. Thus L{K is algebraic, hence integral, hence finite
(1.10.5).

2.2 The Zariski topology

2.2.1 Operations on ideals and VA pIq

Let R be a ring and I, J, Iλ Ď R ideals, λ P Λ.
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Definition 2.7 (Radical, product and sum of ideals).

?
I :“

8
č

n“0

tf P R|fn P Iu,

I ¨ J :“ xti ¨ j|i P I, j P JuyR,

ÿ

λPΛ

Iλ :“

#

ÿ

λPΛ1

iλ|Λ1 Ď Λ finite

+

.

Fact 2.7.11. The radical is an ideal in R and
a?

I “
?
I.

I ¨ J is an ideal.
ř

λPΛ Iλ coincides with the ideal generated by
Ş

λPΛ Iλ in R.
Ş

λPΛ Iλ is an ideal.

Let R “ krX1, . . . , Xns where k is an algebraically closed field.

Fact 2.7.12. Let I, J, pIλqλPΛ be ideals in R. Λ may be infinite. Then

A VApIq “ VAp
?
Iq,

B
?
J Ď

?
I ùñ VApIq Ď VApJq,

C VApRq “ H, VApt0u “ kn,

D VApI X Jq “ VApI ¨ Jq “ VApIq Y VApJq,

E VAp
ř

λPΛ Iλq “
Ş

λPΛ VApIλq.

Proof. A-C trivial

D I ¨ J Ď I X J Ď I. Thus VApIq Ď VApI X Jq Ď VApI ¨ Jq. By symmetry
we have VApIq Y VApJq Ď VApI X Jq Ď VApI ¨ Jq. Let x R VApIq Y VApJq.
Then there are f P I, g P J such that fpxq ‰ 0, gpxq ‰ 0 thus pf ¨ gqpxq ‰

0 ùñ x R VApI ¨ Jq. Therefore

VApIq Y VApJq Ď VApI X Jq Ď VApI ¨ Jq Ď VApIq Y VApJq.

E Iλ Ď
ř

λPΛ Iλ ùñ VAp
ř

λPΛ Iλq Ď VApIλq. Thus VAp
ř

λPΛ Iλq Ď
Ş

λPΛ VApIλq.
On the other hand if f P

ř

λPΛ Iλ we have f “
ř

λPΛ fλ. Thus f vanishes
on

Ş

λPΛ VApIλq and we have
Ş

λPΛ VApIλq Ď VAp
ř

λPΛ Iλq.
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Remark 2.7.13. There is no similar way to describe VAp
Ş

λPΛ Iλq in terms
of the VApIλq when Λ is infinite. For instance if n “ 1, Ik :“ Xk

1R then
Ş8

k“0 Ik “ t0u but
Ť8

k“0 VApIkq “ t0u.

2.2.2 Definition of the Zariski topology

Let k be algebraically closed, R “ krX1, . . . , Xns.

Corollary 2.8. (of 2.7.12) There is a topology on kn for which the set of
closed sets coincides with the set A of subsets of the form VA pIq for ideals
I Ď R. This topology is called the Zariski-Topology

Example 2.9. Let n “ 1. Then R is a PID. Hence every ideal is a principal
ideal and the Zariski-closed subsets of k are the subsets of the form VApP q

for P P R. As VAp0q “ k and VApP q finite for P ‰ 0 and tx1, . . . , xnu “

VAp
śn

i“1pT ´xiqq the Zariski-closed subsets of k are k and the finite subsets.
Because k is infinite, this topology is not Hausdorff.

2.2.3 Separation properties of topological spaces

Definition 2.10. Let X be a topological space. X satisfies the separation
properties T0´2 if for any x ‰ y P X

T0 DU Ď X open such that |U X tx, yu| “ 1

T1 DU Ď X open such that x P U, y R U .

T2 There are disjoined open sets U, V Ď X such that x P U, y P V .
(Hausdorff)

Remark 2.10.14. Let x „ y : ðñ the open subsets of X containing
x are precisely the open subsets of X containing y. Then T0 holds iff
x „ y ùñ x “ y.

Fact 2.10.15. T0 ðñ every point is closed.

Fact 2.10.16. The Zariski topology on kn is T1 but for n ě 1 not Hausdorff.
For n ě 1 the intersection of two non-empty open subsets of kn is always
non-empty.

Proof. txu is closed, as txu “ V pSpanX1 ´ x1, . . . , Xn ´ xnRq. IfA “ V pIq, B “

V pJq are two proper closed subsets of kn then I ‰ t0u, J ‰ t0u and thus
IJ ‰ t0u. Therefore A Y B “ V pIJq is a proper closed subset of kn.
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2.2.4 Compactness properties of topological spaces

Let X be a topological space.

Definition 2.11 (Compact, quasi-compact). X is called quasi-compact
if every open covering of X has a finite subcovering. It is called compact,
if it is quasi-compact and Hausdorff.

Definition 2.12 (Noetherian topological spaces). X is called Noethe-
rian, if the following equivalent conditions hold:

A Every open subset of X is quasi-compact.

B Every descending sequence A0 Ě A1 Ě . . . of closed subsets of X
stabilizes.

C Every non-empty set M of closed subsets of X has a Ď-minimal
element.

Proof.

A ùñ B Let Aj be a descending chain of closed subsets. Define A :“
Ş8

j“0 Aj . If

A holds, the covering XzA “
Ť8

j“0pXzAjq has a finite subcovering.

B ùñ C Suppose M does not have a Ď-minimal element. Using DC, one can
construct a counterexample A1 Ĺ A2 Ľ . . . to B.

C ùñ A Let
Ť

iPI Vi be an open covering of an open subset U Ď X. By C, the set
M :“ tXz

Ť

iPF Vi|F Ď I finiteu has a Ď-minimal element.

2.3 Another form of the Nullstellensatz and Noetherian-
ness of kn

Let k be algebraically closed, R “ krX1, . . . , Xns. For f P R let V pfq “

V pfRq.

Theorem 2.13 (Hilbert’s Nullstellensatz (3)). Let I Ď R be an ideal.
Then V pIq Ď V pfq iff f P

?
I.

Proof. Suppose f vanishes on all zeros of I. Let R1 :“ krX1, . . . , Xn, T s,

gpX1, . . . , Xn, T q :“ 1 ´ T ¨ fpX1, . . . , Xnq

and J Ď R1 the ideal generated by g and the elements of I (viewed as elements
of R1 which are constant in the T -direction).

If f vanishes on all zeros of I, then J has no zeros in kn`1.
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Thus there exist pi P I, i “ 1, . . . , n, qi P krX1, . . . , Xn, T s, i “ 1, . . . , n and
q P krX1, . . . , Xn, T s such that

1 “ g ¨ q `

n
ÿ

i“1

piqi.

Formally substituting 1
fpx1,...,xnq

for Y , one obtains:

1 “

n
ÿ

i“1

pi px1, . . . , xnq qi

ˆ

x1, . . . , xn,
1

fpx1, . . . , xnq

˙

Multiplying by a sufficient power of f , this yields an equation in R :

fd “

n
ÿ

i“1

pipx1, . . . ,n q ¨ q1
ipx1, . . . , xnq P I

Thus f P
?
I.

Corollary 2.14.

f : tI Ď R|Iideal, I “
?
Iu ÝÑ tA Ď kn|A Zariski-closedu

I ÞÝÑ V pIq

tf P R|A Ď V pfqu ÐÝ [ A

is a Ď-antimonotonic bijection.

Corollary 2.15. The topological space kn is Noetherian.

Proof. Because the map from 2.14 is antimonotonic, strictly decreasing chains
of closed subsets of kn are mapped to strictly increasing chains of ideals in R.
By the Basissatz (1.3), R is Noetherian.

2.4 Irreducible spaces

Let X be a topological space.

Definition 2.16. X is called irreducible, if X ‰ H and the following
equivalent conditions hold:

A Every open H ‰ U Ď X is dense.

B The intersection of non-empty, open subsets U, V Ď X is non-empty.

C If A,B Ď X are closed, X “ A Y B then X “ A or X “ B.
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D Every open subset of X is connected.

Proof.

A ðñ B by definition of denseness.

B ðñ C Let U :“ XzA, V :“ XzB.

B ùñ D Suppose W is a non-connected open subset. Then there exists a decom-
position W “ U Y V into disjoint open subsets.

D ùñ B If U, V ‰ H are disjoint open subsets, then U Y V is non-connected.

Corollary 2.17. Every irreducible topological space is connected.

Example 2.18. kn is irreducible as shown in 2.9.

Fact 2.18.17. A A single point is always irreducible.

B If X is Hausdorff then it is irreducible iff it has precisely one point.

C X is irreducible iff it cannot be written as a finite union of proper
closed subsets.

D X is irreducible iff any finite intersection of non-empty open subsets
is non-empty. (

Ş

H :“ X)

Proof. A,B trivial

C ùñ : Induction on the cardinality of the union. ðù :
Ş

H “ X is non-
empty and any intersection of two non-empty open subsets is non-empty.

D Follows from C.

2.4.1 Irreducible components

Fact 2.18.18. If D Ď X is dense, then X is irreducible iff D is irreducible
with its induced topology.

Proof. X “ H iff D “ H. Suppose B is the union of its proper closed subsets
A,B. Then X “ AYB. These are proper closed subsets of X, as AXD “ AXD
(by closedness of D) and thus A X D ‰ D.

On the other hand, if U and V are disjoint non-empty open subsets of X, then
U X D and V X D are disjoint non-empty open subsets of D.
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Definition 2.19 (Irreducible subsets). A subset Z Ď X is called irre-
ducible, if it is irreducible with its induced topology. Z is called an ir-
reducible component of X, if it is irreducible and if every irreducible
subset Z Ď Y Ď X coincides with Z.

Corollary 2.20. 1. Z Ď X is irreducible iff Z Ď X is irreducible.

2. Every irreducible component of X is a closed subset of X.

Notation 2.20.19. From now on, irreducible means irreducible and closed.

2.4.2 Decomposition into irreducible subsets

Proposition 2.21. Let X be a Noetherian topological space. Then X can
be written as a finite union X “

Ťn
i“1 Zi of irreducible closed subsets of

X. One may additionally assume that i ‰ j ùñ Zi Ę Zi. With this
minimality condition, n and the Zi are unique (up to permutation) and
tZ1, . . . , Znu is the set of irreducible components of X.

Proof. Let M be the set of closed subsets of X which cannot be decomposed as
a union of finitely many irreducible subsets. Suppose M ‰ H. Then there exists
a Ď-minimal Y P M. Y cannot be empty or irreducible. Hence Y “ A Y B
where A,B are proper closed subsets of Y . By the minimality of Y , A and B
can be written as a union of proper closed subsets  .

Let X “
Ťn

i“1 Zi, where there are no inclusions between the Zi. If Y is an
irreducible subsets of X, Y “

Ťn
i“1pY X Ziq and there exists 1 ď i ď n such

that Y “ Y X Zi. Hence Y Ď Zi. Thus the Zi are irreducible components.
Conversely, if Y is an irreducible component of X, Y Ď Zi for some i and
Y “ Zi by the definition of irreducible component.

Remark 2.21.20. The proof of existence was an example of Noetherian
induction: If E is an assertion about closed subsets of a Noetherian topo-
logical space X and E holds for A if it holds for all proper subsets of A,
then EpAq holds for every closed subset A Ď X.

Proposition 2.22. By 2.14 there exists a bijection

f : tI Ď R|I ideal, I “
?
Iu ÝÑ tA Ď kn|A Zariski-closedu

I ÞÝÑ V pIq

tf P R|A Ď V pfqu ÐÝ [ A
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Under this correspondence A Ď kn is irreducible iff I :“ f´1pAq is a prime
ideal. Moreover, #A “ 1 iff I is a maximal ideal.

Proof. By the Nullstellensatz (2.2), A “ H ðñ I “ R. Suppose A “ B Y C
is a decomposition into proper closed subsets A “ V pJq, B “ V pKq where
J “

?
J , K “

?
K. Since A ‰ B and A ‰ C, there are f P JzI, g P KzI. fg

vanishes on A “ B Y C. By the Nullstellensatz (2.13) fg P
?
I “ I and I fails

to be prime.

On the other hand suppose that fg P I, f R I, g R I. By the Nullstellensatz
(2.13) and I “

?
I neither f nor g vanishes on all of A. Thus pAXV pfqq Y pAX

V pgqq is a decomposition and A fails to be irreducible.

The remaining assertion follows from the fact, that the bijection is Ď-anti-
monotonic and thus maximal ideals correspond to minimal irreducible closed
subsets, which are the one-point subsets as kn is T1.

2.5 Krull dimension

Definition 2.23. Let Z be an irreducible subset of the topological space
X. Let codimpZ,Xq be the maximum of the length n of strictly increasing
chains

Z Ď Z0 Ĺ Z1 Ĺ . . . Ĺ Zn

of irreducible closed subsets of X containing Z or 8 if such chains can be
found for arbitrary n. Let

dimX :“

$

’

&

’

%

´8 if X “ H,

sup
ZĎX

Z irreducible

codimpZ,Xq otherwise.

Remark 2.23.21. • In the situation of the definition Z is irreducible.
Hence codimpZ,Xq is well-defined and one may assume without los-
ing much generality that Z is closed.

• Because a point is always irreducible, every non-empty topological
space has an irreducible subset and for X ‰ H, dimX is 8 or
maxxPX codimptxu, Xq.

• Even for Noetherian X, it may happen that codimpZ,Xq “ 8.

• Even for if X is Noetherian and codimpZ,Xq is finite for all irre-
ducible subsets Z of X, dimX may be infinite.

Fact 2.23.22. If X “ txu, then dimX “ 0.
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Fact 2.23.23. For every x P k, codimptxu, kq “ 1. The only other irre-
ducible closed subset of k is k itself, which has codimension zero. Thus
dim k “ 1.

Fact 2.23.24. Let Y Ď X be irreducible and U Ď X an open subset such
that U X Y ‰ H. Then we have a bijection

f :tA Ď X|A irreducible, closed and Y Ď Au

ÝÑ tB Ď U |B irreducible, closed and Y X U Ď Bu

given by

A ÞÝÑ A X U

B ÐÝ [ B

where B denotes the closure in X.

Proof. If A is given and B “ A X U , then B ‰ H and B is open hence (irre-
ducibility of A) dense in A, hence A “ B. The fact that B “ B XU is a general
property of the closure operator.

Corollary 2.24 (Locality of Krull codimension). Let Y Ď X be irreducible
and U Ď X an open subset such that U X Y ‰ H. Then codimpY,Xq “

codimpY X U,Uq.

Fact 2.24.25. Let Z Ď Y Ď X be irreducible closed subsets of the topo-
logical space X. Then

codimpZ, Y q ` codimpY,Xq ď codimpZ,Xq (CD+)

Proof. A chain of irreducible closed subsets between Z and Y and a chain of
irreducible closed between Y and X can be spliced together.

Taking the supremum over all Z we obtain:

Fact 2.24.26. If Y is an irreducible closed subset of the topological space
X, then

dimpY q ` codimpY,Xq ď dimpXq (D+)

In general, these inequalities may be strict.
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Definition 2.25 (Catenary topological spaces). A topological space T is
called catenary if equality holds in (CD+) whenever X is an irreducible
closed subset of T .

2.5.1 Krull dimension of kn

Theorem 2.26. dim kn “ n and kn is catenary. Moreover, if X is an
irreducible closed subset of kn, then equality occurs in (D+).

Proof. Considering

t0u Ĺ k ˆ t0u Ĺ k2 ˆ t0u Ĺ . . . Ĺ kn

it is clear that codimpt0u, knq ě n. Translation by x P kn gives us

codimptxu, knq ě n.

The opposite inequality follows from 2.50 (Z “ kn, dim kn ď trdegpKpZq{kq “

trdegpQpkrX1, . . . , Xnsq{kq “ n).

The theorem is a special case of 2.69.

Lemma 2.27. Every non-zero prime ideal p of a UFD R contains a prime
element.

Proof. Let p P pzt0u with the minimal number of prime factors, counted by
multiplicity. If p was a unit, then p Ě pR “ R. If p “ ab with non-units a, b, it
follows that a P p or b P p contradicting the minimality assumption. Thus p is
a prime element of R.

Proposition 2.28 (Irreducible subsets of codimension one). Let p P R “

krX1, . . . , Xns be a prime element. Then the irreducible subsetX “ V ppq Ď

kn has codimension one, and every codimension one subset of kn has this
form.

Proof. Since pR is a prime ideal, X “ V ppq is irreducible. Since p ‰ 0, X is a
proper subset of kn. If X Ď Y Ď kn is irreducible and closed, then Y “ V pqq

for some prime ideal p Ď pR. If Y ‰ kn, then p ‰ t0u. By 2.27 there exists a
prime element q P q. As q Ď pR we have p  q. By the irreducibility of p and q
it follows that p „ q. Hence q “ pR and X “ Y .

Suppose X “ V ppq Ď kn is closed, irreducible and of codimension one. Then
p ‰ t0u, hence X ‰ kn. By 2.27 there is a prime element p P p. If p ‰ pR, then
X Ĺ V ppq Ĺ kn contradicts codimpX, knq “ 1.
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2.6 Transcendence degree

2.6.1 Matroids

Definition 2.29 (Hull operator). Let X be a set, PpXq the power set of

X. A Hull operator on X is a map PpXq
H

ÝÑ PpXq such that

H1 @A P PpXq A Ď HpAq.

H2 A Ď B Ď X ùñ HpAq Ď HpBq.

H3 HpHpXqq “ HpXq.

We call H matroidal if in addition the following conditions hold:

M If m,n P X and A Ď X then

m P Hptnu Y AqzHpAq ðñ n P Hptmu Y AqzHpAq,

F HpAq “
Ť

FĎA finite HpF q.

In this case, S Ď X is called independent subset, if s R HpSztsuq for
all s P S and generating if X “ HpSq. S is called a base, if it is both
generating and independent.

Theorem 2.30. If H is a matroidal hull operator on X, then a basis exists,
every independent set is contained in a base and two arbitrary bases have
the same cardinality.

Example 2.31. Let K be a field, V a K-vector space and LpT q the K-
linear hull of T for T Ď V . Then L is a matroidal hull operator on V .

2.6.2 Transcendence degree

Lemma 2.32. Let L{K be a field extension and let HpT q be the algebraic
closure in L of the subfield of L generated by K and T . a Then H is a
matroidal hull operator.

aThis is the intersection of all subfields of L containing KYT , or the field of quotients
of the sub-K-algebra of L generated by T .

Proof. H1, H2 and F are trivial. For an algebraically closed subfieldK Ď M Ď L
we have HpMq “ M . Thus HpHpT qq “ HpT q (H3).

Let x, y P L, T Ď L and x P HpT Y tyuqzHpT q. We have to show that y P

HpT Y txuqzHpT q. If y P HpT q we have HpT Y tyuq Ď HpHpT qq “ HpT q ùñ

x P HpT qzHpT q . Hence it is sufficient to show y P HpT Y txuq. Without loss
of generality loss of generality T “ H (replace K be the subfield generated by
K Y T ). Then x is algebraic over the subfield M of L generated by K Y tyu.
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Thus there exists 0 ‰ P P M rT s with P pxq “ 0. The coefficients pi of P belong
to the field of quotients of the K-subalgebra of L generated by y. There are

thus polynomials Qi, R P KrY s such that pi “
Qipyq

Rpyq
, Rpyq ‰ 0. Let

QpX,Y q :“
8
ÿ

i“0

XiQipY q “

8
ÿ

i,j“0

qi,jX
iY j “

8
ÿ

j“0

Y jQ̂jpXq P KrX,Y s.

ThenQpx, yq “ 0. Let p̂j :“ Q̂jpxq. Then P̂ pyq “ 0. AsQ ‰ 0 there is pi, jq P N2

such that qi,j ‰ 0 and then p̂j ‰ 0 as x R HpHq. Thus P̂ P M̂ rXszt0u, where

M̂ is the subfield of L generated by K and x. Thus y is algebraic over M̂ and
y P Hptxuq,

Definition 2.33 (Transcendence Base). Let L{K be a field extension and
HpT q the algebraic closure in L of the subfield generated by K and T . A
base for pL,Hq is called a transcendence base and the transcendence
degree trdegpL{Kq is defined as the cardinality of any transcendence base
of L{K.

Remark 2.33.27. L{K is algebraic iff trdegpL{Kq “ 0.

2.7 Inheritance of Noetherianness and of finite type by
subrings and subalgebras / Artin-Tate

The following will lead to another proof of the Nullstellensatz, which uses the
transcendence degree.

Remark 2.33.28. There exist non-Noetherian domains, which are sub-
rings of Noetherian domains (namely the field of quotients is Noetherian).

Theorem 2.34 (Eakin-Nagata). Let A be a subring of the Noetherian
ring B. If the ring extension B{A is finite (i.e. B finitely generated as an
A-module) then A is Noetherian.

Fact: 2.34.29. Let R be Noetherian and let B be a finite R-algebra. Then
every R-subalgebra A Ď B is finite over R.

Proof. Since B a finitely generated R-module and R a Noetherian ring, B is
a Noetherian R-module (this is a stronger assertion than Noetherian algebra).
Thus the sub- R-module A is finitely generated.
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Proposition 2.35 (Artin-Tate). Let A be a subalgebra of the R-algebra
B, where R is Noetherian. If B{R is of finite type and B{A is finite, then
A{R is also of finite type.

A B

R (Noeth.)

Ď

α
α

Proof. Let pbiq
m
i“1 generate B as an A-module and pβjqmj“1 as an R-algebra.

There are aijk P A such that bibj “
řm

k“1 aijkbk. And αij P A such that

βi “
řm

j“1 αijbj . Let Ã be the sub- R-algebra of A generated by the aijk and

αij . Ã is of finite type over R, hence Noetherian. The Ã-submodule generated
by 1 and the bi is a sub-R-algebra containing the βi and thus coincides with
B. Hence B{Ã is finite. Since A Ď B,A{Ã is finite (2.34.29). Hence A{Ã is of
finite type. By the transitivity of “of finite type”, it follows that A{R is of finite
type.

Ã A B

R

Ď Ď

α
α

α

2.7.1 Artin-Tate proof of the Nullstellensatz

Let K be a field and R “ KrX1, . . . , Xns.

Definition 2.36 (Rational functions). Let KpX1, . . . , Xnq :“ QpRq be the
field of quotients of R.

KpX1, . . . , Xnq is called the field of rational functions in n variables
over K.

Lemma 2.37 (Infinitely many prime elements). There are infinitely many
multiplicative equivalence classes of prime elements in R.

Proof. Suppose pPiq
m
i“1 is a complete list of prime elements of R (up to mul-

tiplicative equvialence). Then m ą 0, as X1 is prime. The polynomial f :“
1 `

śm
i“1 Pi is non-constant, hence not a unit in R. Hence there exists a prime

divisor P P R. As no Pi divides f , P cannot be multiplicatively equivalent to
any Pi .

2 THE NULLSTELLENSATZ AND THE ZARISKI TOPOLOGY 26



Lemma 2.38 (Ring of rational functions not of finite type). If n ą 0, then
KpX1, . . . , Xnq{K is not of finite type.

Proof. Suppose pfiq
m
i“1 generate KpX1, . . . , Xnq as a K-algebra. Let fi “

ai

b , ai P R, b P Rzt0u. Then bfi P R, and as the fi generate KpX1, . . . , Xnq

as a K-algebra, for every g P KpX1, . . . , Xnq there is N P N with

bNg P R (+)

However, if b “ ε
śl

i“1 Pi is a decomposition of b into prime factors Pi and a
unit ε in R and g “ 1

P , where P P R is a prime element not multiplicatively
equivalent to any Pi, then (+) fails for any N P N.

The Nullstellensatz (2.3) can be reduced to the case of 2.38:

Proof. (Artin-Tate proof of HNS) Let pliq
n
i“1 be a transcendence base of L{K.

If n “ 0 then L{K is algebraic, hence an integral ring extension, hence a finite
ring extension (1.10.5).

Suppose n ą 0. Let R̃ Ď L be the K-subalgebra generated by the li. We have
R̃ – R :“ KrX1, . . . , Xns, as the li are algebraically independent. As they are
a transcendence base, L is algebraic over the field of quotients QpR̃q, hence
integral over QpR̃q.

As L{K is of finite type, so is L{QpR̃q and it follows that L{QpR̃q is a finite ring
extension. By Artin-Tate (2.35), QpK̃q is of finite type over K. This contradicts
2.38, as R – R̃ ùñ KpX1, . . . , Xnq – QpR̃q.

2.8 Transcendence degree and Krull dimension

Let R “ krX1, . . . , Xns.

Notation 2.38.30. Let X Ď kn be an irreducible closed subset. Then
X “ V ppq for a unique prime ideal p Ď R. Let KpXq :“ QpR{pq denote
the field of quotients of R{p.

Remark 2.38.31. As the elements of p vanish on X, R{p may be viewed
as the ring of polynomials and KpXq as the field of rational functions on
X.

Theorem 2.39. If X Ď kn is irreducible, then dimX “ trdegpkpXq{kq and
codimpX, knq “ n´ trdegpKpXq{kq. More generally if Y Ď kn is irreducible
and X Ď Y , then codimpX,Y q “ trdegpKpY q{kq ´ trdegpKpXq{kq.
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Proof. One part will be shown in ”A first result on dimension theory” (2.49) and
other one in ”Aplication to dimension theory: Proof of dimY “ trdegpKpY q{kq”
(2.13.2). The theorem is a special case of 2.69.

Remark 2.39.32. Loosely speaking, the Krull dimension of X is equal
to the maximal number of k-algebraically independent rational functions
on X. This is yet another indication that the notion of dimension is the
“correct” one.

Remark 2.39.33. 2.26 follows.

2.9 The spectrum of a ring

Definition 2.40 (Spectrum). Let R be a commutative ring.

• Let SpecR denote the set of prime ideals and MaxSpecR Ď SpecR
the set of maximal ideals of R.

• For an ideal I Ď R let V pIq :“ tp P SpecR|I Ď pu

• We equip SpecR with the Zariski-Topology for which the closed
subsets are the subsets of the form V pIq, where I runs over the set
of ideals in R.

Remark 2.40.34. When R “ krX1, . . . , Xns, the notation V pIq clashes
with the previous notation. When several types of V pIq will be in use,
they will be distinguished using indices.

Remark 2.40.35. Let pIλqλPΛ and pljqnj“1 be ideals in R, where Λ may be

infinite. We have V p
ř

λPΛ Iλq “
Ş

λPΛ V pIλq and V p
Şn

j“1 Ijq “ V p
śn

j“1 Ijq “
Ťn

j“1 V pIjq. Thus, the Zariski topology on SpecR is a topology.

Remark 2.40.36. Let R “ krX1, . . . , Xns. Then there exists a bijection
(2.14, 2.22) between SpecR and the set of irreducible closed subsets of
kn sending p P SpecR to Vknppq and identifying the one-point subsets
with MaxSpecR. This defines a bijection kn – MaxSpecR which is a
homeomorphism if MaxSpecR is equipped with the induced topology from
the Zariski topology on SpecR.

2.10 Localization of rings

Definition 2.41 (Multiplicative subset). A multiplicative subset of a
ring R is a subset S Ď R such that

śn
i“1 fi P S when n P N and all fi P S.
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Proposition 2.42. Let S Ď R be a multiplicative subset. Then there is a

ring homomorphism R
i

ÝÑ RS such that ipSq Ď Rˆ
S and i has the universal

property for such ring homomorphisms: If R
j

ÝÑ T is a ring homomor-
phism with jpSq Ď Tˆ, then there is a unique ring homomorphism RS

ι
ÝÑ T

with j “ ιi.

R RS

T

i

j
D!ι

Proof. The construction is similar to the construction of the field of quotients:

Let RS :“ pR ˆ Sq{ „, where pr, sq „ pρ, σq : ðñ Dt P S tσr “ tsρ. 5

rr, ss ` rρ, σs :“ rrσ ` ρs, sσs, rr, ss ¨ rρ, σs :“ rr ¨ ρ, s ¨ σs.

In order proof the universal property define ιprr, ssq :“ jprq

jpsq
. The universal

property characterizes RS up to unique isomorphism.

Remark 2.42.37. i is often not injective and kerpiq “ tr P R|Ds P S s ¨r “

0u. In particular pr “ 1q, RS is the null ring iff 0 P S.

Notation 2.42.38. Let S Ď R be a multiplicative subset of R. We write
r
s for rr, ss. The ring homomorphism R

i
ÝÑ RS i given by iprq “ r

1 . For
X Ď RS let X [ R denote i´1pXq.

Definition 2.43 (S-saturated ideal). An ideal I Ď R is called S-saturated
if for all s P S, r P R rs P I ùñ r P I.

Fact 2.43.39. A prime ideal p Ď SpecR is S-saturated iff p X S “ H.

Because the elements of S become units in RS , J [R is an S-saturated ideal in
R when J is an ideal in RS .

Fact 2.43.40. Let I Ď R be an S-saturated ideal and let IS denote the
ideal t r

s |r P R, s P Su Ď RS . Then for all r P R, s P S we have r
s P IS ðñ

r P I.

Proof. Clearly i P I ùñ i
s P IS . If i

s P J there are ι P I, σ P S such that
i
s “ ι

σ in RS . This equation holds iff there exists t P S such that tsι “ tσi. But
tsι P I hence i P I, as I is S-saturated.

5t does not appear in the construction of the field of quotients, but is important if S
contains zero divisors.
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Fact 2.43.41. The inverse image of a prime ideal under any ring homo-
morphism is a prime ideal.

Proposition 2.44.

f : tI Ď R|I S-saturated idealu ÝÑ tJ Ď RS |J idealu

I ÞÝÑ IS :“

"

i

s
|i P I, s P S

*

J [ R ÐÝ [ J

is a bijection. Under this bijection I is a prime ideal iff fpIq is.

Proof. Applying 2.43.40 to s “ 1 gives IS [ R “ I, when I is S-saturated.

Conversely, if J is given and I “ J [ R, r
s P RS , then by 2.43.40 r

s P IRS ðñ

r P I. But as r
1 “ s ¨ r

s and s P Rˆ
S , we have r P I ðñ r

1 P J ðñ r
s P J . We

have thus shown that the two maps between sets of ideals are well-defined and
inverse to each other.

By 2.43.41, J P SpecRS ùñ f´1pJq “ J X R P SpecRS . Suppose I P SpecR,
a
s ¨ b

t P IS for some a, b P R, s, t P S. By 2.43.40 ab P I. Thus a P I _ b P I, hence
a
s P IS _ b

t P IS and we have IS P SpecRS .

Remark 2.44.42. Let R be a domain. If S “ Rzt0u, then RS is the field
of quotients QpRq. If S Ď Rzt0u, then

RS –

!a

s
P K|a P R, s P S

)

In particular QpRq – QpRSq.

Definition 2.45 (S-saturation). Let R be any ring, I Ď R an ideal. Even
if I is not S-saturated, J “ IS :“ t i

s |i P I, s P Su is an ideal in RS , and
IS [ R “ tr P R|s ¨ r P I, s P Su is called the S-saturation of I which is
the smallest S-saturated ideal containing I.

Lemma 2.46. In the situation of 2.45, if S denotes the image of S in R{I,
there is a canonical isomorphism RS{IS – pR{IqS .

Proof. We show that both rings have the universal property for ring homomor-
phisms R

τ
ÝÑ T with τpIq “ t0u and τpSq Ď Tˆ. For such τ , by the fundamental

theorem on homomorphisms6 there is a unique R{I
τ1

ÝÑ T such that τ “ τ1πR,I .

6Homomorphiesatz
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We have τ1pSq “ τpSq Ď Tˆ, hence there is a unique pR{IqS
τ2

ÝÑ T such that

the composition R{I Ñ pR{IqS
τ2

ÝÑ T equals τ1. It is easy to see that this is the

only one for which R Ñ R{I Ñ pR{IqS
τ2

ÝÑ T equals τ .

Similarly, by the universal property of RS there is a unique RS
τ3

ÝÑ T whose
composition with R Ñ RS equals τ . τ3pISq “ 0, hence a unique RS{IS

τ4
ÝÑ T

whose composition with πRS ,IS equals τ3 exists. This is the only one for which

the composition R Ñ RS Ñ RS{IS
τ4

ÝÑ T equals τ .

R T R

R{I RS

pR{IqS RS{IS

τ

πR,I

τ

D!τ1 D!τ3

πRS,IS

D!τ2 D!τ4

2.11 A first result of dimension theory

Notation 2.46.43. Let R be a ring, p P SpecR. Let kppq denote the field
of quotients of the domain R{p. This is called the residue field of p.

Proposition 2.47. Let l be a field, A a l-algebra of finite type and p, q P

SpecA with p Ĺ q. Then

trdegpkppq{lq ą trdegpkpqq{lq

Proof. Replacing A by A{p, we may assume p “ t0u and A to be a domain.
Then kppq “ QpA{pq “ QpAq.

If q is a maximal ideal, kpqq “ A{q is of finite type over l, hence a finite
field extension of l by the Nullstellensatz (2.3). Thus, trdegpkpqq{lq “ 0. If
trdegpQpAq{lq “ 0, A would be integral over l, hence a field (fact about inte-
grality and fields, 1.10.7). But if A is a field, p “ t0u is a maximal ideal of
A, hence q “ p . This finishes the proof for q P MaxSpecA. We will use the
following lemma to reduce the general case to this case:

Lemma 2.48. There are algebraically independent a1, . . . , an P A whose
images in A{q form a transcendence base for kpqq{l.
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Subproof. There exist a1, . . . , an P A such that kpqq is algebraic over the subfield
generated by l and their images ai (for instance generators of A as a l-algebra).
We may assume that n is minimal. If the ai are l-algebraically dependent, then
w.l.o.g. an can be assumed to be algebraic over the subfield generated by l and
the ai, 1 ď i ă n. Thus, an could be removed, contradicting the minimality.

■

Let q be any prime ideal. Take a1, . . . , an P A as in the lemma. As the ai
mod q are l-algebraically independent, the same holds for the ai themselves.
Thus trdegpQpAq{lq ě n and the inequality is strict, if it can be shown that
the ai fail to be a transcendence base of QpAq{l. Let R Ď A denote the l-
subalgebra generated by a1, . . . , an and S :“ Rzt0u. We must show, that QpAq

fails to be algebraic over l1 :“ RS “ QpRq. Let A1 :“ AS and qS the prime
ideal corresponding to q as in 2.44. We have qS ‰ t0u as t0AuS “ t0AS

u.
A1 is a domain with QpA1q – QpAq (2.44.42) and A1{qS is isomorphic to the
localization of A{q with respect to the image of S in A{q (2.46). kpqSq is algebraic
over l1 because the image of l1 in kpqSq contains the images of l and the ai,
and the images of the ai form a transcendence base for kpqq{l. By the fact
about integrality and fields (1.10.7) it follows that A1{qS is a field, hence qS P

MaxSpecpA1q and the special case of q P MaxSpecpAq can be applied to qS and
A1{l1 showing that QpAq cannot be algebraic over l1.

Corollary 2.49. LetX,Y Ď kn be irreducible and closed. Then codimpX,Y q ď

trdegpKpY q{kq ´ trdegpKpXq{kq.

Proof. Let X “ X0 Ĺ X1 Ĺ . . . Ĺ Xc “ Y be a chain of irreducible closed
subsets between X and Y . Then Xi “ V ppiq for prime ideals p0 Ľ p1 Ľ . . . Ľ pc
in R “ krX1, . . . , Xns. By 2.47 we have trdegpkppiq{kq ă trdegpkppi`1q{kq for all
0 ď i ă c. Thus

c ` trdegpKpXq{kq “ c ` trdegpkpp0q{kq ď trdegpkppcq{kq “ trdegpKpY q{kq.

As codimpX,Y q “ suptc P N|DX “ X0 Ĺ . . . Ĺ Xc “ Y irreducible, closedu it
follows that

codimpX,Y q ď trdegpKpY q{kq ´ trdegpKpXq{kq

Corollary 2.50. Let Z Ď kn be irreducible and closed. Then

dimZ ď trdegpKpZq{kq

and
codimpZ, knq ď n ´ trdegpKpZq{k.

Proof. Take X “ tzu and Y “ Z or X “ Z and Y “ kn in 2.49.
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2.12 Local rings

Definition 2.51 (Local ring). Let R be a ring. R is called a local ring,
if the following equivalent conditions hold:

• #MaxSpecR “ 1

• RzRˆ is an ideal.

If this holds, mR :“ RzRˆ is the unique maximal ideal of R.

Proof. Suppose MaxSpecR “ tmu. If x P m, then x R Rˆ as otherwise xR “

R ùñ m “ R. If x R Rˆ then xR is a proper ideal, hence contained in some
maximal ideal. Thus x P m.

Assume that m “ RzRˆ is an ideal in R. As 1 P Rˆ this is a proper ideal. If I
is any proper ideal and x P I, then x P m. Hence R “ xR Ď I Ď m. It follows
that m is the only maximal ideal of R.

Remark 2.51.44. • Any field is a local ring (mK “ t0u).

• The null ring is not local as it has no maximal ideals.

2.12.1 Localization at a prime ideal

Many questions of commutative algebra are easier in the case of local rings.
Localization at a prime ideal is a technique to reduce a problem to this case.

Proposition 2.52 (Localization at a prime ideal). Let A be a ring and
p P SpecA. Then S :“ Azp is a multiplicative subset, AS is a local ring
with maximal ideal m “ pS “ t

p
s |p P p, s P Su.

We have a bijection

f : SpecAS ÝÑ tq P SpecA|q Ď pu

r ÞÝÑ r [ A

qS :“
!q

s
|q P q, s P S

)

ÐÝ [ q

Proof. It is clear that S is a multiplicative subset and that pS is an ideal. By
2.43.40 a

s P pS ðñ a P p ðñ a P AzS for all a P A, s P S. Thus, if a
s R pS

then it is a unit in AS with inverse s
a . Hence AS is a local ring with maximal

ideal pS .

The claim about SpecAS follows from 2.44 using the fact (2.43.39) that a prime
ideal r P SpecA is S-saturated iff it is disjoint from S “ Azp iff r Ď p.
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Definition 2.53. The ring AS as in 2.52 is called the localization of A
at the prime ideal p and denoted Ap.

Remark 2.53.45. This introduces no ambiguity because a prime ideal is
never a multiplicative subset.

Remark 2.53.46. Let B “ krX1, . . . , Xns, x P kn and m the maximal
ideal such that V pmq “ txu. The elements of Bm are the fractions b

s ,
b P B, s P Bzm, i.e. spxq ‰ 0. These are precisely the rational functions
which are well-defined in some neighbourhood of x. This will be rigorously
formulated in 4.28.

Remark 2.53.47. Let Y “ V ppq Ď kn be an irreducible subset of kn.
Elements of Bp are the fractions b

s , s R p, i.e. s does not vanish identically
on Y . Thus, Bp is the ring of rational functions on kn which are well
defined on some open subset U intersecting Y . As Y is irreducible, the
intersection of two such subsets still intersects Y .

Remark 2.53.48. For arbitrary A, we have a bijection SpecAp – N “

tq P SpecA|p Ď pu. One can show that N is the intersection of all neigh-
bourhoods of p in SpecA, confirming the intuition that “the localization
sees things which go on in arbitrarily small neighbourhoods of p”.

Remark 2.53.49. If A is a domain and p “ t0u, then Ap “ QpAq.

2.13 Going-up and going-down

Definition 2.54 (Going-up and going-down). Let R be a ring and A an
R-algebra.

Going-up holds for A{R if for arbitrary q P SpecA and arbitrary p̃ P

SpecR with p̃ Ě q [ R there exists q̃ P SpecA with q Ď q̃ and p̃ “ q̃ [ R.

(We are given p Ď p̃ and q such that p “ q [ R and must make q larger).

q Ď q̃ P SpecA

q [ R “ p Ď p̃ P SpecR

¨[R ¨[R

Going-down holds for A{R if for arbitrary q̃ P SpecA and arbitrary p P

SpecR with p Ď q̃ [ R, there exists q P SpecA with q Ď q̃ and p “ q [ R.
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(We are given p Ď p̃ and q̃ such that p̃ “ q̃ [ R and must make q̃ smaller).

q Ď q̃ P SpecA

p Ď p̃ “ q̃ [ R P SpecR

¨[R ¨[R

Remark 2.54.50. In the situation of 2.54, we say q P SpecA lies above
p P SpecR if q [ R “ p.

2.13.1 Going-up for integral ring extensions

Theorem 2.55 (Krull, Cohen-Seidenberg). Let A be a ring and R Ď A a
subring such that A is integral over R.

A The map SpecA
q ÞÑqXR

ÝÝÝÝÝÑ SpecR is surjective.

B For p P SpecR, there are no inclusions between the prime ideals
p P SpecA lying over p.

C Going-up holds for A{R.

D q P SpecA is maximal iff p :“ q X R is a maximal ideal of R.

Proof. D Consider the ring extension A{q of R{p. Both rings are domains
and the extension is integral. By the fact about integrality and fields
(1.10.7) A{q is a field iff R{p is a field. Thus q P MaxSpecA ðñ p P

MaxSpecR.

A Suppose p P SpecR and let S :“ Rzp. Then S is a multiplicative subset of

both R and A, and we may consider the localizations R
ρ

ÝÑ Rp, A
α

ÝÑ Ap

with respect to S. By the universal property of ρ, there exists a unique

homomorphism Rp
i

ÝÑ Ap such that iρ “ α æR. We have jp r
s q “ r

s and j
is easily seen to be injective.

R Rp

A Ap

ρ

Ď D!i

α

Claim 1. Ap is integral over Rp.

Subproof. An element x P Ap has the form x “ a
s for some s P Rzp and

where a P A is integral over R. Hence an “
řn´1

i“0 ria
i for some ri P R.

Thus xn “
řn´1

i“0 ρix
i with ρi :“ si´nri P Rp. ■
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As i is injective and Rp ‰ t0u (Rp is local!) Ap ‰ t0u, there is m P

MaxSpecAp. D has already been shown and applies to Ap{Rp, hence
i´1pmq “ pp is the only maximal ideal of the local ring Rp. Hence q “

α´1pmq satisfies

q X R “ α´1pmq X R “ ρ´1pi´1pmqq “ ρ´1pppq “ p.

B The map SpecAp
α´1

ÝÝÑ SpecA is injective with image equal to tq P

SpecA|q X R Ď pu. In particular, it contains the set of all q lying over p.
If q “ α´1prq lies over p, then

ρ´1pi´1prqq “ pα´1prqq X R “ q X R “ p “ ρ´1pppq

hence i´1prq “ pp by the injectivity of SpecRp
ρ´1

ÝÝÑ SpecR.

Because D applies to the integral ring extensionAp{Rp and pp P MaxSpecRp,
r is a maximal ideal. There are thus no inclusions between different such

r. Because SpecAp
α´1

ÝÝÑ SpecA is Ď-monotonic and injective, there are
no inclusions between different p P SpecA lying over p.

C Let p Ď p̃ be prime ideals of R and q P SpecA such that q X R “ p. By
applying A to the ring extension A{q of R{p, there is r P SpecA{q such
that r [ R{p “ p̃{p. The preimage q̃ of r under A Ñ A{q satisfies q Ď q̃
and q̃ X R “ p̃.

Remark 2.55.51. The proof of 2.55 does not use Noetherianness, as this
is not an assumption.

2.13.2 Application to dimension theory: Proof of dimY “ trdegpKpY q{kq

This is part of the proof of 2.39.

Proof. Let B “ krX1, . . . , Xns and let X Ď Y Ď kn be irreducible closed subsets
of kn. We have to show codimpX,Y q “ trdegpKpY q{kq ´ trdegpKpXqzkq. The
inequality

codimpX,Y q ď trdegpKpY qzkq ´ trdegpKpXqzkq

has been shown in 2.49. In the case of X “ t0u, Y “ kn, equality holds because
the chain of irreducible subsets t0u Ĺ t0u ˆ k Ĺ . . . Ĺ t0u ˆ kn Ĺ kn can be
written down explicitly.

We have Y “ V ppq for a unique p P SpecB. Let A “ B{p be the ring of
polynomials on Y . Apply the Noether normaization theorem to A. This yields
pfiq

d
i“1 P Ad which are algebraically independent over k and such that A is

finite over the subalgebra generated by the fi. Let L be the algebraic closure
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in KpY q of the subfield of KpY q generated by k and the fi. We have A Ď L and
since KpY q “ QpB{pq “ QpAq7 it follows that KpY q “ L. Hence pfiq

d
i“1 is a

transcendence base for Kpyq{k and d “ trdegKpY q{k.

krX1, . . . , Xds ÝÑ R

P ÞÝÑ P pf1, . . . , fdq

is an isomorphism and in krX1, . . . , Xds there is a strictly ascending chain of
prime ideals corresponding to kd Ľ t0u ˆ kd´1 Ľ . . . Ľ t0u. Thus there is a
strictly ascending chain t0u “ p0 Ĺ p1 Ĺ . . . Ĺ pd of elements of SpecR. Let
q0 “ t0u P SpecA. If 0 ă i ď d and a chain q0 Ĺ . . . Ĺ qi´1 in SpecA with
qj X R “ pj for 0 ď j ă i has been selected, we may apply going-up (2.55) to
A{R to extend this chain by a qi P SpecA with qi´1 Ď qi and qi XR “ pi (thus
qi´1 Ĺ qi as p´ i ‰ pi´1q. Thus, we have a chain q0 “ t0u Ĺ . . . Ĺ qd in SpecA.
Let q̃i :“ π´1

B,ppqiq, Yi :“ V pq̃iq. This is a chain Y “ Y0 Ľ Y1 Ľ . . . Ľ Yd of
irreducible subsets of kn.

Hence dimpY q ě trdegpKpY q{kq.

The general case of codimpX,Y q ě trdegpKpY q{kq ´ trdegpKpXqzkq is shown in
2.13.8.

2.13.3 Prime avoidance

Proposition 2.56 (Prime avoidance). Let A be a ring and I Ď A a subset
which is closed under arbitrary finite sums and non-empty products, for
instance, an ideal in A. Let ppiq

n
i“1 be a finite list of ideals in A of which

at most two fail to be prime ideals and such that there is no i with I Ď pi.
Then I Ę

Ťn
i“1 pi.

Proof. Induction on n. The case of n ă 2 is trivial. Let n ě 2 and the assertion
be shown for a list of n ´ 1 ideals one wants to avoid. If n ě 3 we may, by
reordering the pi, assume that p1 is a prime ideal. By the induction assumption,
there is fk P Iz

Ť

j‰k pj . If there is k with 1 ď k ď n and fk R pk, then the
proof is finished. Otherwise

f1 `

n
ź

j“2

fj P Iz

n
ď

j“1

pj .

2.13.4 The fixed field of the automorphism group of a normal field
extension

Recall the definition of a normal field extension in the case of finite field exten-
sions:

7by definition
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Definition 2.57. A finite field extension L{K is called normal, if the
following equivalent conditions hold:

A Let K{K be an algebraic closure of K. Then any two expansions of
IdK to a ring homomorphism L Ñ K have the same image.

B If P P KrT s is an irreducible polynomial and P has a zero in L, then
P splits into linear factors.

C L is the splitting field of a P P KrT s.

Fact 2.57.52. For an arbitrary algebraic field extension L{K, the following
conditions are equivalent:

• L is the union of its subfields which contain K and are finite and
normal over K.

• If P P KrT s is normed, irreducible over K and has a zero in L, then
it splits into linear factors in L.

• If L is an algebraic closure of L, then all extensions of IdK to a ring
homomorphism L Ñ L have the same image.

Definition 2.58 (Normal field extension). An algebraic field extensiona

L{K is called normal if the equivalent conditions from 2.57.52 hold.

anot necessarily finite

Definition 2.59. Suppose L{K is an arbitrary field extension. Let AutpL{Kq

be the set of automorphisms of L leaving all elements of (the image in L
of) K fixed. Let G Ď AutpL{Kq be a subgroup. Then the fixed field is
definied as

LG :“ tl P L|@g P G : gplq “ lu.

Proposition 2.60. Let L{K be a normal field extension. If the character-
istic of the fields is O, then LAutpL{Kq “ K. If the characteristic is p ą 0,
then LAutpL{Kq “ tl P L|Dn P N lp

n

P Ku.

Proof. In both cases LG Ě is easy to see.

If K Ď M Ď L is an intermediate field, then L is normal over M . If σ P

AutpM{Kq, an application of Zorn’s lemma to the set of all pN,ϑq where N is

an intermediate field M Ď N Ď L and N
ϑ

ÝÑ L a ring homomorphism such that
ϑ æM“ σ shows that σ has an extension to an element of AutpL{Kq. If M is
normal over K, it is easily seen to be AutpL{Kq invariant. Thus LG is the union
of MAutpM{Kq over all intermediate fields which are finite and normal over K,
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and it is sufficient to show the proposition for finite normal extensions L{K.

• Characteristic 0: The extension is normal, hence Galois, and the assertion
follows from Galois theory.

• Characteristic p ą 0: Let l P LG and P P KrT s be the minimal polynomial
of l over K. We show that lp

n

P K for some n P N by induction on
degpl{Kq :“ degpP q.

If degpl{Kq “ 1, we have l P K. Otherwise, assume that the assertion
has been shown for elements of LG whose degree over K is smaller than
degpl{Kq. Let L be an algebraic closure of L and λ a zero of P in L. If
M “ Kplq Ď L, then there is a ring homomorphism M ´L sending l to λ.
This can be extended to a ring homomorphism L

σ
ÝÑ L. We have σ P G

because L{K is normal. Hence λ “ σplq “ l, as l P LG. Thus l is the only
zero of P in L and because degP ą 1 it is a multiple zero. It is shown in
the Galois theory lecture that this is possible only when P pT q “ QpT pq

for some Q P KrT s. Then Qplpq “ 0 and the induction assumption can be

applied to x “ lp showing xpm

P K hence lp
m`1

P K for some m P N.

2.13.5 Integral closure and normal domains

Definition 2.61 (Integral closure, normal domains). Let A be a domain
with field of quotients QpAq and let L be a field extension of QpAq. By
1.9 the set of elements of L integral over A is a subring of L, the integral
closure of A in L. A is integrally closed in L if the integral closure of
A in L equals A. A is normal if it is integrally closed in QpAq.

Proposition 2.62. Any factorial domain (UFD) is normal.

Proof. Let x P QpAq be integral over A. Then there is a normed polynomial
P P ArT s with P pxq “ 0. In Einführung in die Algebra it was shown that
ArT s is a UFD and that the prime elements of ArT s are the elements which
are irreducible in QpAqrT s and for which the gcd of the coefficients is „ 1.
The prime factors of a normed polynomial are all normed up to multiplicative
equivalence. We may thus assume P to be irreducible in QpAqrT s. But then
degP “ 1 as x is a zero of P in QpAq, hence P pT q “ T ´ x and x P A as
P P ArT s.

Alternative proof8: Let x “ a
b P QpAq be integral over A. Without loss of

generality loss of generality gcdpa, bq “ 1. Then xn ` cn´1x
n´1 ` . . . ` c0 “ 0

for some ci P A. Multiplication with bn yields an ` cn´1ba
n´1 ` . . . ` c0b

n “ 0.
Thus b|an. Since gcdpa, bq “ 1 it follows that b is a unit, hence x P A.

8http://www.math.lsa.umich.edu/~tfylam/Math221/2.pdf
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Remark 2.62.53. It follows from 1.10 and 2.44.42 that the integral closure
of A in some field extension L of QpAq is always normal.

Remark 2.62.54. A finite field extension of Q is called an algebraic
number field (ANF). If K is an ANF, let OK (the ring of integers in
K) be the integral closure of Z in K. One can show that this is a finitely
generated (hence free, by results of Einführung in die Algebra) abelian
group. We have OQ “ Z by the proposiiton.

2.13.6 Action of AutpL{Kq on prime ideals of a normal ring extension

Theorem 2.63. Let A be a normal domain, L a normal field extension
of K :“ QpAq, B the integral closure of A in L and p P SpecA. Then
G :“ AutpL{Kq transitively acts on tq P SpecB|q X A “ pu.

Proof. Let q, r be prime ideals of B above the given p P SpecA. We must show
that there exists σ P G such that q “ σprq. This is equivalent to q Ď σprq, since
the Krull going-up theorem ( 2.55) applies to the integral ring extension B{A,
showing that there are no inclusions between different elements of SpecB lying
above p P SpecA.

If L{K is finite and there is no such σ, then by prime avoidance (2.56) there
is x P qz

Ť

σPG σprq. As r is a prime ideal, y “
ś

σPG σpxq P qzr.9 By the
characterization of LG for normal field extensions (2.60), there is a positive
integer k with yk P K. As A is normal, we have yk P K X B “ A. Thus

yk P pA X qqzpA X rq “ pzp “ H .

If L{K is not finite, one applies Zorn’s lemma to the poset of pairs pM,σq where
M is an intermediate field and σ P AutpM{Kq such that σpr X Mq “ q X M .

Remark 2.63.55. The theorem is very important for its own sake. For
instance, if K is an ANF which is a Galois extension of Q it shows that
GalpK{Qq transitively acts on the set of prime ideals of OK over a given
prime number p. More generally, if L{K is a Galois extension of ANF then
GalpL{Kq transitively acts on the set of q P SpecOL for which q X K is a
given p P SpecOK .

2.13.7 A going-down theorem

9
ś

σPG σpxq “
ś

σPG σ´1pxq
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Theorem 2.64 (Going-down for integral extensions of normal domains
(Krull)). Let B be a domain which is integral over its subring A. If A is a
normal domain, then going-down holds for B{A.

Proof. It follows from the assumptions that the field of quotients QpBq is an
algebraic field extension of QpAq. There is an algebraic extension L of QpBq

such that L{QpAq is normal (for instance an algebraic closure of QpBq). Let C
be the integral closure of A in L. Then B Ď C and C{B is integral.

QpAq QpBq L :“ QpBq

A B C

Claim 1. Going-down holds for C{A.

Subproof. Let p Ď p̃ be an inclusion of prime ideals of A and r̃ P SpecC with

r̃ X A “ p̃. By going-up for integral ring extensions (2.55), SpecC
¨XA

ÝÝÑ SpecA
is surjective. Thus there is r1 P SpecC such that r1 X A “ p. By going up for
C{A there is r̃1 P SpecC with r̃1 X A “ p̃, r1 Ď r̃1. By the theorem about the
action of the automorphism group on prime ideals of a normal ring extension
(2.63) there exists a σ P AutpL{QpAqq with σpr̃1q “ r̃. Then r :“ σpr1q satisfies
r Ď r̃ and r X A “ p. ■

If p Ď p̃ is an inclusion of elements of SpecA and q̃ P SpecB with p̃XA “ p̃, by

the surjectivity of SpecC
¨XB

ÝÝÝÑ SpecB (2.55) there is r̃ P SpecC with r̃XB “ q.
By going-down for C{A, there is r P SpecC with r Ď r̃ and r X A “ p. Then
q :“ r X B P SpecB, q Ď q̃ and q X A “ p. Thus going-down holds for B{A.

Remark 2.64.56 (Universally Japanese rings). A Noetherian ring A is
called universally Japanese if for every p P SpecA and every finite field
extension L of kppq, the integral closure of A{p in L is a finitely generated A-
module. This notion was coined by Grothendieck because the condition was
extensively studied by the Japanese mathematician Nataga Masayoshji. By
a hard result of Nagata, algebras of finite type over a universally Japanese
ring are universally Japanese. Every field is universally Japanese, as is
every PID of characteristic 0. There are, however, examples of Noetherian
rings which fail to be universally Japanese.

Example: 2.64.57 (Counterexample to going down). Let R “ krX,Y s

and A “ krX,Y, X
Y s. Then going down does not hold for A{R:
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For any ideal Y P q Ď A we have X “ X
Y ¨ Y P q. Consider pY qR Ĺ

pX,Y qR Ď q X R. As pX,Y qR is maximal and the preimage of a prime
ideal is prime and thus proper, we have pX,Y qR “ qXR. The prime ideal
pX
Y , Y qA “ pX

Y , X, Y qA is lying over pX,Y qR, so going down is violated.

2.13.8 Proof of codimptyu, Y q “ trdegpKpY q{kq

This is part of the proof of 2.39.

Proof. Let B “ krX1, . . . , Xns and X Ď Y “ V ppq Ď kn irreducible closed sub-
sets of kn. We want to show that codimpX,Y q “ trdegpKpY q{kq´trdegpKpXq{kq.
ď was shown in 2.49. dimY ě trdegpKpY q{kq was shown in 2.13.2 by Apply-
ing Noether normalization to A :“ B{p, giving us pfiq

d
i“1 P Ad such that the

fi are algebraically independent and A finite over the subalgebra generated by
them. We then used going-up to lift a chain of prime ideals corresponding to

kd Ľ t0u ˆ kn´1 Ľ . . . Ľ t0u under Y
F“pf1,...,fdq

ÝÝÝÝÝÝÝÝÑ kd to a chain of prime ideals
in A. This was done left-to-right as going-up was used to make prime ideals
larger. In particular, when t0u P kd has several preimages under F , we cannot
control to which of them the maximal ideal terminating the lifted chain belongs.
Thus, we can show that in the inequality

codimptyu, Y q ď d “ trdegpKpY qzkq

(see 2.49) equality holds for at least one pint y P F´1pt0uq but cannot rule
out that there are other y P F´1pt0uq for which the inequality becomes strict.
However using going-down (2.64) for F , we can use a similar argument, but
start lifting of the chain at the right end for the point y P Y for which we would
like to show equality. From this codimpX,Y q ě trdegpKpY q{kq ´ trdegpKpXq{kq
can be derived similarly to 2.49. Thus

codimpX,Y q “ trdegpKpY q{kq ´ trdegpKpXq{kq

follows (see 2.67 and 2.69).

Remark 2.64.58. The going-down theorem used to prove this is somewhat
more general, as it does not depend on k being algebraically closed.

2.14 The height of a prime ideal

In order to complete the proof of 2.13.8 and show codimpX,Y q “ trdegpKpY q{kq´

trdegpKpXq{kq, we need to localize the k-algebra with respect to a multiplica-
tive subset and replace the ground field by a larger subfield of that localization
which is no longer algebraically closed. To formulate a result which still applies
in this context, we need the following:
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Definition 2.65 (Height of a prime ideal). Let A be a ring, p P SpecA.
We define the height of the prime ideal p, htppq, to be the largest k P N
such that there is a strictly decreasing sequence p “ p0 Ľ p1 Ľ . . . Ľ pk of
prime ideals of A, or 8 if there is no finite upper bound on the length of
such sequences.

Example 2.66. Let A “ krX1, . . . , Xns, X “ V ppq for a prime ideal p. By
the correspondence between irreducible subsets of kn and prime ideals in
A (2.22), the pi correspond to irreducible subsets Xi Ď kn containing X.
Thus htppq “ codimpX, knq.

Example 2.67. Let B “ krX1, . . . , Xns, q P SpecB and let A :“ B{p. Let

Y :“ V pqq Ď kn, p̃ :“ π´1
B,qppq, where B

πB,p
ÝÝÝÑ A is the projection to the ring

of residue classes and let X “ V pp̃q. By 2.44 we have a bijection between
the prime ideals r Ď p of A contained in p and the prime ideals and the
prime ideals r̃ P SpecB with q Ď r̃ Ď p̃:

f : tr P SpecA|r Ď pu ÝÑ tr̃ P SpecB|q Ď r̃ Ď p̃u

r ÞÝÑ π´1
B,qprq

r̃{q ÐÝ [ r̃

By 2.22, the r̃ are in canonical bijection with the irreducible subsets Z of
Y containing X. Thus, the chains p “ p0 Ľ . . . Ľ pk are in canonical
bijection with the chains X “ X0 Ĺ X1 Ĺ . . . Ĺ Xk Ď Y of irreducible
subsets and htppq “ codimpX,Y q.

Remark 2.67.59. Let A be an arbitrary ring. One can show that there is
a bijection between SpecA and the set of irreducible subsets Y Ď SpecA:

f : SpecA ÝÑ tY Ď SpecA|Y irreducibleu

p ÞÝÑ VSppq
ď

pPY

p ÐÝ [ Y

Thus, the chains p “ p0 Ľ . . . Ľ pk are in canonical bijection with the
chains V ppq “ X0 Ĺ X1 Ĺ . . . Ĺ Xk Ď SpecA of irreducible subsets, and
htppq “ codimpV ppq,SpecAq.

2.14.1 The relation between htppq and trdeg

We will use the following
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Lemma 2.68. Let l be an arbitrary field, A a l-algebra of finite type
which is a domain, K :“ QpAq the field of quotients and let paiq

n
i“1 be l-

algebraically independent elements of A. Then there exist a natural num-
ber m ě n and a transcendence base paiq

m
i“1 for K{l with ai P A for

1 ď i ď m.

Proof. The proof is similar to the proof of 2.48. There are a natural number
m ě n and elements paiq

m
i“n`1 P Am´n which generate K in the sense of a

matroid used in the definition of trdeg. For instance, one can use generators
of the l-algebra A. We assume m to be minimal and claim that paiq

m
i“1 are

l-algebraically independent. Otherwise there is j P N, 1 ď j ď m such that
aj is algebraic over the subfield of K generated by l and the paiq

j´1
i“1 . We have

j ą n by the algebraic independence of paiq
n
i“1. Exchanging xj and xm, we may

assume j “ m. But then K is algebraic over its subfield generated by l and the
paiq

m´1
i“1 , contradicting the minimality of m.

Theorem 2.69. Let l be an arbitrary field, A a l-algebra of finite type
which is a domain, and p P SpecA. Let K :“ QpAq be the field of quotients
of A. Then

htppq “ trdegpK{lq ´ trdegpkppq{lq.

Remark 2.69.60. By example 2.67, theorem 2.39 is a special case of this
theorem.

Proof. If p “ p0 Ľ p1 Ľ . . . Ľ pk is a chain of prime ideals in A, we have
trdegpkppiq{lq ă trdegpkppi`1q{lq by 2.47 (“A first result of dimension theory”).
Thus

k ď trdegpkppkq{lq ´ trdegpkppq{lq ď trdegpK{lq ´ trdegpkppq{lq,

where the last inequality is another application of 2.47 (using K “ QpAq “

QpA{t0uq “ kpt0uq and the fact that t0u Ď pk is a prime ideal). Hence

htppq ď trdegpK{lq ´ trdegpkppq{lq

and it remains to show the opposite inequality.

Claim 1. For any maximal ideal p P MaxSpecA

htpmq ě trdegpK{lq.

Subproof. By the Noether normalization theorem (1.12), there are pxiq
d
i“1 P

Ad which are algebraically independent over l such that A is finite over the
subalgebra S generated by the xi. We have d “ trdegpK{lq as the xi form a
transcendence base of K{l.
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Claim 1. We can choose xi P m.

Subproof. By the Nullstellensatz (2.3), kpmq “ A{m is a finite field extension of
l. Hence there exists a normed polynomial Pi P lrT s with Pipxi mod mq “ 0
in kpmq. Let x̃i :“ Pipxiq P m and S̃ the subalgebra generated by the x̃i. As
Pipxiq ´ x̃i “ 0, xi is integral over S̃ and so is S{S̃. It follows that A{S̃ is
integral, hence finite by 1.10.5. Replacing xi by x̃i, we may thus assume that
xi P m. ■

The ring homomorphism evx : R “ lrX1, . . . , Xds
P ÞÑP px1,...,xdq

ÝÝÝÝÝÝÝÝÝÝÑ A is injective.
Because R is a UFD, R is normal (2.62). Thus the going-down theorem (2.64)
applies to the integral R-algebra A. For 0 ď i ď d, let pi Ď R be the ideal
generated by pXjqdj“i`1. We have m [ R “ p0 as all Xi P m, hence Xi P m [ R
and p0 is a maximal ideal. By applying going-down and induction on i, there is
a chain m “ q0 Ľ p1 Ľ . . . Ľ pd of elements of SpecA such that qi [ R “ pi. It
follows that htpmq ě d. ■

This finishes the proof in the case of p P MaxSpecA.

To reduce the general case to that special case, we proceed as in 2.47: By lemma
2.48 there are a1, . . . , an P A whose images in A{p form a transcendence base
for kppq{l. As these images are l-algebraically independent, the same holds for
the ai themselves.

By lemma 2.68 we can extend paiq
n
i“1 to a transcendence base paiq

m
i“1 P Am

of K{l. Let R Ď A denote the l-subalgebra generated by a1, . . . , an and let
S :“ Rzt0u. Let A1 :“ AS and pS the prime ideal corresponding to p under
SpecpA1q – tr P SpecA|r X S “ Hu ( 2.44). As in 2.44.42, A1 is a domain
with QpA1q – K “ QpAq and by 2.46 A1{pS – pA{pqS , where S denotes the
image of S in A{p. As in 2.47, kppSq – kppq is integral over A1{pS . From the
fact about integrality and fields (1.10.7), it follows that A1{pS is a field. Hence
pS P MaxSpecpA1q and the special case can be applied to pS and A1{l1, showing
that htppSq ě e “ trdegpK{l1q. We have trdegpK{l1q “ m ´ n, as paiq

m
i“n`1 is

a transcendence base for K{l1. By the description of SpecAS (2.44), a chain
pS “ q0 Ľ . . . Ľ pe of prime ideals in AS defines a similar chain pi :“ qi [ A in
A with p0 “ p. Thus htppq ě e.

Remark 2.69.61. As a consequence of his principal ideal theorem, Krull
has shown the finiteness of htppq for p P SpecA when A is a Noetherian
ring. But dimA “ suppPSpecA htppq “ supmPMaxSpecA htpmq, the Krull
dimension of the Noetherian topological space SpecA may nevertheless be
infinite.

Example: 2.69.62 (Noetherian ring with infinite dimension). a Let A “
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krXi|i P Ns and m1,m2, . . . P N an increasing sequence such that mi`1 ´

mi ą mi ´ mi´1. Let pi :“ pXmi`1, . . . , Xmi`1q and S :“ Az
Ť

iPN pi. S is
multiplicatively closed. AS is Noetherian but htpppiqSq “ mi`1 ´mi hence
dimpASq “ 8.

ahttps://math.stackexchange.com/questions/1109732/

noetherian-ring-with-infinite-krull-dimension-nagatas-example

2.15 Dimension of products

Proposition 2.70. Let X Ď kn and Y Ď kn be irreducible and closed.
Then X ˆ Y is also an irreducible closed subset of km`n. Moreover,
dimpXˆY q “ dimpXq`dimpY q and codimpXˆY, km`nq “ codimpX, kmq`

codimpY, knq.

Proof. Let X “ V ppq and Y “ V pqq where p P Spec krX1, . . . , Xms and q P

Spec krX1, . . . , Xns. We denote points of km`n as x “ px1, x2q with x1 P km, x2 P

kn. Then XˆY is the set of zeroes of the ideal in krX1, . . . , Xm`ns generated by
the polynomials fpxq “ φpx1q, with φ running over p and gpxq “ γpx2q with γ
running over q. Thus XˆY is closed in km`n. We must also show irreducibility.
X ˆ Y ‰ H is obvious.

Assume that X ˆ Y “ A1 Y A2, where the Ai Ď km`n are closed. For x1 P km,
x1 ˆ Y is homeomorphic to the irreducible Y . Thus X “ X1 Y X2 where
Xi “ tx P X|txu ˆ Y Ď Aiu. Because Xi “

Ş

yPY tx P X|px, yq P Aiu, this is
closed. As X is irreducible, there is i P t1; 2u which Xi “ X. Then X ˆY “ Ai

confirming the irreducibility of X ˆ Y .

Let a “ dimX and b “ dimY and X0 Ĺ X1 Ĺ . . . Ĺ Xa “ X, Y0 Ĺ Y1 Ĺ . . . Ĺ

Yb “ Y be chains of irreducible subsets. By the previous result, X0 ˆ Y0 Ĺ

X1 ˆ Y0 Ĺ . . . Ĺ Xa ˆ Y0 Ĺ Xa ˆ Y1 Ĺ . . . Ĺ Xa ˆ Ya “ X ˆ Y is a chain of
irreducible subsets. Thus dimpX ˆ Y q ě a ` b “ dimX ` dimY . Similarly one
derives

codimpX ˆ Y, km`nq ě codimpX, kmq ` codimpY, knq.

By 2.39 we have dimpAq ` codimpA, klq “ l for irreducible subsets of kl. Thus
equality must hold in the previous two inequalities.

2.16 The nil radical

Notation 2.70.63. Let VSpIq denote the set of p P SpecA containing I.

Proposition 2.71 (Nil radical). For a ring A,
Ş

pPSpecA p “
a

t0u “ ta P

A|Dk P N ak “ 0u :“nilpAq, the set of nilpotent elements of A. This is
called the nil radical of A.
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Proof. It is clear that elements of
a

t0u must belong to all prime ideals. Con-

versely, let a P Az
a

t0u. Then S “ aN is a multiplicative subset of A not contain-
ing 0. The localisation AS of A is thus not the null ring. Hence SpecAS ‰ H.
If q P SpecAS , then by the description of SpecAS (Proposition 2.44), p :“ q[A
is a prime ideal of A disjoint from S, hence a R p.

Corollary 2.72. For an ideal I of R,
?
I “

Ş

pPVSpIq p.

Proof. This is obtained by applying the proposition to A “ R{I and using the
bijection SpecpR{Iq – V pIq sending p P V pIq to p :“ p{I and q P SpecpR{Iq to
its inverse image p in R.

2.16.1 Closed subsets of SpecR

Proposition 2.73. There is a bijection

f : tA Ď SpecR|A closedu ÝÑ tI Ď R|I ideal and I “
?
Iu

A ÞÝÑ
č

pPA

p

VSpIq ÐÝ [ I

Under this bijection, the irreducible subsets correspond to the prime ideals
and the closed points tmu,m P SpecA to the maximal ideals.

Proof. If A “ VSpIq, then by 2.72
?
I “

Ş

pPA p. Thus, an ideal with
?
I “ I

can be recovered from VSpIq. Since VSpJq “ VSp
?
Jq, the map from ideals with?

I “ I to closed subsets is surjective.

Sine R corresponds to H, the proper ideals correspond to non-empty subsets of
SpecR. Assume that VSpIq “ VSpJ1qYVSpJ2q, where the decomposition is proper
and the ideals coincide with their radicals. Let g “ f1f2 with fk P JkzI. Since
VSpgq Ě VSpfkq Ě VSpIkq, VSpIq Ď VSpgq. Hence g P

?
I “ I. As fk R I, I fails to

be a prime ideal. Conversely, assume that f1f2 P I while the factors are not in
I. Since I “

?
I, VSpfkq Ğ VSpIq. But VSpf1q Y VSpf2q “ VSpf1f2q Ě VSpIq. The

proper decomposition VSpIq “ pVSpIq X VSpf1qq Y pVSpIq X VSpf2qq now shows
that VSpIq fails to be irreducible. The final assertion is trivial.

Corollary 2.74. If R is a Noetherian ring, then SpecR is a Noetherian
topological space.

Remark 2.74.64. It is not particularly hard to come up with examples
which show that the converse implication does not hold.
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Example: 2.74.65. Let A “ krXn|n P Ns{Im where I denotes the ideal
generated by tX2

i |i P Nu. A is not Noetherian, since the ideal J generated
by tXi|i P Nu is not finitely generated. A{J – k, hence J is maximal. As
every prime ideal must contain nilpAq Ě J , J is the only prime ideal. Thus
SpecA contains only one element and is hence Noetherian.

Corollary 2.75 (About the smallest prime ideals containing I ). If R is
Noetherian and I Ď R an ideal, then the set VSpIq “ tp P SpecR|I Ď pu

has finitely many Ď-minimal elements ppiq
k
i“1 and every element of V pIq

contains at least one pi. The VSppiq are precisely the irreducible compo-

nents of V pIq. Moreover
Şk

i“1 pi “
?
I and k ą 0 if I is a proper ideal.

Proof. If VSpIq “
Ťk

i“1 VSppiq is the decomposition into irreducible components
then every q P VSpIq must belong to at least one VSppiq, hence pi Ď q. Also
pi P VSppiq Ď VSpIq. It follows that the sets of Ď-minimal elements of VSpIq

and of tp1, . . . , pku coincide. As there are no non-trivial inclusions between
the VSppiq, there are no non-trivial inclusions between the pi and the assertion
follows. The final remark is trivial.

Corollary 2.76. If R is any ring, htppq “ codimpVSppq,SpecRq.

2.17 The principal ideal theorem

Krull was able to show:

Theorem 2.77 (Principal ideal theorem / Hauptidealsatz). Let A be a
Noetherian ring, a P A and p P SpecA a Ď-minimal element of VSpaq.
Then htppq ď 1.

Proof. Probably not relevant for the exam.

Remark 2.77.66. Intuitively, the theorem says that by imposing a single
equation one ends up in codimension at most 1. This would not be true
in real analysis (or real algebraic geometry) as the equation

řn
i“1 X

2
i “ 0

shows. By 2.75, if a is a non-unit then a p P SpecA to which the theorem
applies can always be found. Using induction on k, Krull was able to
derive:

Theorem 2.78 (Generalized principal ideal theorem). Let A be a Noethe-

rian ring, paiq
k
i“1 P A and p P SpecA a Ď-minimal element of

Şk
i“1 V paiq,

the set of prime ideals containing all ai. Then htppq ď k.
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Modern approaches to the principal ideal theorem usually give a direct proof of
this more general theorem.

Corollary 2.79. If R is a Noetherian ring and p P SpecR, then htppq ă 8.

Proof. If p is generated by pfiq
k
i“1, then htppq ď k.

2.17.1 Application to the dimension of intersections

Remark 2.79.67. Let R “ krX1, . . . , Xns and I Ď R an ideal.

If ppiq
k
i“1 are the smallest prime ideals of R containing I, then pVAppiqqki“1

are the irreducible components of VApIq.

Proof. The VAppiq are irreducible, there are no non-trivial inclusions between

them and VApIq “ VAp
?
Iq “ VAp

Şk
i“1 piq “

Ťk
i“1 VAppiq.

Corollary 2.80 (of the principal ideal theorem). Let X Ď kn be irre-
ducible, pfiq

k
i“1 elements of R “ krX1, . . . , Xns and Y an irreducible com-

ponent of A “ X X
Şk

i“1 V pfiq. Then codimpY,Xq ď k.

Remark 2.80.68. This confirms the naive geometric intuition that by
imposing k equations one ends up in codimension at most k.

Proof. If X “ vppq, X X
Şk

i“1 V pfiq “ V pIq where I Ď R is the ideal generated
by p and the fi. By 2.79.67, Y “ V pqq where q is the smallest prime ideal
containing I. Then q{p is a smallest prime ideal of R{p containing all pfi
mod pqki“1. By the principal ideal theorem (2.77), htpq{pq ď k and the assertion
follows from example 2.67.

Remark 2.80.69. Note that the intersection X X
Şk

i“1 V pfiq can easily
be empty, even when k is much smaller than dimX.

Corollary 2.81. Let A and B be irreducible subsets of kn. If C is an
irreducible component of A X B, then codimpC, knq ď codimpA, knq `

codimpB, knq.

Remark: 2.81.70. Equivalently, dimpCq ě dimpAq ` dimpBq ´ n.

Proof. Let X “ A ˆ B Ď k2n, where we use pX1, . . . , Xn, Y1, . . . , Ynq as co-
ordinates of k2n. Let ∆ :“ tpx1, . . . , xn, x1, . . . , xnq|x P knu be the diagonal in
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knˆkn. The projection k2n Ñ kn to theX-coordinates defines a homeomorphism
between pA ˆ Bq X ∆ and A X B. Thus, C is homeomorphic to an irreducible
component C 1 of pA ˆ Bq X ∆ and

codimpC, knq “ n ´ dimpCq

“ n ´ dimpC 1q

“ n ´ dimpA ˆ Bq ` codimpC 1, A ˆ Bq

2.80
ď 2n ´ dimpA ˆ Bq

2.70
“ 2n ´ dimpAq ´ dimpBq

“ codimpA, knq ` codimpB, knq

by the general properties of dimension and codimension, 2.80 applied to pXi ´

Yiq
n
i“1, the result about the dimension of products (2.70) and again the general

properties of dimension and codimension.

Remark 2.81.71. As in 2.80.69, AXB can easily be empty, even when A
and B have codimension 1 and n is very large.

2.17.2 Application to the property of being a UFD

Proposition 2.82. Let R be a Noetherian domain. Then R is a UFD iff
every p P SpecR with htppq “ 1a is a principal ideal.

ain other words, every Ď-minimal element of the set of non-zero prime ideals of R

Proof. Every element of every Noetherian domain can be written as a product
of irreducible elements. 10 Thus, R is a UFD iff every irreducible element of R
is prime.

Assume that this is the case. Let p P SpecR,htppq “ 1. Let p P pzt0u. Replacing
p by a prime factor of p, we may assume p to be prime. Thus t0u Ĺ pR Ď p is
a chain of prime ideals and since htppq “ 1 it follows that p “ pR.

Conversely, assume that every p P SpecR with htppq “ 1 is a principal ideal. Let
f P R be irreducible. Let p P SpecR be a Ď-minimal element of V pfq. By the
principal ideal theorem (2.77), htppq “ 1. Thus p “ pR for some prime element
p. We have p|f since f P p. As f is irreducible, p and f are multiplicatively
equivalent. Thus f is a prime element.

2.18 The Jacobson radical

10Consider the set of principal ideals rR where r is not a product of irreducible elements.

2 THE NULLSTELLENSATZ AND THE ZARISKI TOPOLOGY 50



Proposition 2.83. For a ring A,

č

mPMaxSpecA

m “ ta P A|@x P A 1 ´ ax P Aˆu :“radpAq.

the Jacobson radical of A.

Proof. Suppose m P MaxSpecA and a P Azm. Then a mod m ‰ 0 and A{m is a
field. Hence a mod m has an inverse x mod m. 1´ ax P m, hence 1´ ax R Aˆ

and a is not al element of the RHS.

Conversely, let a P A belong to all m P MaxSpecA. If there exists x P A such
that 1 ´ ax R Aˆ then p1 ´ axqA was a proper ideal in A, hence contained in
a maximal ideal m. As a P m, 1 “ p1 ´ axq ` ax P m, a contradiction. Hence
every element of

Ş

mPMaxSpecA m belongs to the right hand side.

Example 2.84. If A is a local ring, then radpAq “ mA.

Example 2.85. If A is a PID with infinitely many multiplicative equiva-
lence classes of prime elements (e.g. Z of krXs), then radpAq “ t0u: Prime
ideals of a PID are maximal. Thus if x P radpAq, every prime element
divides x. If x ‰ 0, it follows that x has infinitely many prime divisors.
However every PID is a UFD.

Example 2.86. If A is a PID for which p1, . . . , pn is a list of representatives
of the multiplicative equivalence classes of prime elements, then radpAq “

fA where f “
śn

i“1 pi.

3 Projective spaces

Let l be any field.

Definition 3.1. For a l-vector space V , let PpV q be the set of one-dimensional
subspaces of V . Let Pnplq :“ Ppln`1q, the n-dimensional projective
space over l.

If l is kept fixed, we will often write Pn for Pnplq.

When dealing with Pn, the usual convention is to use 0 as the index of the
first coordinate.

We denote the one-dimensional subspace generated by px0, . . . , xnq P kn`1zt0u

by rx0, . . . , xns P Pn. If x “ rx0, ldots, xns P Pn, the pxiq
n
i“0 are called ho-

mogeneous coordinates of x. At least one of the xi must be ‰ 0.
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Remark 3.1.72. There are points r1, 0s, r0, 1s P P1 but there is no point
r0, 0s P P1.

Definition 3.2 (Infinite hyperplane). For 0 ď i ď n let Ui Ď Pn denote
the set of rx0, . . . , xns with xi ‰ 0. This is a correct definition since two
different sets rx0, . . . , xns and rξ0, . . . , ξns of homogeneous coordinates for
the same point x P Pn differ by scaling with a λ P lˆ, xi “ λξi. Since not
all xi may be 0, Pn “

Ťn
i“0 Ui. We identify An “ Anplq “ ln with U0 by

identifying px1, . . . , xnq P An with r1, x1, . . . , xns P Pn. Then P1 “ A1Yt8u

where 8 “ r0, 1s. More generally, when n ą 0 PnzAn can be identified with
Pn´1 identifying r0, x1, . . . , xns P PnzAn with rx1, . . . , xns P Pn´1.

Thus Pn is An – ln with a copy of Pn´1 added as an infinite hyperplane
.

3.0.1 Graded rings and homogeneous ideals

Notation 3.2.73. Let I “ N or I “ Z.

Definition 3.3. By an I-graded ring A‚ we understand a ring A with
a collection pAdqdPI of subgroups of the additive group pA,`q such that
Aa ¨ Ab Ď Aa`b for a, b P I and such that A “

À

dPI Ad in the sense that
every r P A has a unique decomposition r “

ř

dPI rd with rd P Ad and but
finitely many rd ‰ 0.

We call the rd the homogeneous components of r.

An ideal I Ď A is called homogeneous if

r P I ùñ @d P I rd P Id

where Id :“ I X Ad.

By a graded ring we understand an N-graded ring. In this case,

A` :“
8

à

d“1

Ad “ tr P A|r0 “ 0u

is called the augmentation ideal of A.

Remark 3.3.74 (Decomposition of 1). If 1 “
ř

dPI εd is the decompo-
sition into homogeneous components, then εa “ 1 ¨ εa “

ř

bPI εaεb with
εaεb P Aa`b. By the uniqueness of the decomposition into homogeneous
components, εaε0 “ εa and b ‰ 0 ùñ εaεb “ 0. Applying the last
equation with a “ 0 gives b ‰ 0 ùñ εb “ ε0εb “ 0. Thus 1 “ ε0 P A0.
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Remark 3.3.75. The augmentation ideal of a graded ring is a homoge-
neous ideal.

Proposition 3.4. a

• A principal ideal generated by a homogeneous element is homoge-
neous.

• The operations
ř

,
Ş

,
?

preserve homogeneity.

• An ideal is homogeneous iff it can be generated by a family of homo-
geneous elements.

aThis holds for both Z-graded and N-graded rings.

Proof. Most assertions are trivial. We only show that J homogeneous ùñ
?
J

homogeneous. Let A be I-graded, f P
?
J and f “

ř

dPI fd the decomposition.

To show that all fd P
?
J , we use induction on Nf :“ #td P I|fd ‰ 0u. Nf “ 0

is trivial. Suppose Nf ą 0 and e P I is maximal with fe ‰ 0. For l P N, the
le-th homogeneous component of f l is f l

e. Choosing l large enough such that
f l P J and using the homogeneity of J , we find fe P

?
J . As

?
J is an ideal,

f̃ :“ f ´ fe P
?
J . As Nf̃ “ Nf ´ 1, the induction assumption may be applied

to f̃ and shows fd P
?
J for d ‰ e.

Fact 3.4.76. A homogeneous ideal is finitely generated iff it can be gen-
erated by finitely many of its homogeneous elements. In particular, this is
always the case when A is a Noetherian ring.

3.0.2 The Zariski topology on Pn

Notation 3.4.77. Recall that for α P Nn`1

|α| “

n
ÿ

i“0

αi and xα “ xα0
0 ¨ . . . ¨ xαn

n .

Definition 3.5 (Homogeneous polynomials). Let R be any ring and

f “
ÿ

αPNn`1

fαX
α P RrX0, . . . , Xns.

We say that f is homogeneous of degree d if

|α| ‰ d ùñ fα “ 0.
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We denote the subset of homogeneous polynomials of degree d by

RrX0, . . . , Xnsd Ď RrX0, . . . , Xns.

Remark 3.5.78. This definition gives R the structure of a graded ring.

Definition 3.6 (Zariski topology on Pnpkq). Let A “ krX0, . . . , Xns.a For
f P Ad “ krX0, . . . , Xnsd, the validity of the equation fpx0, . . . , xnq “ 0
does not depend on the choice of homogeneous coordinates, as

fpλx0, . . . , λxnq0λdfpx0, . . . , xnq.

Let VPpfq :“ tx P Pn|fpxq “ 0u.

We call a subset X Ď Pn Zariski-closed if it can be represented as

X “

k
č

i“1

VPpfiq

where the fi P Adi
are homogeneous polynomials.

aAs always, k is algebraically closed
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Fact 3.6.79. If X “
Şk

i“1 VPpfiq Ď Pn is closed, then Y “ X X An can be
identified with the closed subset

tpx1, . . . , xnq P kn|fip1, x1, . . . , xnq “ 0, 1 ď i ď ku Ď kn.

Conversely, if Y Ď kn is closed it has the form

tpx1, . . . , xnq P kn|gipx1, . . . , xnq “ 0, 1 ď i ď ku

and can thus be identified with X X An where X :“
Şk

i“1 VPpfiq is given
by

fipX0, . . . , Xnq :“ Xdi
0 gipX1{X0, . . . , Xn{X0q, di ě degpgiq.

Thus, the Zariski topology on kn can be identified with the topology in-
duced by the Zariski topology on An “ U0, and the same holds for Ui with
0 ď i ď n.

In this sense, the Zariski topology on Pn can be thought of as gluing the
Zariski topologies on the Ui – kn.

Definition 3.7. Let I Ď A “ krX0, . . . , Xns be a homogeneous ideal. Let
VPpIq :“ trx0, . . . ,n s P Pn|@f P I fpx0, . . . , xnq “ 0u As I is homogeneous,
it is sufficient to impose this condition for the homogeneous elements f P I.
Because A is Noetherian, I can finitely generated by homogeneous elements
pfiq

k
i“1 and VPpIq “

Şk
i“1 VPpfiq as in 3.6. Conversely, if the homogeneous

fi are given, then I “ xf1, . . . , fkyA is homogeneous.

Remark 3.7.80. Note that V pAq “ V pA`q “ H.

Fact 3.7.81. For homogeneous ideals in A and m P N, we have:

• VPp
ř

λPΛ Iλq “
Ş

λPΛ VPpIλq.

• VPp
Şm

k“1 Ikq “ VPp
śm

k“1 Ikq “
Ťm

k“1 VPpIkq.

• VPp
?
Iq “ VPpIq.

Fact 3.7.82. If X “
Ť

λPΛ Uλ is an open covering of a topological space
then X is Noetherian iff there is a finite subcovering and all Uλ are Noethe-
rian.

Proof. By definition, a topological space is Noetherian ðñ all open subsets
are quasi-compact.
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Corollary 3.8. The Zariski topology on Pn is indeed a topology. The
induced topology on the open set An “ PnzVPpX0q – kn is the Zariski
topology on kn. The same holds for all Ui “ PnzVPpXiq – kn. Moreover,
the topological space Pn is Noetherian.

3.1 Noetherianness of graded rings

Proposition 3.9. For a graded ring R‚, the following conditions are equiv-
alent:

A R is Noetherian.

B Every homogeneous ideal of R‚ is finitely generated.

C Every chain I0 Ď I1 Ď . . . of homogeneous ideals terminates.

D Every set M ‰ H of homogeneous ideals has a Ď-maximal element.

E R0 is Noetherian and the ideal R` is finitely generated.

F R0 is Noetherian and R{R0 is of finite type.

Proof. A ùñ B,C,D trivial.

B ðñ C ðñ D similar to the proof about Noetherianness.

B ^ C ùñ E B implies that R` is finitely generated. Since I ‘ R` is
homogeneous for any homogeneous ideal I Ď R0, C implies the Noetherianness
of R0.

E ùñ F Let R` be generated by fi P Rdi , di ą 0 as an ideal.

Claim 1. The R0-subalgebra R̃ of R generated by the fi equals R.

Subproof. It is sufficient to show that every homogeneous f P Rd belongs to R̃.
We use induction on d. The case of d “ 0 is trivial. Let d ą 0 and Re Ď R̃ for all
e ă d. As f P R`, f “

řk
i“1 gifi. Let fa “

řk
i“1 gi,a´difi, where gi “

ř8

b“0 gi,b
is the decomposition into homogeneous components. Then f “

ř8

a“0 fa is the
decomposition of f into homogeneous components, hence a ‰ d ùñ fa “ 0.
Thus we may assume gi P Rd´di

. As di ą 0, the induction assumption may now
be applied to gi, hence gi P R̃, hence f P R̃. ■

F ùñ A Hilbert’s Basissatz (1.3)

3.2 The projective form of the Nullstellensatz and the
closed subsets of Pn

Let A “ krX0, . . . , Xns.
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Proposition 3.10 (Projective form of the Nullstellensatz). If I Ď A is a
homogeneous ideal and f P Ad with d ą 0, then VPpIq Ď VPpfq ðñ f P?
I.

Proof. ðù is clear. Let VPpIq Ď VPpfq. If x “ px0, . . . , xnq P VApIq, then
either x “ 0 in which case fpxq “ 0 since d ą 0 or the point rx0, . . . , xns P Pn is
well-defined and belongs to VPpIq Ď VPpfq, hence fpxq “ 0. Thus VApIq Ď VApfq

and f P
?
I be the Nullstellensatz (2.13).

Definition 3.11. a For a graded ring R‚, let ProjpR‚q be the set of p P

SpecR such that p is a homogeneous ideal and p Ğ R`.

aThis definition is not too important, the characterization in the following remark
suffices.

Remark 3.11.83. As the elements of A0zt0u are units in A it follows that
for every homogeneous ideal I we have I Ď A` or I “ A. In particular,
ProjpA‚q “ tp P SpecAzA`|p is homogeneousu.

Proposition 3.12. There is a bijection

f : tI Ď A`|I homogeneous ideal, I “
?
Iu ÝÑ tX Ď Pn|X closedu

I ÞÝÑ VPpIq

xtf P Ad|d ą 0, X Ď VPpfquy ÐÝ [ X

Under this bijection, the irreducible subsets correspond to the elements of
ProjpA‚q.

Proof. From the projective form of the Nullstellensatz it follows that f is injec-
tive and that f´1pVP pIqq “

?
I “ I. If X Ď Pn is closed, then X “ VPpJq for

some homogeneous ideal J Ď A. Without loss of generality loss of generality
J “

?
J . If J Ę A`, then J “ A (3.11.83), hence X “ VPpJq “ H “ VPpA`q.

Thus we may assume J Ď A`, and f is surjective.

Suppose p P ProjpA‚q. Then p ‰ A` hence X “ VPppq ‰ H by the proven part
of the proposition. Assume X “ X1 YX2 is a decomposition into proper closed
subsets, where Xk “ VPpIkq for some Ik Ď A`, Ik “

?
Ik. Since Xk is a proper

subset of X, there is fk P Ikzp. We have VPpf1f2q Ě VPpfkq Ě VPpIkq hence
VPpf1f2q Ě VPpI1q Y VPpI2q “ X “ VPppq and it follows that f1f2 P

?
p “ p .

Assume X “ VPppq is irreducible, where p “
?
p P A` is homogeneous. The

p ‰ A` as X “ H otherwise. Assume that f1f2 P p but fi R Adi
zp. Then X Ę

VPpfiq by the projective Nullstellensatz when di ą 0 and because VPp1q “ H
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when di “ 0. Thus X “ pX XVP pf1qq Y pX XVPpf2qq is a proper decomposition
 . By lemma 3.14, p is a prime ideal.

Remark 3.12.84. It is important that I Ď A`, since VPpAq “ VPpA`q “

H would be a counterexample.

Corollary 3.13. Pn is irreducible.

Proof. Apply 3.12 to t0u P ProjpA‚q.

3.3 Some remarks on homogeneous prime ideals

Lemma 3.14. Let R‚ be an I graded ring (I “ N or I “ Z). A homo-
geneous ideal I Ď R is a prime ideal iff 1 R I and for all homogeneous
elements f, g P R

fg P I ùñ f P I _ g P I.

Proof. ùñ is trivial. It suffices to show that for arbitrary f, g P R we have that
fg P I ùñ f P I _ g P I. Let f “

ř

dPI fd, g “
ř

dPI gd be the decompositions
into homogeneous components. If f R I and g R I there are d, e P I with
fd P I, ge P I, and they may assumed to be maximal with this property. As I
is homogeneous and fg P I, we have pfgqd`e P I but

pfgqd`e “ fdge `

8
ÿ

δ“1

pfd`δge´δ ` fd´δge`δq

where fdge R I by our assumption on I and all other summands on the right
hand side are P I (as fd`δ P I and ge`δ P I by the maximality of d and e), a
contradiction.

Remark 3.14.85. If R‚ is N-graded and p P SpecR0, then

p ‘ R` “ tr P R|r0 P pu

is a homogeneous prime ideal of R.

tp P SpecR|p is a homogeneous ideal of R‚u

“ ProjpR‚q \ tp ‘ R`|p P SpecR0u.
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3.4 Dimension of Pn

Proposition 3.15.

• Pn is catenary.

• dimpPnq “ n. Moreover, codimptxu,Pnq “ n for every x P Pn.

• If X Ď Pn is irreducible and x P X, then

codimptxu, Xq “ dimpXq “ n ´ codimpX,Pnq.

• If X Ď Y Ď Pn are irreducible subsets, then

codimpX,Y q “ dimpY q ´ dimpXq.

Proof. Let X Ď Pn be irreducible. If x P X, there is an integer 0 ď i ď n
and X P Ui “ PnzVPpXiq. Without loss of generality loss of generality i “ 0.
Then codimpX,Pnq “ codimpX X An,Anq by the locality of Krull codimension
(2.24). Applying this with X “ txu and our results about the affine case gives
the second assertion. If Y and Z are also irreducible with X Ď Y Ď Z, then
codimpX,Y q “ codimpX XAn, Y XAnq, codimpX,Zq “ codimpX XAn, Z XAnq

and codimpY,Zq “ codimpY X An, Z X Anq. Thus

codimpX,Y q ` codimpY,Zq “ codimpX X An, Y X Anq

` codimpY X An, Z X Anq

“ codimpX X An, Z X Anq

“ codimpX,Zq

because kn is catenary and the first point follows. The remaining assertions can
easily be derived from the first two.

3.5 The cone CpXq

Definition 3.16. If X Ď Pn is closed, we define the affine cone over X

CpXq “ t0u Y tpx0, . . . , xnq P kn`1zt0u|rx0, . . . , xns P Xu

If X “ VPpIq where I Ď A` “ krX0, . . . , Xns` is homogeneous, then
CpXq “ VApIq.

Proposition 3.17.

• CpXq is irreducible iff X is irreducible or X “ H.

• If X is irreducible, then

dimpCpXqq “ dimpXq ` 1
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and
codimpCpXq, kn`1q “ codimpX,Pnq.

Proof. The first assertion follows from 3.12 and 2.22 (bijection of irreducible
subsets and prime ideals in the projective and affine case).

Let d “ dimpXq and

X0 Ĺ . . . Ĺ Xd “ X Ĺ Xd`1 Ĺ . . . Ĺ Xn “ Pn

be a chain of irreducible subsets of Pn. Then

t0u Ĺ CpX0q Ĺ . . . Ĺ CpXdq “ CpXq Ĺ . . . Ĺ CpXnq “ kn`1

is a chain of irreducible subsets of kn`1. Hence dimpCpXqq ě 1 ` d and
codimpCpXq, kn`1q ě n ´ d. Since

dimpCpXqq ` codimpCpXq, kn`1q “ dimpkn`1q “ n ` 1,

the two inequalities must be equalities.

3.5.1 Application to hypersurfaces in Pn

Definition 3.18 (Hypersurface). Let n ą 0. By a hypersurface in Pn or
An we understand an irreducible closed subset of codimension 1.

Corollary 3.19. If P P Ad is a prime element, then H “ VPpP q is a
hypersurface in Pn and every hypersurface H in Pn can be obtained in this
way.

Proof. If H “ VPpP q then CpHq “ VApP q is a hypersurface in kn`1 by 2.28. By
3.17, H is irreducible and of codimension 1.

Conversely, let H be a hypersurface in Pn. By 3.17, CpHq is a hypersurface
in kn`1, hence CpHq “ VPpP q for some prime element P P A (again by 2.28).
We have H “ VPppq for some p P ProjpAq and CpHq “ VAppq. By the bijection
between closed subsets of kn`1 and ideals I “

?
I Ď A (2.14), p “ P ¨ A. Let

P “
řd

k“0 Pk with Pd ‰ 0 be the decomposition into homogeneous components.
If Pe with e ă d was ‰ 0, it could not be a multiple of P contradicting the
homogeneity of p “ P ¨ A. Thus, P is homogeneous of degree d.

Definition 3.20. A hypersurface H Ď Pn has degree d if H “ VPpP q,
where P P Ad is an irreducible polynomial.

3.5.2 Application to intersections in Pn and Bezout’s theorem
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Corollary 3.21. Let A Ď Pn and B Ď Pn be irreducible subsets of di-
mensions a and b. If a ` b ě n, then A X B ‰ H and every irreducible
component of A X B has dimension ě a ` b ´ n.

Remark 3.21.86. This shows that Pn indeed fulfilled the goal of allowing
for nicer results of algebraic geometry because “solutions at infinity” to
systems of algebraic equations are present in Pn (see 2.80.69).

Proof. The lower bound on the dimension of irreducible components of A X B
is easily derived from the similar affine result (corollary of the principal ideal
theorem, 2.81).

From the definition of the affine cone it follows that CpAXBq “ CpAq XCpBq.
We have dimpCpAqq “ a ` 1 and dimpCpBqq “ b ` 1 by 3.17. If A X B “ H,
then CpAq X CpBq “ t0u with t0u as an irreducible component, contradicting
the lower bound a ` b ` 1 ´ n ą 0 for the dimension of irreducible components
of CpAq X CpBq (again 2.81).

Remark 3.21.87 (Bezout’s theorem). If A ‰ B are hypersurfaces of de-
gree a and b in P2, then AXB has ab points counted by (suitably defined)
multiplicity.

4 Varieties

4.1 Sheaves

Definition 4.1 (Sheaf). Let X be any topological space.

A presheaf G of sets (or rings, (abelian) groups) on X associates a set
(or rings, or (abelian) group) GpUq to every open subset U of X, and a

map (or ring or group homomorphism) GpUq
rU,V

ÝÝÝÑ GpV q to every inclusion
V Ď U of open subsets of X such that rU,W “ rV,W rU,V for inclusions
U Ď V Ď W of open subsets.

Elements of GpUq are often called sections of G on U or global sections
when U “ X.

Let U Ď X be open and U “
Ť

iPI Ui an open covering. A family pfiqiPI P
ś

iPI GpUiq is called compatible if rUi,UiXUj
pfiq “ rUj ,UiXUj

pfjq for all
i, j P I.
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Consider the map

φU,pUiqiPI
: GpUq ÝÑ tpfiqiPI P

ź

iPI

GpUiq|rUi,UiXUj
pfiq “ rUj ,UiXUj

pfjq for i, j P Iu

f ÞÝÑ prU,UipfqqiPI

A presheaf is called separated if φU,pUiqiPI
is injective for all such U and

pUiqiPI .
a It satisfies gluing if φU,pUiqiPI

is surjective.

A presheaf is called a sheaf if it is separated and satisfies gluing.

The bijectivity of the φU,pUiqiPI
is called the sheaf axiom.

aThis also called “locality”.

Trivial Nonsense: 4.1.88. A presheaf is a contravariant functor G :
OpXq Ñ C where OpXq denotes the category of open subsets of X with
inclusions as morphisms and C is the category of sets, rings or (abelian)
groups.

Definition 4.2. A subsheaf G1 is defined by subsets (resp. subrings or
subgroups) G1pUq Ď GpUq for all open U Ď X such that the sheaf axioms
still hold.

Remark 4.2.89. If G is a sheaf on X and Ω Ď X open, then G æΩ pUq :“

GpUq for open U Ď Ω and r
pGæΩq

U,V pfq :“ r
pGq

U,V pfq is a sheaf of the same kind
as G on Ω.

Remark 4.2.90. The notion of restriction of a sheaf to a closed subset, or
of preimages under general continuous maps, can be defined but this is a
bit harder.

Notation 4.2.91. It is often convenient to write f æV instead of rU,V pfq.

Remark 4.2.92. Applying the sheaf axiom to the empty covering of
U “ H, one finds that GpHq “ t0u.

4.1.1 Examples of sheaves

Example 4.3. Let G be a set and let GpUq be the set of arbitrary maps

U
f

ÝÑ G. We put rU,V pfq “ f æV . It is easy to see that this defines a sheaf.
If ¨ is a group operation on G, then pf ¨ gqpxq :“ fpxq ¨ gpxq defines the
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structure of a sheaf of group on G. Similarly, a ring structure on G can be
used to define the structure of a sheaf of rings on G.

Example 4.4. If in the previous example G carries a topology and GpUq Ď

GpUq is the subset (subring, subgroup) of continuous functions U
f

ÝÑ G,
then G is a subsheaf of G, called the sheaf of continuous G-valued functions
on (open subsets of) X.

Example 4.5. If X “ Rn, K P tR,Cu and OpUq is the sheaf of K-valued
C8-functions on U , then O is a subsheaf of the sheaf (of rings) of K-valued
continuous functions on X.

Example 4.6. If X “ Cn and OpUq the set of holomorphic functions on
X, then O is a subsheaf of the sheaf of C-valued C8-functions on X.

4.1.2 The structure sheaf on a closed subset of kn

Let X Ď kn be open. Let R “ krX1, . . . , Xns.

Definition 4.7. For open subsets U Ď X, letOXpUq be the set of functions

U
φ

ÝÑ k such that every x P U has a neighbourhood V such that there are

f, g P R such that for y P V we have gpyq ‰ 0 and φpyq “
fpyq

gpyq
.

Remark 4.7.93. OX is a subsheaf (of rings) of the sheaf of k-valued func-
tions on X. The elements of OXpUq are continuous: Let M Ď k be closed.
We must show the closedness of N :“ φ´1pMq in U . For M “ k this is
trivial. Otherwise M is finite and we may assume M “ ttu for some t P k.
For x P U , there are open Vx Ď U and fx, gx P R such that φ “

fx
gx

on Vx.

Then N XVx “ V pfx ´ t ¨ gxq XVxq is closed in Vx. As the Vx cover U and
U is quasi-compact, N is closed in U .

Proposition 4.8. Let X “ V pIq where I “
?
I Ď R is an ideal. Let

A “ R{I. Then

φ : A ÝÑ OXpXq

f mod I ÞÝÑ f æX

is an isomorphism.

Proof. It is easy to see that the map A Ñ OXpXq is well-defined and a ring
homomorphism. Its injectivity follows from the Nullstellensatz and I “

?
I

(2.13).
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Let φ P OXpXq. For x P X, there are an open subset Ux Ď X and fx, gx P R
such that φ “

fx
gx

on Ux.

Claim 1. Without loss of generality loss of generality we can assume Ux “

XzV pgxq.

Subproof. The closed subsets pXzUxq Ď kn has the form XzUx “ V pJxq for
some ideal Jx Ď R. As x R XzVx there is hx P Jx with hxpxq ‰ 0. Replacing Ux

by XzV phxq, fx by fxhx and gx by gxhx, we may assume Ux “ XzV pgxq. ■

Claim 2. Without loss of generality loss of generality we can assume V pgxq Ď

V pfxq.

Subproof. Replace fx by fxgx and gx by g2x. ■

As X is quasi-compact, there are finitely many points pxiq
m
i“1 such that the Uxi

cover X. Let Ui :“ Uxi
, fi :“ fxi

, gi :“ gxi
.

As the Ui “ XzV pgiq cover X, V pIq X
Şm

i“1 V pgiq “ X X
Şm

i“1 V pgiq “ H.
By the Nullstellensatz (2.2) the ideal of R generated by I and the ai equals R.
There are thus n ě m P N and elements pgiq

n
i“m`1 of I and paiq

n
i“1 P Rn such

that 1 “
řn

i“1 aigi. Let for i ą m fi :“ 0, F “
řn

i“1 aifi “
řm

i“1 aifi P R.

Claim 3. For all x P X fipxq “ φpxqgipxq.

Subproof. If x P Vi this follows by our choice of fi and gi. If x P XzVi or i ą m
both sides are zero. ■

It follows that

φpxq “ φpxq ¨ 1 “ φpxq ¨

n
ÿ

i“1

aipxqgipxq “

n
ÿ

i“1

aipxqfipxq “ F pxq

Hence φ “ F æX .

4.1.3 The structure sheaf on closed subsets of Pn

Let X Ď Pn be closed and R‚ “ krX0, . . . , Xns with its usual grading.

Definition 4.9. For open U Ď X, let OXpUq be the set of functions U
φ

ÝÑ k
such that for every x P U , there are an open subset W Ď U , a natural

number d and f, g P Rd such that W X VPpgq “ H and φpyq “
fpy0,...,ynq

gpy0,...,ynq

for y “ ry0, . . . , yns P W .
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Remark 4.9.94. This is a subsheaf of rings of the sheaf of k-valued func-
tions on X. Under the identification An “ kn with PnzVPpX0q, one has
OX æXzVPpX0q“ OXXAn as subsheaves of the sheaf of k-valued functions,
where the second sheaf is a sheaf on a closed subset of kn:

Indeed, if W is as in the definition then φpr1, y1, . . . , ynsq “
fp1,y1,...,ynq

gp1,y1,...,ynq

for r1, y1, . . . , yns P W . Conversely if φpr1, y1, . . . , ynsq “
fpy1,...,ynq

gpy1,...,ynq
on an

open subset W of X X An then φpry0, . . . , ynsq “
F py0,...,ynq

Gpy0,...,ynq
on W where

F pX0, . . . , Xnq :“ Xd
0fpX1

X0
, . . . , Xn

X0
q andGpX0, . . . , Xnq “ Xd

0 gpX1

X0
, . . . , Xn

X0
q

with a sufficiently large d P N.

Remark 4.9.95. It follows from the previous remark and the similar result
in the affine case that the elements of OXpUq are continuous on UzV pX0q.
Since the situation is symmetric in the homogeneous coordinates, they are
continuous on all of U .

The following is somewhat harder than in the affine case:

Proposition 4.10. If X is connected (e.g. irreducible), then the elements
of OX pXq are constant functions on X.

4.2 The notion of a category

Definition 4.11. A category A consists of:

• A class ObA of objects of A.

• For two arbitrary objects A,B P ObA, a set HomApA,Bq of mor-
phisms for A to B in A.

• A map HomApB,CqˆHomApA,Bq
˝

ÝÑ HomApA,Cq, the composition
of morphisms, for arbitrary triples pA,B,Cq of objects of A.

The following conditions must be satisfied:

A For morphisms A
f

ÝÑ B
g

ÝÑ C
h

ÝÑ D, we have h ˝ pg ˝ fq “ ph ˝ gq ˝ f .

B For every A P ObpAq, there is an IdA P HomApA,Aq such that

IdA ˝f “ f (reps. g ˝ IdA “ g) for arbitrary morphisms B
f

ÝÑ A

(reps. A
g

ÝÑ C).

A morphism X
f

ÝÑ Y is called an isomorphism (in A) if there is a

morphism Y
g

ÝÑ X (called the inverse f´1 of f) such that g ˝ f “ IdX
and f ˝ g “ IdY .
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Remark 4.11.96. • The distinction between classes and sets is impor-
tant here.

• We will usually omit the composition sign ˝.

• It is easy to see that IdA is uniquely determined by the above con-
dition B, and that the inverse f´1 of an isomorphism f is uniquely
determined.

4.2.1 Examples of categories

Example 4.12.

• The category of sets.

• The category of groups.

• The category of rings.

• If R is a ring, the category of R-modules and the category AlgR of
R-algebras

• The category of topological spaces.

• The category Vark of varieties over k (see 4.17).

• If A is a category, then the opposite category or dual category
is defined by ObpAopq “ ObpAq and HomAoppX,Y q “ HomApY,Xq.

In most of these cases, isomorphisms in the category were just called ‘iso-
morphism’. The isomorphisms in the category of topological spaces are the
homeomophisms.

4.2.2 Subcategories

Definition 4.13 (Subcategories). A subcategory of A is a category B
such that ObpBq Ď ObpAq, such that HomBpX,Y q Ď HomApX,Y q for
objects X and Y of B, such that for every object X P ObpBq, the iden-
tity IdX of X is the same in B as in A, and such that for composable
morphisms in B, their compositions in A and B coincide. We call B a full
subcategory of A if in addition HomBpX,Y q “ HomApX,Y q for arbitrary
X,Y P ObpBq.

Example 4.14.

• The category of abelian groups is a full subcategory of the category
of groups. It can be identified with the category of Z-modules.

• The category of finitely generated R-modules as a full subcategory
of the category of R-modules.
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• The category of R-algebras of finite type as a full subcategory of
AlgR.

• The category of affine varieties over k as a full subcategory of the
category of varieties over k.

4.2.3 Functors and equivalences of categories

Definition 4.15. A (covariant) functor (resp. contravariant func-

tor) between categories A F
ÝÑ B is a map ObpAq

F
ÝÑ ObpBq with a fam-

ily of maps HomApX,Y q
F

ÝÑ HomBpF pXq, F pY qq (resp. HomApX,Y q
F

ÝÑ

HomBpF pY q, F pXqq in the case of contravariant functors), where X and Y
are arbitrary objects of A, such that the following conditions hold:

• F pIdXq “ IdF pXq.

• For morphisms X
f

ÝÑ Y
g

ÝÑ Z in A, we have F pgfq “ F pgqF pfq

(resp. F pgfq “ F pfqF pgq).

A functor is called essentially surjective if every object of B is isomorphic

to an element of the image of ObpAq
F

ÝÑ ObpBq. A functor is called full
(resp. faithful) if it induces surjective (resp. injective) maps between sets
of morphisms. It is called an equivalence of categories if it is full,
faithful and essentially surjective.

Example 4.16.

• There are forgetful functors from rings to abelian groups or from
abelian groups to sets which drop the multiplicative structure of a
ring or the group structure of a group.

• If k is any vector space there is a contravariant functor from k-vector

spaces to itself sending V to its dual vector space V Ď and V
f

ÝÑ W to

the dual linear map W˚ f˚

ÝÝÑ V ˚. When restricted to the full subcat-
egory of finite-dimensional vector spaces it becomes a contravariant
self-equivalence of that category.

• The embedding of a subcategory is a faithful functor. In the case of
a full subcategory it is also full.

4.3 The category of varieties

Definition 4.17 (Algebraic variety). An algebraic variety or preva-
riety over k is a pair pX,OXq, where X is a topological space and OX

a subsheaf of the sheaf of k-valued functions on X such that for every
x P X, there are a neighbourhood Ux of x in X, an open subset Vx
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of a closed subset Yx of knxa and a homeomorphism Vx
ιx

ÝÑ Ux such

that for every open subset V Ď Ux and every function V
f

ÝÑ k, we have
f P OXpV q ðñ ι˚

xpfq P OYx
pι´1

x pV qq.

In this, the pull-back ι˚
xpfq of f is defined by pι˚

xpfqqpξq :“ fpιxpξqq.

A morphism pX,OXq Ñ pY,OY q of varieties is a continuous map X
φ

ÝÑ Y
such that for all open U Ď Y and f P OY pUq, φ˚pfq P OXpφ´1pUqq.
An isomorphism is a morphism such that φ is bijective and φ´1 also is a
morphism of varieties.

aBy the result of 4.24, it can be assumed that Vx “ Yx without altering the definition.

Example 4.18. • If pX,OXq is a variety and U Ď X open, then
pU,OX æU q is a variety (called an open subvariety of X), and
the embedding U Ñ X is a morphism of varieties.

• IfX is a closed subset of kn or Pn, then pX,OXq is a variety, whereOX

is the structure sheaf on X (4.7, reps. 4.9). A variety is called affine
(resp. projective) if it is isomorphic to a variety of this form, with
X closed in kn (resp. Pn). A variety which is isomorphic to and open
subvariety of X is called quasi-affine (resp. quasi-projective).

• If X “ V pX2 ´ Y 3q Ď k2 then k
t ÞÑpt3,t2q

ÝÝÝÝÝÝÑ X is a morphism which is
a homeomorphism of topological spaces but not an isomorphism of
varieties.

• The composition of two morphisms X Ñ Y Ñ Z of varieties is a
morphism of varieties.

• X
IdX

ÝÝÑ X is a morphism of varieties.

4.3.1 The category of affine varieties

Lemma 4.19. Let X be any k-variety and U Ď X open.

i) All elements of OXpUq are continuous.

ii) If U Ď X is open, U
λ

ÝÑ k any function and every x P U has a
neighbourhood Vx Ď U such that λ æVx

P OXpVxq, then λ P OXpUq.

iii) If ϑ P OXpUq and ϑpxq ‰ 0 for all x P U , then ϑ P OXpUqˆ.

Proof. i) The property is local on U , hence it is sufficient to show it in the
quasi-affine case. This was done in 4.7.93.

ii) For the second part, let λx :“ λ æVx
. We have λx æVxXVy

“ λ æVxXVy
“

λy æVxXVy
. The Vx cover U . By the sheaf axiom for OX there is ℓ P OXpUq

with ℓ æVx
“ λx. It follows that ℓ “ λ.

4 VARIETIES 68



iii) By the definition of variety, every x P U has a quasi-affine neighbourhood
V Ď U . We can assume U to be quasi-affine and X “ V pIq Ď kn, as
the general assertion follows by an application of ii). If x P U there
are a neighbourhood x P W Ď U and a, b P R “ krX1, . . . , Xns such

that ϑpyq “
apyq

bpyq
for y P W , with bpyq ‰ 0. Then apxq ‰ 0 as ϑpxq ‰ 0.

ReplacingW byW zV paq, we may assume that a has no zeroes onW . Then

λpyq “
bpyq

apyq
for y P W has a non-vanishing denominator and λ P OXpUq.

We have λ ¨ ϑ “ 1, thus ϑ P OXpUqˆ.

Proposition 4.20 (About affine varieties).

• Let X,Y be varieties over k. Then the map

φ : HomVarkpX,Y q ÝÑ HomAlgk
pOY pY q,OXpXqq

pX
f

ÝÑ Y q ÞÝÑ pOY pY q
f˚

ÝÝÑ OXpXqq

is injective when Y is quasi-affine and bijective when Y is affine.

• The contravariant functor

F : Vark ÝÑ Algk

X ÞÝÑ OXpXq

pX
f

ÝÑ Y q ÞÝÑ pOXpXq
f˚

ÝÝÑ OY pY qq

restricts to an equivalence of categories between the category of affine
varieties over k and the full subcategory A of Algk, having the k-
algebras A of finite type with nilA “ t0u as objects.

Remark 4.20.97. It is clear that nilpOXpXqq “ t0u for arbitrary varieties.
For general varieties it is however not true that OXpXq is a k-algebra of
finite type. There are counterexamples even for quasi-affine X.

If, however, X is affine, we may assume w.l.o.g. that X “ V pIq where
I “

?
I Ď R is an ideal with R “ krX1, . . . , Xns. Then OXpXq – R{I (see

4.8) is a k-algebra of finite type.

Proof. It suffices to investigate φ when Y is an open subset of V pIq Ď kn, where
I “

?
I Ď R is an ideal and Y “ V pIq when Y is affine. Let pf1, . . . , fnq be

the components of X
f

ÝÑ Y Ď kn. Let Y
ξi

ÝÑ k be the i-th coordinate. By

definition fi “ f˚pξiq. Thus f is uniquely determined by OY pY q
f˚

ÝÝÑ OXpXq.

Conversely, let Y “ V pIq and OY pY q
φ

ÝÑ OXpXq be a morphism of k-algebras.
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Define fi :“ φpξiq and consider X
f“pf1,...,fnq

ÝÝÝÝÝÝÝÝÑ Y Ď kn.

Claim 1. f has image contained in Y .

Subproof. For x P X,λ P I we have λpfpxqq “ pφpλ mod Iqqpxq “ 0 as φ is a
morphism of k-algebras. Thus fpxq P V pIq “ Y . ■

Claim 2. f is a morphism in Vark

Subproof. For open Ω Ď Y , U “ f´1pΩq “ tx P X|@λ P J pφpλqqpxq ‰ 0u is
open in X, where Y zΩ “ V pJq. If λ P OY pΩq and x P U , then fpxq has a

neighbourhood V such that there are a, b P R with λpvq “
apvq

bpvq
and bpvq ‰ 0

for all v P V . Let W :“ f´1pV q. Then α :“ φpaq æW P OXpW q, β :“ φpbq æW P

OXpW q. By the second part of 4.19 β P OXpW qˆ and f˚pλq æW “ α
β P OXpW q.

The first part of 4.19 shows that f˚pλq P OXpUq. ■

By definition of f , we have f˚ “ φ. This finished the proof of the first point.

Claim 3. The functor in the second part maps affine varieties to objects of A
and is essentially surjective.

Subproof. It follows from the remark that the functor maps affine varieties to
objects of A.

If A P ObpAq then A{k is of finite type, thus A – R{I for some n. Since nilpAq “

t0u we have I “
?
I, as for x P

?
I, x mod I P nilpR{Iq – nilpAq “ t0u. Thus

A – OXpXq where X “ V pIq. ■

Fullness and faithfulness of the functor follow from the first point.

Remark 4.20.98. Note that giving a contravariant functor C Ñ D is
equivalent to giving a functor C Ñ Dop. We have thus shown that the
category of affine varieties is equivalent to Aop, where A Ĺ Algk is the full
subcategory of k-algebras A of finite type with nilpAq “ t0u.

4.3.2 Affine open subsets are a topology base

Definition 4.21. A set B of open subsets of a topological space X is
called a topology base for X if every open subset of X can be written as
a (possibly empty) union of elements of B.

Fact 4.21.99. If X is a set, then B Ď PpXq is a base for some topology
on X iff X “

Ť

UPB U and for arbitrary U, V P B, U X V is a union of
elements of B.
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Definition 4.22. Let X be a variety. An affine open subset of X is a
subset which is an affine variety.

Proposition 4.23. Let X be an affine variety over k, λ P OXpXq and
U “ XzV pλq. Then U is an affine variety and the morphism φ : OXpXqλ Ñ

OXpUq defined by the restriction OXpXq
¨|U

ÝÝÑ OXpUq and the universal
property of the localization is an isomorphism.

Proof. Let X be an affine variety over k, λ P OXpXq and U “ XzV pλq. The
fact that λ æUP OxpUqˆ follows from 4.19. Thus the universal property of the

localization OXpXqλ can be applied to OXpXq
¨|U

ÝÝÑ OXpUq.

OXpXq OXpXqλ

OXpUq

¨|U

x ÞÑ x
1

D!φ

Y OY pY q – Aλ

X U OXpUq

π0

π
sσ

For the rest of the proof, we may assume X “ V pIq Ď kn where I “
?
I Ď R :“

krX1, . . . , Xns is an ideal. Then A :“ OXpXq – R{I and there is ℓ P R such
that ℓ æX“ λ. Let Y “ V pJq Ď kn`1 where J Ď krZ,X1, . . . , Xns is generated
by the elements of I and 1 ´ ZℓpX1, . . . , Xnq.

Then OY pY q – krZ,X1, . . . , Xns{J – ArZs{p1 ´ λZq – Aλ. By the proposi-
tion about affine varieties (4.20), the morphism s : OY pY q – Aλ Ñ OXpUq

corresponds to a morphism U
σ

ÝÑ Y . We have spZ mod Jq “ λ´1 and spXi

mod Jq “ Xi mod I. Thus σpxq “ pλpxq´1, xq for x P U . Moreover, the pro-

jection Y
π0

ÝÑ X dropping the Z-coordinate has image contained in U , as for
pz, xq P Y the equation

1 “ zλpxq

implies λpxq ‰ 0. It thus defines a morphism Y
π

ÝÑ U and by the description of
σ it follows that σπ “ IdU . Similarly it follows that σπ “ IdY . Thus, σ and π
are inverse to each other.

Corollary 4.24. The affine open subsets of a variety X are a topology
base on X.
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Proof. Let X “ V pIq Ď kn with I “
?
I. If U Ď X is open then XzU “ V pJq

with J Ě I and U “
Ť

fPJpXzV pfqq. Thus U is a union of affine open subsets.
The same then holds for arbitrary quasi-affine varieties.

Let X be any variety, U Ď X open and x P U . By the definition of variety, x
has a neighbourhood Vx which is quasi-affine, and replacing Vx by U XVx which
is also quasi-affine we may assume Vx Ď U . Vx is a union of its affine open
subsets. Because U is the union of the Vx, U as well is a union of affine open
subsets.

4.4 Stalks of sheaves

Definition 4.25 (Stalk). Let G be a presheaf of sets on the topologi-
cal space X, and let x P X. The stalk (Halm) of G at x is the set
of equivalence classes of pairs pU, γq, where U is an open neighbourhood
of x and γ P GpUq and the equivalence relation „ is defined as follows:
pU, γq „ pV, δq iff there exists an open neighbourhood W Ď U X V of x
such that γ æW “ δ æW .

If G is a presheaf of groups, one can define a groups structure on Gx by

ppU, γq{ „q ¨ ppV, δq{ „q “ pU X V, γ æUXV ¨δ æUXV q{ „ .

If G is a presheaf of rings, one can similarly define a ring structure on Gx.

If U is an open neighbourhood of x P X, then we have a map (resp.
homomorphism)

¨x : GpUq ÝÑ Gx

γ ÞÝÑ γx :“ pU, γq{ „

Fact 4.25.100. Let γ, δ P GpUq. If G is a sheafa and if for all x P U , we
have γx “ δx, then γ “ δ.

In the case of a sheaf, the image of the injective map GpUq
γ ÞÑpγxqxPU

ÝÝÝÝÝÝÝÑ
ś

xPU Gx is the set of all pgxqxPU P
ś

xPU Gx satisfying the following co-
herence condition: For every x P U , there are an open neighbourhood

Wx Ď U of x and gpxq P GpWxq with g
pxq
y “ gy for all y P Wx.

aor, more generally, a separated presheaf

Proof. Because of γx “ δx, there is x P Wx Ď U open such that γ æWx
“ δ æWx

.
As the Wx cover U , γ “ δ by the sheaf axiom.

Definition 4.26. Let G be a sheaf of functions. Then γx is called the
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germ of the function γ at x. The value at x of g “ pU, γq{ „P Gx defined
as gpxq :“ γpxq, which is independent of the choice of the representative γ.

Remark 4.26.101. If G is a sheaf of C8-functions (resp. holomorphic
functions), then Gx is called the ring of germs of C8-functions (resp. of
holomorphic functions) at x.

4.4.1 The local ring of an affine variety

Definition 4.27. If X is a variety, the stalk OX,x of the structure sheaf
at x is called the local ring of X at x. This is indeed a local ring, with
maximal ideal mx “ tf P OX,x|fpxq “ 0u.

Proof. By 2.51 it suffices to show that mx is a proper ideal, which is trivial, and
that the elements of OX,xzmx are units in OX,x. Let g “ pU, γq{ „P OX,x and
gpxq ‰ 0. γ is Zariski continuous (first point of 4.19). Thus V pγq is closed. By
replacing U by UzV pγq we may assume that γ vanishes nowhere on U . By the
third point of 4.19 we have γ P OXpUqˆ. pγ´1qx is an inverse to g.

Proposition 4.28. Let X “ VApIq Ď kn be equipped with its usual
structure sheaf, where I “

?
I Ď R “ krX1, . . . , Xns. Let x P X and

A “ OXpXq – R{I. tP P R|P pxq “ 0u :“nx Ď R is maximal, I Ď nx
and mx :“ nx{I is the maximal ideal of elements of A vanishing at x.
If λ P Azmx, we have λx P Oˆ

X,x, where λx denotes the image under
A – OXpXq Ñ OX,x. By the universal property of the localization, there

exists a unique ring homomorphism Amx

ι
ÝÑ OX,x such that

A Amx

OX,x

λ ÞÑλx

D!ι

commutes.

The morphism Amx

ι
ÝÑ OX,x is an isomorphism.

Proof. To show surjectivity, let ℓ “ pU, λq{ „P OX,x, where U is an open neigh-
bourhood of x in X. We have XzU “ V pJq where J Ď A is an ideal. As
x P U there is f P J with fpxq ‰ 0. Replacing U by XzV pfq we may assume
U “ XzV pfq. By 4.23, OXpUq – Af , and λ “ f´nϑ for some n P N and ϑ P A.
Then ℓ “ ιpf´nϑq where the last fraction is taken in Amx .

Let λ “ ϑ
g P Amx

with ιpλq “ 0. It is easy to see that ιpλq “ pXzV pgq, ϑ
g q{ „.

Thus there is an open neighbourhood U of x in XzV pgq such that ϑ vanishes
on U . Similar as before there is h P A with hpxq ‰ 0 and W “ XzV phq Ď U .
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By the isomorphism OXpW q – Ah, there is n P N with hnϑ “ 0 in A. Since
h R mx, h is a unit and the image of ϑ in Amx vanishes, implying λ “ 0.

4.4.2 Intersection multiplicities and Bezout’s theorem

Definition 4.29. Let R “ krX0, X1, X2s equipped with its usual grading
and let x P P2. Let G P Rg, H P Rh be homogeneous polynomials with
x P V pGq X V phq. Let ℓ P R1 such that ℓpxq ‰ 0. Then x P U “ P2zV pℓq
and the rational functions γ “ ℓ´gG, η “ ℓ´hH are elements of OP2pUq.
Let IxpG,Hq Ď OP2,x denote the ideal generated by γx and ηx.

The dimension dimkpOX,x{IxpG,Hqq :“ixpG,Hq is called the intersection
multiplicity of G and H at x.

Remark 4.29.102. If ℓ̃ P R1 also satisfies ℓ̃pxq ‰ 0, then the image of
ℓ̃{ℓ under OP2pUq Ñ OP2,x is a unit, showing that the image of γ̃ “ ℓ̃´gG
in OP2,x is multiplicatively equivalent to γx, and similarly for ηx. Thus
IxpG,Hq does not depend on the choice of ℓ P R1 with ℓpxq ‰ 0.

Theorem 4.30 (Bezout’s theorem). In the above situation, assume that
V pHq and V pGq intersect properly in the sense that V pGq X V pHq Ď P2

has no irreducible component of dimension ě 1. Then

ÿ

xPV pGqXV pHq

ixpG,Hq “ gh.

Thus, V pGq X V pHq has gh elements counted by multiplicity.
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