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These are my notes on the lecture Probability Theory, taught by Prof. CHIRAN-
JIB MUKHERJEE in the summer term 2023 at the University Miinster.

Warning 0.1. This is not an official script. The official lecture notes can
be found on Learnweb.

These notes contain errors almost surely. If you find some of them or want to
improve something, please send me a message:
notes_probability_theory@jrpie.de.

Topics of this lecture

(1) Limit theorems: Laws of large numbers and the central limit theorem for
i.i.d. sequences,

(2) Conditional expectation and conditional probabilities,
(3) Martingales,
(4) Markov chains.

This notes follow the way the material was presented in the lecture rather closely.
Additions (e.g. from exercise sheets) and slight modifications have been marked
with .

Prerequisites

[Lecture 1, 2023-04-04]

First, let us recall some basic definitions:

Definition 0.2. A probability space is a triplet (2, 7, P), such that
o O # &,
e F is a og-algebra over Q, i.e. F € P(Q2) and
- J,Q€eF,
— Ae F = A°e F,
— Ay, Ay,...€e F = U;en4i € F.
The elements of F are called events.

e P is a probability measure, i.e. P is a function P : F — [0, 1] such
that

- P(g) =0, P(Q) = 1,
— P(,en 4n) = 2nen P(Ar) for mutually disjoint A, € F.
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Definition’ 0.2.1. Let X be a random variable and k € N. Then the k-th
moment of X is defined as E[X*].

Definition 0.3. A random variable X : (Q,F) — (R,B(R)) is a mea-
surable function, i.e. for all B € B(R) we have X 1(B) € F. (Equivalently
X1 ((a,b])e Fforalla<beR).

Definition 0.4. F': R — R, is a distribution function iff
e [ is monotone non-decreasing,
e F' is right-continuous,

. xErPOOF(x) =0 and :chj}c}oF(x) = 1.

Fact 0.4.2. Let P be a probability measure on (R, B(R)). Then F(z) =
P ((—o0,z]) is a probability distribution function. (See lemma 2.4.2 in the
lecture notes of Stochastik)

The converse to this fact is also true:

Theorem 0.5 (Kolmogorov’s existence theorem / basic existence theorem
of probability theory). Let F(R) be the set of all distribution functions on
R and let M(R) be the set of all probability measures on R. Then there
is a one-to-one correspondence between F(R) and M(R) given by

M(R) —> F(R)
P (7 = i)

Proof. See theorem 2.4.3 in Stochastik.

Example 0.6 (Some important probability distribution functions).

(1) Uniform distribution on [0, 1]:

0 ze(—o,0],
F(z)=<z z¢e(0,1],
1 ze(1,00).
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This section provides a short recap of things that should be known from the
lecture on stochastic.

0.1 Notions of Convergence

Definition' 0.6.3. Fix a probability space (2, F,P). Let X, X1, X, ... be
random variables.

e We say that X,, converges to X almost surely (X,, == X) iff

P({w|Xn(w) = X(w)}) = 1.

e We say that X,, converges to X in probability (X, L X) iff

lim P[|X, — X|>¢] =0

n—o0
for all € > 0.

e We say that X,, converges to X in the p-th mean (X, L x ) iff
E[| X, — X[P] 2= 0.

e We say that X, converges to X in distribution® (X, 4, X) iff for
every continuous, bounded f: R —» R

E[f(Xn)] === E[f(X)].

%This notion of convergence was actually defined during the course of the lecture,
but has been added here for completeness; see Definition 2.9.
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Theorem! 0.6.4. Let X be a random variable and X,,,n € N a sequence
of random variables. Let 1 < p < ¢ < c0. Then

X, X x
X, &5 X x, 2 x
X, 5 X

e = |=

e
=

and none of the other implications hold (apart from the transitive closure).

Proof of Theorem! 0.6.4.

Claim 0.6.4.1. X,, “* X — X, 5 X.

Subproof. Let €y == {we Q: lingC Xn(w) = X(w)}. Fixsome e > 0 and consider
n—

Ap = Upsniw € Q0 [ X (w) — X(w)] > €} Then A, 2 Apyq1 2 ... Define

A= ,cx An- Then P[A,] 2= P[A]. Since X, %™ X we have that

Ywe Q. IneN.Vm = n. | X, (w) — X(w)] <e.
We have A < QF, hence P[A,,] — 0. Thus
Pl{we Q] | Xn(w) — X(w)| > e}] < P[4,] — 0.

[
Claim 0.6.4.2. Let 1 <p<gq <. Then X, 25> X — X, 25 X.
Subproof. Take r such that % = % + % We have
| Xn = Xllr = 1+ (Xn = X)|L»
Holder
< [z X = X g
|1 Xn — X a
Hence E[|X,, — X|1] =% 0 — E[|X,, — X[?] =% 0. [
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Claim 0.6.4.3. X, 25 X — X, 5 X.

Subproof. Suppose E[|X,, — X|] — 0. Then for every ¢ > 0

Maékov E[‘X,ﬂ — X|]

P[| X, — X| = €] -

n—0o0 O7
P
hence X,, — X. | |
Claim 0.6.4.4. X, 5> X — X, % X.

Subproof. Let F' be the distribution function of X and (F,), the distribution
functions of (X,,),. By Theorem 2.13 it suffices to show that F,(t) — F(t) for
all continuity points ¢ of F. Let ¢t be a continuity point of F. Take some € > 0.
Then there exists 6 > 0 such that |F(t) — F(t')| < § for all ¢’ with [t — '] < 0.
For all n large enough, we have P[| X, — X| > 6] < 5. It is

F) = F(O)] = [P, <] = F()

< max(|§ +PX <t+d]—F(@)|,|P[X <t—d]—F(t)])
< max(|g + F(t+0)—F(@),|F(t—0)— F(t)])
<g,
hence F,,(t) — F(t). |

Claim 0.6.4.5. X, 5> X - X, £ X!

Subproof. Take ([0,1], B([0,1]), ) and define X, := nlpy 1y. We have P[| X, >

el = % for n large enough.

However E[|X,|] = 1. |

Claim 0.6.4.6. X, % X == X, X5 X.

Subproof. We can use the same counterexample as in Claim 0.6.4.5

P[lim X, =0] >P[X, =0] =1—1 — 0. We have already seen, that X,, does
n—0o0

not converge in L. |

Claim 0.6.4.7. X, “» X —> X, % X.

INote that the implication holds under certain assumptions, see Theorem 4.24.

CONTENTS 9



Subproof. Take Q = [0, 1], F = B([0,1]),P = \. Define A, := [j27F, (j +1)27%]
where n = 2¥ + j. We have

1
Q

However X, does not converge a.s. as for all w € [0, 1] the sequence X,,(w) takes
the values 0 and 1 infinitely often. |

Claim 0.6.4.8. X, > X == X, 5 X.

Subproof. Note that X, 4 x only makes a statement about the distributions
of X and X1, X, ... For example, take some p € (0,1) and let X, X1, X5, ... be

i.i.d. with X ~ Bin(1,p). Trivially X, 5 X. However

P[|X, — X| = 1] = P[X,, = 0]P[X = 1] + P[X,, = 1]P[X = 0] = 2p(1 — p).

|
Claim 0.6.4.9. Let 1 <p <gq <. Then X, 2> X == X, £ X.
Subproof. Consider Q = [0,1], F = B([0,1]), P =X | [0,1] and X,,(w) = ﬁ
Then |Xo(w)|rr < o0, since p < ¢q. Thus X, L2, 0. However | Xn(w)|pe =
for all n. ]

0

Theorem 0.7 (Bounded convergence theorem). Suppose that X, 5 x
1
and there exists some K such that | X,,| < K for all n. Then X, L, x.

Proof. Note that |X| < K a.s. since
P[|X| = K +¢] < P[| X, — X| > ¢] =5 0.

Hence

/|Xn—X\dIP’</ X, — X|dP +
| X, —X|=e

<2KP[|X,, — X| > ¢] +e.

0.2 Some Facts from Measure Theory
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Fact' 0.7.5 (Finite measures are regular, Exercise 3.1). Let u be a finite
measure on (R, B(R)). Then for all ¢ > 0, there exists a compact set
K € B(R) such that u(K) > u(R) —e.

Proof. We have [—k, k] 1T R, hence pu([—k, k]) T p(R). O

Theorem' 0.7.6 (Change of variables formula). Let X be a random vari-
able with a continuous density f, and let g : R — R be continuous such
that g(X) is integrable. Then

o0 [oe]

o) FW)A\(dy) = / o) f () dy.

—00

Blg(0)] = [goxap- [

—00

Theorem' 0.7.7 (Riemann-Lebesgue). Let f : R — R be integrable. Then

lim [ f(z)cos(nz)A(dx) = 0.

n—0o0 R

Theorem' 0.7.8 (Fubini-Tonelli). Let (€;, F;,P;),4 € {0, 1} be probability
spaces and Q := Qy®Qy, F := F1®F, P:=Py®P;. Let f = 0 be (Q, F)-
measurable, then

Qo324+ o [z, y)P2(dy)

and

Q3y— ; f(z,y)P1(dx)

are measurable, and

/ fdP = / [ @ )Pa(ay)s (dz)(da) - / [ f@)Pi(da)Pa(ay).

0.3 Inequalities

This is taken from section 6.1 of the notes on Stochastik.

Theorem 0.8 (Markov’s inequality). Let X be a random variable and

a > 0. Then -
P[|X| > a] < 1 |]
a
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Proof. We have

E[|X]] >/ X | dP

| X|=a

:a/ dP = aP[| X| = a].
| X|=a

Theorem 0.9 (Chebyshev’s inequality). Let X be a random variable and
a > 0. Then

X
P[|X — E(X)| > d] < V%(z)
Proof. We have
PIX —E(X)|>a] - P[X—EX)P > d?
Markov E[|X — E(X)|?]

O

How do we prove that something happens almost surely? The first thing that
should come to mind is:

Lemma 0.10 (Borel-Cantelli). If we have a sequence of events (A4;,)n>1
such that >, _, P(A,) < o, then P[A,for infinitely many n] = 0 (more
precisely: P[limsup,,_,., 4,] = 0).

For independent events A,, the converse holds as well.

[Lecture 2, 2023-04-11]

1 Independence and Product Measures

In order to define the notion of independence, we first need to construct product
measures.

The finite case of a product is straightforward:

Theorem 1.1. Product measure (finite) Let (1, F,P) and (Qs, F2,P2) be
probability spaces. Let £ := Q1 x Q9 and R := {A; x A3|A4; € F1, As € Fa}.

Let F be o(R) (the sigma algebra generated by R). Then there exists
a unique probability measure P on 2 such that for every rectangle R =
A1 X A2 € R, ]P)(Al X AQ) = P(Al) X ]P(AQ)

Proof. See Theorem 5.1.1 in the lecture notes on Stochastik. O
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We now want to construct a product measure for infinite products.

Definition 1.2 (Independence). A collection X, X, ..., X,, of random
variables are called mutually independent if

Val,...,aneR:P[Xl<a1,...,mn<an]=nP[X¢<ai]

i=1

This is equivalent to

VBi,...,B, € B(R):P[X, € By,..., X, € By] = [ [P[X; € Bi]

n
=i

Example 1.3. Suppose we throw a dice twice. Let A := {first throw even},
B = {second throw even} and C := {sum even}.

It is easy the see, that the random variables are pairwise independent, but
not mutually independent.

Definition 1.4. Let (Q, F,P) be a probability space and X : (Q,F) —
(R, B(R)) a random variable. Then Q(-) := P[X € -] is called the distri-
bution of X under P.

Let X1,...,X, be random variables and Q®(.) := P[(X1,...,X,) € -] their
joint distribution. Then Q® is a probability measure on R™.

The definition of mutual independence can be rephrased as follows:

Fact 1.4.9. X1,..., X, are mutually independent iff Q® = Q, ®...Q®Q,,
where Q; is the distribution of X;. In this setting, Q; is called the marginal
distribution of Xj.

By constructing an infinite product, we can thus extend the notion of indepen-
dence to an infinite number of random variables.

Goal. Can we construct infinitely many independent random variables?

Definition 1.5 (Consistent family of random variables). Let P,,,n € N
be a family of probability measures on (R™, B(R™)). The family is called
consistent if P,,11[By x By X ... x B, X R] = P,[B; x ... x By] for all
neN,B; € B(R).

Theorem 1.6 (Kolmogorov extension / consistency theorem). ®

Let P,,,n € N be probability measures on (R™, B(R™)) which are consis-
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tent, then there exists a unique probability measure P® on (R*, B(R®))
(where B(R*) has to be defined), such that

VneN,By,...,B, € B(R) : PP[X : X; € BiV1 <i <n] =P, [Bx...xBy]

%Informally: “Probability measures are determined by finite-dimensional marginals
(as long as these marginals are nice)”

Remark 1.6.10. Kolmogorov’s theorem can be strengthened to the case of
arbitrary index sets. However this requires a different notion of consistency.

Example 1.7 (A consistent family). Let Fy, ..., F, be probability distri-
bution functions and let P,, be the probability measure on R™ defined by

Pn(a1,b1] % ... (an, bp]] = (F1(b1) — Fi(a1)) - ...  (Fn(bn) — Fn(an)).

It is easy to see that each P,, is a probability measure.

Define X;(w) = w; where w = (w1, ..,wy). Then X7,...,X,, are mutually
independent with F; being the distribution function of X;. In the case of
Fy=...=F,, then Xq,...,X, are i.i.d.

[Lecture 3, 2023-04-13]

Notation 1.7.11. Let B,, denote B(R™).

Goal. Suppose we have a probability measure w,, on (R™, B(R™)) for eachn € N.
We want to show that there exists a unique probability measure P® on (R®, By)
(where the o-algebra By, still needs to be defined), such that

P® <H Bn> = [ [ 1a(B)

neN neN

for all { By, }nen, Bn € By.

Remark 1.7.12. [ [, in(By) converges, since 0 < pi,(By,) < 1 for all n.

First we need to define By,. This o-algebra must contain all “boxes” [ [, .y Bn for
B; € B;. We simply take the smallest o-algebra with this property:
Definition 1.8.

By =0 ({an :¥n. B, eB(R)}) :

1 INDEPENDENCE AND PRODUCT MEASURES 14



Question 1.8.13. What is there in By? Can we identify sets in By, for
which we can define the desired product measure easily?

Let F,, := {C xR®|C € B,}. It is easy to see that F,, < F,+1 and using that 5,
is a o-algebra, we can show that F,, is also a o-algebra. Now, for any C' € R”
let C* := C x R®. Note that C € B, = C* € F,,. Thus F,, = {C* : C € B,,}.
Define A, : Fp, :— [0,1] by A\ (C*) == (11 ® ... ® ) (C). Tt is easy to see that
An+t1lF, = An, 1. the A, form a consistent family.

Recall the following theorem from measure theory:

Theorem 1.9 (Caratheodory’s extension theorem). Suppose A is an al-
gebra (i.e. closed under finite union) und  # ¥. Suppose P is countably
additive on A (i.e. if (A,), are pairwise disjoint and  J, .y An S A then
P(Upen An) = 2nen P(Arn)). Then P extends uniquely to a probability
measure on (2, F), where F = o(A).

Proof. See theorem 2.3.3 in Stochastik. O

Define F = J,,cn Fn- Then F is an algebra. We’ll show that if we define
A F — [0,1] with AM(A) = A\, (A) for any n where this is well defined, then
A is countably additive on F. Using Theorem 1.9, A will extend uniquely to a
probability measure on o(F).

We want to prove:
Claim 1. o(F) = Be,.
Claim 2. )\ is countably additive on F.

Proof of Claim 1. Consider an infinite dimensional box [ [, .y Bn. We have
N *
(H Bn> e F, < F
n=1
thus
N *
2~ () ([15.) o
neN NeN =1
Since o(F) is a o-algebra, By, < o(F). This proves “2”. For the other direction
we’ll show F,, € By, for all n. Let C:={Qe€B,|Q* € By}. For By,...,B, € B,
By x...x B, €B, and (By x ... x B,)* € By,. We have By x ... x B, € C.

And C is a o-algebra, because:
e B3, is a o-algebra
e 3, is a o-algebra,

o J* = g, (Rn\Q)* = Rw\Q*’ UieI Q;k = (Uie[ Ql)*
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Since C € B,, is a o-algebra and contains all rectangles, it holds that C = B,.
Hence F,, © By, for all n, thus F € By,. Since By, is a o-algebra, o(F) <
Bo. O

For the proof of Claim 2, we are going to use the following:

Fact 1.9.14. Suppose A is an algebra on 2 # ¢, and suppose P : A —
[0,1] is a finitely additive probability measure. Suppose whenever {B,},
is a sequence of sets from A decreasing to (J it is the case that P(B,,) — 0.
Then P must be countably additive.

Proof. Let (Ay,)nen be a sequence of disjoint, measurable sets with A := | J,, A, €
A. Let A), .= A\|J;_, Ai. Then we have P[A] = P[A} ]+ > | P[4;] for all n.
Thus

. ! _ . .
P[A] — lim P[A/] = J%;P[Al].

n—0o0

Since ),y Al = &, we have liHolo P[A]] = 0, hence

P [U Ail = P[A] = ) P[4;].
ieN ieN
O

Proof of Claim 2. Let us prove that A is finitely additive. We have A\(R*) =
AM(R*®) =1 and AM(F) = M () = 0. Suppose that Ay, A2 € F are disjoint.
Then pick some n such that Ay, As € F,,. Take Cy,Cs € B, such that Cf = A,
and C% = Ay. Then Cy and Cy are disjoint and A; U Ay = (C1 U C2)*. Hence

)\(Al U AQ) = )\n(Al U Ag) = ([Ll X... ®‘LLn)(C1 ] CQ) = )\n(Cl) + )\n(CQ)

by the definition of the finite product measure.

[Lecture 4, |

To finish the proof of Claim 2, we need the following:

Fact 1.9.15. Suppose {xén)}neN is a bounded sequence of real numbers
for each k£ € N. Then there exists a strictly increasing sequence of natural

number {n;};en such that for all £ € N the series {x,ini)}ieN converges.

Proof. We'll use a diagonalization argument. For S € N infinite, we say that a
sequence of real number, (x,,)ney, converges along S, if

lim x
n—o0 n
nes
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exists.

Let S7; be such that {xﬁ”)}neN converges along Sj. Such an 57 exists by
Bolzano-Weierstrafl. We proceed recursively. Suppose we have already cho-
sen Sq,...,Sg_1. Consider {$§€n)}nesk,1- By Bolzano-Weierstraf3, there exists

S € Si_1 such that {xgl)}negkfl converges along Sy. For an infinite subset
T < Nand v e N let #v(T) denote the v-th smallest element of T'. Let

S = {#v(Sk) : k e N}L.

Since Sk4+1 € Sk, we have #(k + 1)(Sk+1) > #k(Sk+1) = #k(Sk). Hence S is
infinite. Each {x,(cn)}neN converges along S, since all but finitely many elements
of S belong to Sk. O

Lemma 1.10. Let {K, },en be a sequence of compact sets K,, < Ri» for
some [,,. Suppose for all n

ﬁ K+ .
i=1

Then
(&F = 2.

€N

Proof of Lemma 1.10. We know from analysis that if {K,},en is a sequence of
compact sets such that the intersection of finitely many of them is non-empty,
then

() Kn# @

neN
Here, different K,, may have different dimensions [,,, but we can view them as
subsets of R® by applying *. For each n, choose z(™) € N, Kf. We can

assume a:](cn) =0 for k > max{ly,...,l,}. For all k € N we will show that {xén)}
is bounded.

e Case 1: Suppose every l,, < k. Then {xén)}n only contains zeros.

e Case 2: Suppose some [,,, = k. Let Z be the projection of K,, < Rlno
onto its k-th component. Z is a compact subset of R. Hence it is bounded.

For all n > ng, we have (™ € K} and .Z‘,(Cn) € Z, so {x,(cn)}n is bounded.

By Fact 1.9.15, there is an infinite set S € N, such that {xlgn)}nes converges for

every k. Let xyp == nlirréo ac,(c"). Now let z = (21, x2,...) € R®.

nes

Claim 1.10.1. z € ,.y KF.
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Subproof. Consider (™) for n > i and n € S. Then (x g ), e xl(n)) € K; and

: (n) (n)y _
nlgrolo(xl yees ) = (1,0 T0).
nes
Since K; is compact, it follows that z € K}*. |

O

Continuation of proof of Claim 2. In order to apply Fact 1.9.14, we need the
following:

n—0o0 n—0o0

Claim 2.3. For any sequence B,, € F with B,, —— & we have A(B,,) — 0.

Subproof. Suppose that Bf 2 Bi 2 ... is a decreasing sequence such that
lim A(B}) =& > 0. For each n, let l,, be such that B,, € ;. By regularity of
n—o0

Borel probability measures, given ¢ > 0, there exists a compact set L, < B,,

such that
€

(11 ® ... ® pn)(Bp\Ln) < on+1

We have

n

B*\ﬂLk U E\LE)

Hence

A (B:\ ﬁ Lﬁ) <A (O B,’:\L;;)

e
I
—_

By our assumption, A(B}}) | € > 0. Hence A(B}) = ¢ for all n. Thus

n
e €
A ﬂL;’;) Ze——-=_.
<k=1 2 2
In particular, for all n
() Li# @
k=1
By Lemma 1.10, it follows that
(N Li = @.
keN
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Since

() Bi =2 () L.

keN keN
we have [,y Bif # . [ |

The measure A is as desired: For all n € N take some B,, € By and let C,, :=
[T, Bi- Then C¥ | [];2, Bi, hence

0
continuity .. ®
A (]‘! Bi> =" lim A(CF)

— 3 %
= Jm Av(CR)

N
= dim [ ] pn(Bn)
=1

N—w
n

= 1_[ fin(Br)-

neN

For the definition of A as well as the proof of Claim 2 we have only used that
(An)nen is a consistent family. Hence we have in fact shown Theorem 1.6.

[Lecture 5, 2023-04-21]

1.1 The Laws of Large Numbers

We want to show laws of large numbers: The LHS is random and represents
“sane” averaging. The RHS is constant, which we can explicitly compute from
the distribution of the RHS.

We fix a probability space (2, F,P) once and for all.

Theorem 1.11. Let X, X5, ... bei.id. random variables on (R, B(R)) and
m = E[X;] < o and 6% = Var(X;) = E[(X;—E(X;))?] = E[X?]-E[X,]? <
0.

Then

(a) HrtotXa "Z%, m in probability (weak law of large numbers,
WLIN),

(b) FrtetXn 2%, gy almost surely (strong law of large numbers,
SLLN).

Proof of Theorem 1.11. (a) Given € > 0, we need to show that

X1+ + X,
P[ 14+
n

n—0

—m‘>5]—>0.

1 INDEPENDENCE AND PRODUCT MEASURES 19



Let Sy, == X1+ ...+ Xp. Then E[S,] = E[X1] + ... + E[X,] = nm. We

have
X o+ X, n
n n
Chcb<yshcv Va,r (%) _ 1 VBI(Xl) n—oo 0
= 52 N n 62
since g 1 1
Var (7:) - ﬁ\/ar (Sp) = ﬁnVar(Xi).

For the proof of (b) we need the following general result:

Theorem 1.12. Let X3, Xo, ... be independent (but not necessarily iden-
tically distributed) random variables with E[X;] = 0 for all ¢ and

Z Var(X;) < .
i=1

Then an 1 X converges almost surely.

We'll prove this later

Question 1.12.16. Does the converse hold? ILe. does >, -, X;, < @
a.s. then }; _, Var(X,) < .

This does not hold. Consider the following:

Example 1.13. Let X7, X5,... be independent random variables, where
X, has distribution #571 + #(Ln +(1- %)50. We have P[X,, # 0] = %
Since this is summable, Borel-Cantelli (0.10) yields

P[X,, # 0 for infinitely many n] = 0.

In particular, X,, is summable almost surely. However Var(X,,) = 2 is not
summable.

[Lecture 6, ]

Continuation of proof of Theorem 1.11. We want to deduce the SLLN (Theo-
rem 1.11) from Theorem 1.12. W.l.o.g. let us assume that E[X;] = 0 (otherwis
define X! := X, — E[X;]). We will show that “%" 2%, 0. Define Y; = )i
Then the Y; are independent and we have E[Y;] = 0 and Var(Y;) = f—; Thus
>, Var(Y;) < oo. From Theorem 1.12 we obtain that Y- | V; converges a.s.
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Claim 1.11.3. Let (a,) be a sequence in R such that Zle e converges, then
a1t...tan _ 0.
n

Subproof. Let S, = 3° . % By assumption, there exists S € R such that

n=1 n

Sy =225 S. Note that j - (S; — Sj_1) = a;. Define Sy := 0. Then

ar+...+a, =(S1—50) +2(S2 = S1)+ ... +n(Sp — Sp—1)
=nS, — (S1+S2+ ...+ Sp_1).

Thus
m+m+%_s_&+m+&4
n " n
- g n—1 S1+ ...+ 8.1
N n n—1
-8 -1 -8
— 0,
where we have used
Fact 1.13.17.
1 n
lim S,, = lim — Z S;
n—o0 n—o N,
i=1
| |
The SLLN follows from the claim. O

In order to prove Theorem 1.12, we need the following:

Theorem 1.14 (Kolmogorov’s inequality). If X5, ..., X,, are independent
with E[X;] = 0 and Var(X;) = o2, then

m
1 2
>e| < Dok

=1

P

)

j=

max
1<igsn

7
X;
1

Proof. Let

A = {w: | X1(w)] > €},

Ag = {w: | X1 (w)]| € &,| X1 (w) + Xa(w)| > €},

A ={w: | Xi(w)] <&, X1(w) + Xo(w)| <&, .., | X1(w) + ... + X;1(w)] < &,
| X1 (w) + ... + X;(w)| > €}

It is clear, that the A; are disjoint. We are interested in [ J; <i<n Ai-
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We have

/ (X1 4.+ X+ X1 + ...+ X,)2dP
Az

' c D
=/ CZdP+/ D2dIP’+2/ CDdP
Ai A»L Ai
0

z/A C? dP+2 [ 14,(X1+ ...+ X)) (Xig1 + ...+ X,,)dP

_

7

>e2 E D

> / e2dP,
A;

i

since by the independence of E and D, and E(X;41) = ... = E(X,,) = 0 we
have [ DEdP = 0.
Hence 1
P(A;) < ?2/ (X1 +...+ X,)%*dP.
A;

Since the A; are disjoint, we obtain

1
P A; < —/ (X1 +...+X,)%dP
<1EIJ\I > 62 UieN A

1
= (X1 +...+ X,)%dP
3 [ x)

N

independence 1
Pz ?(E[Xf] +... +E[X2])
E[X:]=0 6% (Var(Xy) + . .. + Var(X,))) .
O

Proof of Theorem 1.12. Let S,, =21 + ...+ x,. We’ll show that {5, (w)}nen is
a Cauchy sequence for almost every w.

Let
am (w) = sup{[Sm (W) = Sm (W)}
keN
and
a(w) = %régam(w).

Then {S),(w)}ner is a Cauchy sequence iff a(w) = 0.
We want to show that Pla(w) > 0] = 0. For this, it suffices to show that
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Pla(w) > €] = 0 for all € > 0. For a fixed & > 0, we obtain:
Playm, > €] = P[sup |Sm+k — Sm| > €]
keN

=limP[ sup|Smir —Sm|>¢ ]
=0 k

S

::BLTB::{SupkeN |Sm,+k_sm,|>5}

Now,

max{|Sm+1 — Smls [Sm+2 — Sml, -5 |Sm+1 — Sml}
= max{|Xm+1\ ‘Xerl + ‘thLgl7 RN |Xm+1 + X2+ ...+ Xerl‘}

Kolmogoxov 1
Z Var(X

N

= Z Var(X m=% — 0,

since by our assumption, >} Var(X;) < oo.
Hence
Pla,, > ] ==%5 0.
It follows that Pla > €] = 0, as claimed. O

1.1.1 Application: Renewal Theorem

Theorem 1.15 (Renewal theorem). Let X1, Xs, ... i.i.d. random variables
with X; = 0, E[X;] = m > 0. The X; model waiting times. Let S, =
>, X;. For all t > 0 let

N ==sup{n: S, < t}.

a.s.
Then%«—%%astaoo.

The X; can be thought of as waiting times. S; models how long you have to
wait for i events to occur.

Proof. By SLLN, *%" 2%, m as n — . Note that
N T o0 as. ast — o0, (1)
since {N; =2 n} ={X; +...+ X, <t}.

Claim 1. P| "—w>mANt;w>w]—1

Subproof. Let A = {w: 22 2%yt and B = {w: Ny(w) =25 o0}, By the
SLLN we have P(A®) = 0 and by (1) it holds that P(B®) = 0. [ |
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Equivalently, P [

SNt t—0o0 SNt+1 t—o0 _
N, m A JET m| = 1.

By definition, we have Sy, <t < Sn,+1. Thus

SN, t <SN,,+1<5Nt+1_Nt+1
N, N, Ne+1 N

_t
Hence M.

O

[Lecture 7, ]

Goal. We want to drop our assumptions on finite mean or variance and say
something about the behaviour of Y, -, X, when the X,, are independent.

n=1
Theorem 1.16 (Kolmogorov’s three-series theorem). Let X,, be a family
of independent random variables.

(a) Suppose for some C' = 0, the following three series of numbers converge:

® s P(|Xn| > 0),

° Z@l X, dP,
[ Xn|<C

truncated mean

2
>y X2dP - (/ Xnd]P’> .
| X7 |<C [Xn|<C

-

truncated variance

Then Zn21 X,, converges almost surely.

(b) Suppose >, -, X, converges almost surely. Then all three series above
converge for every C > 0.

For the proof we’ll need a slight generalization of Theorem 1.12:
Theorem 1.17. Let {X,,},, be independent and uniformly bounded (i.e.

AM < oo : sup, sup,, |Xn(w)| < M). Then 3 -, X, converges almost
surely <= > - E(X,) and 3 _, Var(X,) converge.

Proof of Theorem 1.16. Assume, that we have already proved Theorem 1.17.
We prove part (a) first. Put Y, = X, - Iqx,|<c}- Since the X, are inde-
pendent, the Y,, are independent as well. Furthermore, the Y,, are uniformly
bounded. By our assumption, the series >, _; XpdP = 3 o, E[Y,]

| Xn|<C
2
and 3,1 [ix, <o X2dP — (f\xn\gc Xn dIP’) = >.,>1 Var(Y,) converges. By
Theorem 1.17 it follows that >, _, Y, < oo almost surely. Let A, = {w :
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| Xn(w)| > C}. Since > -, P(A,) < o by assumption, Borel-Cantelli (0.10)
yields P[infinitely many A,, occur] = 0.

For the proof of (b), suppose »; _; X,(w) < oo for almost every w. Fix an
arbitrary C' > 0. Define

X, (w) X,
Vo) o { X)) <
C if | X, (w)| > C’
Then the Y, are independent and Y} -, ¥;,(w) < o0 almost surely and the Y, are
uniformly bounded. By Theorem 1.17 3} _, E[Y;] and 3] ~, Var(Y},) converge.
Define
i <
Zo(w) = Xn(w) %f | X, < C
¢ X, > C

Then the Z,, are independent, uniformly bounded and }; _, Z
surely. By Theorem 1.17 we have >, _, E(Z,) < o and };

We have

n(w) < oo almost

n>1 Var(Z,) < 0.

E(Y,) = / X, dP + CP(|X,,| > C),
|Xn|<C

E(Z,) / X, dP — CP(|X,| = ).
|Xn|<C

Since E(Y,,) + E(Z,) = 2 f‘X <o Xn dP the second series converges, and since
E(Y,) —E(Z,) converges, the first series converges. For the third series, we look

at »,,>; Var(Y,) and 3] ~, Var(Z,) to conclude that this series converges as
well. O

Recall Theorem 1.12. We will see, that the converse of Theorem 1.12 is true if
the X, are uniformly bounded. More formally:

Theorem 1.18 (Theorem 5). Let X,, be a series of independent variables
with mean 0, that are uniformly bounded. If >} _, X, < oo almost surely,
then »; -, Var(X,) < oo.

n=1

Proof of Theorem 1.17. Assume we have proven Theorem 1.18.

“ <=7 Assume {X,} are independent, uniformly bounded and )} _, E(X,) <
© as well as >} -, Var(X,) < . We need to show that »; _, X,, < w0 a.s. Let
Y, = X, — E(X,). Then the ¥, are independent, E(Y,) = 0 and Var(Y,) =
Var(X,). By Theorem 1.12 3} _, Y, <o as. Thus 3, _, X,, <0 as.

“

n=1

=" We assume that { X,,} are independent, uniformly bounded and }; _, X, (w) <
© a.s. We have to show that > _, E(X,) <o and )] -, Var(X,) < co.

Consider the product space (2, F,P) ® (2, F,P). On this product space, we
define Y, ((w,w’)) = X,,(w) and Z,, ((w,w’)) = X, ().
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Claim 1.17.1. For every fixed n, Y,, and Z, are independent.

Subproof. This is obvious, but we will prove it carefully here.

(P®P)[Y, € (a,b), Zn € (a', V)]
= (POP) ((w,w) : Xn(w) € (a,0) A Xu(w') € (a,1))
(]P’®IF’)(A x A')where A := X' ((a,b)) and A" := X! ((d’,V))
P(A)P(A)
|

Now E[Y,, — Z,] = 0 (by definition) and Var(Y,, — Z,,) = 2 Var(X,,). Obviously,
(Y, — Z)n>1 is also uniformly bounded.

Claim 1.17.2. 3 (Y, — Z,) < 0 almost surely on (Q® Q, FQF,PRP).

Subproof. Suppose Qo = {w : >} -1 Xp(w) < w0}, Then P(p) = 1. Thus (P®
P)(Q20®0) = 1. Furthermore }; _, (Y (w,w') = Zy(w,w)) = 2,51 (Xn(w) — Xp(w)).
Thus ;o (Ya(w,w') — Z,(w,w')) < 0 a.s. on Qo ® Q. |

By Theorem 1.18, ¥, Var(X,) = 3., Var(Y, — Z,) < © a.s. Define U, :=
X, — E(X,). Then E(U,) = 0 and the U, are independent and uniformly
bounded. We have ] Var(U,) = >, Var(X,) < . Thus }; U, converges
a.s. by Theorem 1.12. Since by assumption ), X, < o a.s., it follows that

S E(X,) < . 0

Remark 1.18.18. In the proof of Theorem 1.17 “ <= 7 is just a trivial
application of Theorem 1.12 and uniform boundedness was not used. The
idea of “ = 7 will lead to coupling.

A proof of Theorem 1.18 can be found in the notes

Example 1.19 (Application of Theorem 1.17). The series ). —er—E does -
n2

not converge for € < % However

1

where P[X,, = 1] = P[X,, = —1] = $ converges almost surely for all ¢ > 0.

2
And

does not converge.

[Lecture 8, 2023-05-02]
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1.2 Kolmogorov’s 0-1-law

Some classes of events always have probability 0 or 1. One example of such a
0-1-law is the Borel-Cantelli Lemma and its inverse statement.

We now want to look at events that capture certain aspects of long term be-
haviour of sequences of random variables.

Definition 1.20. Let X,,,n € N be a sequence of random variables on a
probability space (Q, F,P). Let 7; := o(X;, X;41,...) be the o-algebra
generated by X;, X;.1,.... Then the tail-c-algebra is defined as

T = ﬂ’ﬁ

€N

The events A € T € F are called tail events.

Remark 1.20.19. (i) Since intersections of arbitrarily many o-algebras
is again a o-algebra, T is indeed a o-algebra.

(ii) We have
T={AeF|ViIBe BR)®": A= {w|(X;(w), X;s1(w),...) € B}}.

Example 1.21 (What are tail events?). Let X,,,n € N be a sequence of
independent random variables on a probability space (£2, F,P). Then

(i) {w|X,eny Xn(w) converges} is a tail event, since for all w € © we have

converges

o0
Z Xi(w)
i=1
0
— Z X;(w) converges
i=2
— .
— X;(w) converges.

P8

(Since the X; are independent, the convergence of » _ X, is not
influenced by X, ..., X} for any k.)

(il) {w]X,en Xn(w) = ¢} for some ¢ € R is not a tail event, because
X,, depends on X;.

ZneN
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(i) {w| lim 137" | X;(w) = ¢} is a tail event, since
n—0o0

1 & 1 &
c=hm2X1=hm—X1+hm—2X1= =lim—ZXi.
n—0o0 n—o n n—o N n—w n
i=1 —_——— =2 i=k
=0

So T includes all long term behaviour of X,,,n € N, which does not depend on
the realisation of the first k£ random variables for any k € N.

Theorem 1.22 (Kolmogorov’s 0-1 law). Let X,,n € N be a sequence of
independent random variables and let 7 denote their tail-o-algebra. Then
T is P-trivial, i.e. P[A] € {0,1} for all Ae T.

Idea. The idea behind proving, that a T is P-trivial is to show that for any
A, B € F we have
P[A ~ B] = P[A4] - P[B].

Taking A = B, it follows that P[A] = P[A]?, hence P[A] € {0, 1}.

Proof of Theorem 1.22. Let F,, = o(Xy,...,X,) and remember that 7, =
0(Xn, Xn+1,-..). The proof rests on two claims:

Claim 1.22.1. For alln > 1, A € F, and B € T,41 we have P[A n B] =
P[A]P[B].

Subproof. This follows from the independence of the X;. It is

o(X1,.., X)) =0 [ {X7'(B1)n...n X, Y (B,)|B,...,B, € BR)}
=A

A is a semi-algebra, since
(i) &, Qe A,
(ii) A,Be A = AnDBeA,
(iii) for Ae A, A° =]’ ;| A; for disjoint sets Ay,..., 4, € A.

Hence it suffices to show the claim for sets A € A. Similarly

n+

0(Tos1) =0 | { XL (M) o0 XL (M) [k e N, My, ..., My € B(R)}
=B

Again, B is closed under intersection.

Solet Ae A and B € B. Then

P[A ~ B] = P[A] - P[B)
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by the independence of { X1, ..., X,,+x}, and since A only depends on { X1, ..., X}
and B only on {X,11,..., X1k} [ ]

Claim 1.22.2. |,y Fn is an algebra and

(U.F)—CTXl,XQ,...)Zﬂ.

neN

neN

Subproof. “27 If A,, € 0(X,), then A, € F,,. Hence A,, € |

neN

Since o(X7, Xa,...) is generated by {4,, € o(X,) : n € N}, this also means
o(X1,X2,...) € o (Upen Fn)

“cC ” Since F, = o(Xy,...,X,), obviously F, (X17X2 ..) for all n. Tt
follows that (J,, .y Fn S 0(X1,Xa2,...). Hence o U c o(Xy,Xa,...).
|

nEN

Now let T € T. Then T € 7,41 for any n. Hence P[A n T] = P[A]P[T] for all
A € F,, by the first claim.

It follows that the same folds for all A € |, .y Fn, hence for all A € o (J,,cy Fn),
and by the second claim for all A € o(X;,Xs,...) = 71. But since T € T, in
particular T" € Ty, so by choosing A = T, we get

P[T] = P[T ~n T] = P[T]?
hence P[T] € {0, 1}. O

Fact’ 1.22.20 (Exercise 5.2 (b)). Any random variable measurable with
respect to a P-trivial o-algebra is a.s. a constant.

[Lecture 9, ]

1.2.1 Application: Percolation
We will now discuss another application of Kolmogorov’s 0-1 Law (1.22), per-

colation.

Definition 1.23 (Percolation). Consider the graph with nodes Z<, d > 2
where edges from the lattice are added with probability p. The added edges
are called open; all other edges are called closed.

More formally, we consider
= {0,1}%¢, where E4 are all edges in Z,

e F := product o-algebra,
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®Eq4

e P:=|p (5{1} +(1 —p) (5{0}
~—— ~——
edge is open edge is absent closed

Question 1.23.21. Starting at the origin, what is the probability, that
there exists an infinite path (without moving backwards)?

Definition 1.24. An infinite path consists of an infinite sequence of
distinct points xg, 1, ... such that z,, is connected to x, 1, i.e. the edge
{@n, Tpi1} is open.

Let Cy = {w|an infinite path exists}.

Exercise. Show that changing the presence / absence of finitely many edges
does not change the existence of an infinite path. Therefore Cy is an element
of the tail o-algebra. Hence P(Cy) € {0,1}.

Obviously, P(Cy) is monotonic with respect to p. For d = 2 it is known that
p= % is the critical value. For d > 2 this is unknown.

We'll get back to percolation later.

2 Characteristic Functions, Weak Convergence
and the Central Limit Theorem

So far we have dealt with the average behaviour,
iid.

-~

—_———
Xi+...+ X,

We now want to understand fluctuations from the average behaviour, i.e.
X1+ ...+ X, —n-E(Xy).
The question is, what happens on other timescales than n? An example is
X1 +...+ X, —nE(X1) now
Jn
Why is 4/n the right order? Handwavey argument:

Suppose X1, Xo, ... are i.i.d. with X; ~ A(0,1). The mean of the Lh.s. is 0 and
for the variance we get

Xt o+ Xo—nB(X), (X4 + X,
N )= Var ()
(Var(X;) + ...+ Var(X,)) =1

N(0, Var(X;)) (2)

Var(
1
n

2 CHARACTERISTIC FUNCTIONS, WEAK CONVERGENCE AND TH®
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For the r.h.s. we get a mean of 0 and a variance of 1. So, to determine what (2)
could mean, it is necessary that 4/n is the right scaling. To make (2) precise,
we need another notion of convergence. This will be the weakest notion of
convergence, hence it is called weak convergence. This notion of convergence
will be defined in terms of characteristic functions of Fourier transforms.

2.1 Convolutions’

Definition’ 2.0.22 (Convolution). Let x and v be probability measures
on R?. Then the convolution of ;1 and v, p* v, is the probability measure
on R? defined by

(e = [ [ Lata+pudo(ay.

Fact 2.0.23. If ;1 and v have Lebesgue densities f, and f,, then the con-
volution has Lebesgue density

fuanle) = [ Fula =0 (0N(a1),

Fact’ 2.0.24 (Exercise 6.1). If X1, Xy, ... are independent with distribu-
tions X7 ~ p1, Xo ~ pa,..., then X7 + ...+ X, has distribution

2.2 Characteristic Functions and Fourier Transform

Definition 2.1. Consider (R, B(R),P). The characteristic function of
PP is defined as

@p R— C
t—> / eTP(dz).
R

Abuse of Notation 2.1.25. ¢p(t) will often be abbreviated as o(t).

We have
o(t) = /Rcos(tx)IE”(dx) +i/ sin(tz)P(dx).

R

e Since |e!*®| < 1 the function () is always defined.
e We have ¢(0) = 1.
o [o(t)] < [gle"*P(dz) = 1.
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Fact! 2.1.26. Let X, Y be independent random variables and a,b € R.
Then

® Yaxip(t) = eitb(pX(é)7

* ox4v(t) = ox(t) -y (t).
Proof. We have

PaX+b (t) _ E[eit(aX+b)]
_ eith[eitaX]

s t
_itd v
=eox ().

Furthermore
ex+y(t) = B[]
_ E[eitX]E[eitY]
= px () ey (1)

Remark 2.1.27. Suppose (2, F,P) is an arbitrary probability space and
X : (Q,F) — (R,B(R)) is a random variable. Then we can define

px(t) = BLEN] = [ X OR() = [ i) = o, (0

where = Po X 1.

Theorem 2.2 (Inversion formula). Let (22, B(R),P) be a probability space.
Let F be the distribution function of P (i.e. F'(z) = P((—o0, z]) for allz € R
). Then for every a < b we have

_ = T —
2 2 e or | it

F(b) + F(b—=) F(a)+ F(a—) 1/T M@(t)dt (3)

where F(b—) is the left limit.

We will prove this later.

Theorem 2.3 (Uniqueness theorem). Let P and Q be two probability
measures on (R, B(R)). Then pp = 99 = P =Q.

Therefore, probability measures are uniquely determined by their charac-
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teristic functions. Moreover, (3) gives a representation of P (via F') from
®.

Proof of Theorem 2.3. Assume that we have already shown the Inversion For-
mula (2.2). Suppose that F' and G are the distribution functions of P and Q.
Let a,b € R with a < b. Assume that a and b are continuity points of both F
and G. By the Inversion Formula (2.2) we have

Since F' and G are monotonic, Equation 4 holds for all a < b outside a countable
set.

Take a, outside this countable set, such that a, \ —oo. Then, Equation 4
implies that F(b) — F(a,) = G(b) — G(a,,) hence F(b) = G(b). Since F and G
are right-continuous, it follows that F' = G. 0

[Lecture 10, 2023-05-09]
First, we will prove some of the most important facts about Fourier transforms.

We consider (R, B(R)).

Notation 2.3.28. By M;(R) we denote the set of all probability measures
n (R, B(R)).

For all P € M;(R) we define @p(t) = [ e""P(dz). If X : (Q,F) — (R, B(R)) is
a random variable, we write @y () := E[e'X] = ¢, (), where p = PX 1.

Proof of Theorem 2.2. We will prove that the limit in the RHS of Equation 3
exists and is equal to the LHS. Note that the term on the RHS is integrable, as

e—ith _ o—ita
lim ——— =a-—
150 —it plt) =a=b

and note that ¢(0) = 1 and |¢(t)] < 1.

2 CHARACTERISTIC FUNCTIONS, WEAK CONVERGENCE AND THB
CENTRAL LIMIT THEOREM



We have

. 1 T —itb _ ,—ita
Fubind iy — / / %em dtP(dz)
T—0o0 27T RJ—-T _lt

= lim 7// [COS x_b))_cos(( ))]dtIP’(dx)

=0, as the function is odd

+ lim 7// sint x*b)*sm(( D) 1P (dx)

T—o0 27T
= lim - / / R Sm(t(x D) dtP(dx)
T—o0 T t
3.29),pCT 1
(2.3.29),DCT ;/ 2]lm<a 4 2119;>a — (= g]l:z<b + 2]lw>b) (dx)
— fmmn+ Mw}+mwbﬁ

F(b) n F(b ) Fla) — F(a-)
2 2

Fact 2.3.29.

© sinx ™
de = -
0o T 2

where the LHS is an improper Riemann-integral. Note that the LHS is not
Lebesgue-integrable. It follows that

S
T . -5 ifr<a,
t —
T (.| GICa) P a,
T—00 0 t A
3 if x > a.

Theorem 2.4. Let P € M;(R) such that pp € L'()\). Then P has a
continuous probability density given by

f@)= o / eIt p 1) dt.
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Example 2.5. e Let P = dg. Then
wp(t) = /eit’céo(dx) =0 =1
o Let P = %51 + %5_1. Then

ep(t) = ie‘t + 56_” = cos(t)

Proof of Theorem 2.4. Let f(x) = 5= [ e " p(t) dt.
Claim 2.4.1. If z,, — x, then f(z,) — f(z).

n—o0

Subproof. Suppose that e~ (t) e #2(t) for all t. Since

™" (t)] < | (t)]

and ¢ € L', we get f(x,) — f(x) by the dominated convergence theorem. [ |

We’ll show that for all a < b we have

b
P((ab) = [ fo)ds,

Let F' be the distribution function of P. It is enough to prove Claim 2.3.29 for
all continuity points a and b of F'. We have

ubini 1 b
RHS Fub — / / e p(t) dz dt
27T RJa
1 b

= — t —i Qg de
5 e [ et

1 e—itb _ e—ita
- — [ o) ([ — )t

T . .
dominated convergence . 1 e th _ e ita
- tim = [ ) () at
T—w 2T J_p —it

By the Inversion Formula (2.2), the RHS is equal to F(b) — F(a) = P ((a,b]). O

However, Fourier analysis is not only useful for continuous probability density
functions:

Theorem 2.6 (Bochner’s formula for the mass at a point). Let P € M;(\).
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Then .
. 1 —itx
VzeR. P({z}) = Clll_r)réo i [T e p(t)dt.

Proof of Theorem 2.6. We have

—x)) dtP(dy)

I
'f:
3B
[\

- |~

—

\
@)
8

= lim —/R2Tsmc(T(y—x))2]P’(dy)

beT /R lim sinc(T(y — «))P(dy)

Theorem 2.7. Let ¢ be the characteristic function of P € M;(\). Then
(a) p(0) =1, |o(t)] <1, o(—t) = ¢(t) and @(-) is continuous.

(b) ¢ is a positive definite function, i.e.

n
Vi, ..., ty ER,(Cl,...,Cn) eC" Z Cja(p(tj —tk) =0
Jk=1

Equivalently, the matrix (¢(t; — tx)); 5 is positive definite.

Proof of Theorem 2.7. Part (a) is obvious.

sin(z) .
2sinC(l‘) = { ® o0,

1 otherwise.
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For part (b) we have:

cha@(tj — tk) = cha/ ei(tj*tk)zp(dx)
jik g,k R
=/chﬁeit7“eitkﬂ?’(dx)
Rk
:/cheitjmcke“k””]}”(dm)
R %

=/ S eitia
R

2
=0

Theorem 2.8 (Bochner’s theorem). The converse to Theorem 2.7 holds,
ie. any ¢ : R — C satisfying (a) and (b) of Theorem 2.7 must be the
Fourier transform of a probability measure P on (R, B(R)).

Unfortunately, we won’t prove Bochner’s Theorem for Positive Definite Func-
tions (2.8) in this lecture.

Definition 2.9 (Convergence in distribution / weak convergence). We
say that P, € M;(R) converges weakly towards P € M;(R) (notation:
P, = P), iff

Vf € Cy(R) /dePn—>/deP.

Where
Cy(R) == {f : R — R continuous and bounded}

In analysis, this is also known as weak™® convergence.

Remark 2.9.30. This notion of convergence makes M;(R) a separable
metric space. We can construct a metric on M;(R) that turns M;(R) into
a complete and separable metric space:

Consider the sets
{PeMi(R):Vi=1,...,n /fd]P’—/fid[P’<5}

for any f, f1,..., fn € Cy(R). These sets form a basis for the topology on
M;(R). More of this will follow later.

2 CHARACTERISTIC FUNCTIONS, WEAK CONVERGENCE AND TH¥
CENTRAL LIMIT THEOREM



Example 2.10. o Let P, = §1. Then [ fdP, = f(2) — f(0) =
| fdéo for any continuous, bounded function f. Hence P,, — do.

e P, := 4, does not converge weakly, as for example

/cos(wx) dP,, ()
does not converge.
o P, = %(5,1 +(1- %)50. Let f € Cp(R) arbitrary. Then

[ £aps = 2+ (1= )5(0) = 7(0)

since f is bounded. Hence P, = §.

:L'Z . .
o P, = \/ﬁe’ﬁ. This “converges” towards the O-measure, which
is not a probability measure. Hence P,, does not converge weakly.
(Exercise)

Definition 2.11. We say that a series of random variables X,, converges
in distribution to X (notation: X, N X), iff P, = P, where P, is
the distribution of X,, and P is the distribution of X.

It is easy to see, that this is equivalent to E[f(X,)] — E[f(X)] for all f €
Cp(R).

Example 2.12. Let X, := % and F,, the distribution function, i.e. F,, =
Lis o) Then P, = §1 = dg which is the distribution of X = 0. But

F,(0) + F(0).
Theorem 2.13. X,, > X iff F, (t) — F(t) for all continuity points ¢ of F.

Theorem 2.14 (Levy’s continuity theorem). X, 4 X iff eox, (t) — p(t)
for all t € R.

We will assume these two theorems for now and derive the central limit theorem.
The theorems will be proved later.

[Lecture 11, ]

2.3 The Central Limit Theorem

For X, Xo, ... ii.d. we were looking at .S, := Z?:l X;. Then the LLN basically
states, that .S,, can be approximated by nE[X}].
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Question 2.14.31. What is the error of this approximation?
We set p1:= E[X;] and 02 := Var(X;) € (0,00). We know that E[S,,] = nu and
Var(S,,) = no?.

The central limit theorem basically states, that the distribution of S, can

be approximated by a normal distribution with mean nyu and variance no?,

ie. S, ~nu+ oy/nN for N ~ N(0,1), where ~ is to be made precise.

For intuition, watch https://3bluelbrown.com/lessons/clt.

Example 2.15. We throw a fair die n = 100 times and denote the sum of
the faces by S, = X1 +...+X,,, where X1,..., X, arei.i.d. and uniformly

distributed on {1,...,6}. Then E[S,,] = 350 and +/Var(S,,) = o ~ 17.07. '

Question 2.15.32. Why do statisticians care about o instead of o2?

By definition, Var(X) = E[(X — E(X))?], hence /Var(X) can be interpreted
as a distance. One could also define Var(X) to be E[|X —E(X)]|] but this is not
well behaved.

Example 2.16. Let X1,..., X, be i.i.d. and X; ~ Exp(1). We knot that
for n € N, E[S,,] = n and 4/ Var(S,,) = 4/n. For n = 100, 300, 500, we get

the following picture -

In order to make things nicer, we do the following:

1. center: S, — E[S,],

. Sn—E[Sh]
2. normalize: (s

Sn—E[Sn]7 _ Sn—E[Sn]y _
ThenE[m] OandVar(\/m) 1.

Theorem 2.17 (Central limit theorem, 1920s, Lindeberg and Levy). Let
X1, Xa, ... be i.i.d. random variables with E[X;] = p and Var(X;) = 0% €
(0, 00).

Let S, ==, X;. Then

Sn—m/d
_ 0,1
a\/n M),
ie.VxeR:
. Sy —np ] /m 1 -2
Im P| ——— < =0 = 2 dt.
P[5 we| 0= [ e
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We will abbreviate the central limit theorem by CLT.

There exists a special case of this theorem, which was proved earlier:

Theorem 2.18 (de-Moivre (1730, p = 0.5), Laplace (1812, general p )).
Let S,, = Bin(n, p), where p € (0, 1) is constant. Then, for all z € R :

lim P _Sn—mp_ <z| =d(x).
= np(l —p)

Proof. Let X1, X5,...1.id. with X; ~ Ber(p). Then E[X;] = p and Var(X;) =
p(1 — p). Furthermore Y, ; X; ~ Bin(n, p), and the special case follows from
Central Limit Theorem (2.17). O

Theorem 2.18 is a useful tool for approximating the Binomial distribution with
the normal distribution. If S,, ~ Bin(n,p) and [a,b] € R, we have

_p a—np _ _ S, —np - b—np
Vrp(L—p)  A/np(1—p) — /np(1 - p)

Pla < S, < b] ] ~ O(b)—d(d).

Example 2.19. We consider a n = 40-times Bernoulli trial with success

probability p = 1. Then 0.9597 = P[S < 25] ~ @(% ~ 0.9431.

However, S takes only integer values, which means P[S < 25] = P[S26].
With this in mind, a better approximation is

5.5

P[S <25 =P[S<255|~Q| —=
5 < 2] = Pls < 255] ~ @ (%

) ~ 0.9541.

Example 2.20. Consider a particle that start at 0 and moves on the lattice
Z. In every step, takes a step +1 with probability % or —1 with probability
1

5.

More formally: Let X1, Xo,... be i.i.d. with P[X; = 1] =P[X; = —1] = 1
and consider S, ==Y | X;.

Then the Central Limit Theorem (2.17) states, that S, ~ N (0,n).

Example 2.21. Consider an election with two candidates A and B. The
relative number of votes for A is p € (0,1) (constatn, but unknown) How
many ballots do we need to count to make sure that the probability of
erring more than 1% is not bigger than 5%?

Each ballot is a vote for A with probability p. We have S,, ~ Bin(n, p) and
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we want to find n such that P[|S,, — np| < 0.01n] < 0.05. We have that

P[|S,, — np| < 0.01n]
P[-0.01n < S,, — np < 0.01n]

_p- 0.01n < S — np 0.01n
S —p)  w—p) - Ve —p)

~ $(0.01 o7 p)) — ®(—0.01 p Y p))

— 20(0.01

Hence, we want ©(0.01, el 195 je. n = (1.96)2100%p - (1 — p) We
have p- (1 — p) < 1, thus n ~ (1.96)% - 100% - + = 9600 suffices.

[Lecture 12, 2023-05-16]

We now want to prove the Central Limit Theorem (2.17). The plan is to do the
following:

1. Identify the characteristic function of a standard normal

2. Show that the characteristic functions of the V,, converge pointwise to that

of N.
3. Apply Levy’s Continuity Theorem (2.14)

First, we need to prove some properties of characteristic functions.

Lemma 2.22. For every real random variable X, we have
(i) ¢x(0) =1 and |px ()] <1 for all t € R.
(ii) @x is uniformly continuous.

(iii) If E[|X|"] < oo for any n € N, then ¢ x i n-times continuously differ-
entiable and E[X"] = (—i)"apg?) (0).

(iv) For independent random variables X and Y, we have
px+v(t) = ox(t) - oy (1).

Proof of Lemma 2.22. (i) ¢x(0) = E[e ‘OX] = E[1] = 1. For ¢t € R, we have
Jensen

lox ()] = [E[e*X]] < E[le"¥]] =

2 CHARACTERISTIC FUNCTIONS, WEAK CONVERGENCE AND THH
CENTRAL LIMIT THEOREM



(ii) Let t,h € R. Then

lox(t+h) —px(t)] = [E[THMX — X
|E[eltX (eth _ 1)]|
Jensen

< E[leitX| . |eihX _ 1‘]

— B[~ 1f]=g(h)

Hence sup,eg |ox (t + h) — px ()| < g(h). We show that }lLir% g(h) = 0.
For all w € Q, we realize

lim [e!"X(@) — 1] = 0.

h—0

Thus [e"X — 1| 229, 0 almost surely. Since also for all h € R we have

le??X — 1] < 2, it follow that |e"X — 1| is dominated for all h € R. Thus,
we can apply the dominated convergence theorem and obtain

: o ihX _ 117 — . ihX _
lim g(h) = lim Effe 1] = E[lim |e 1] =o.

It follows that

lim sup |px (t + h) — px(t)| =0,
n—0 teR

which means that ¢x is uniformly continuous.
(iii)

Claim 2.22.1. For y € R, we have |V — 1| < |y|.

Yy Y
|/ cos(s)ds + i/ sin(s) ds|
0 0

y .
= |/ e** ds|
0

Jensen Y is
< le'*|ds = y.
0

For y < 0, we have |e!¥ — 1| = |e7¥ — 1| and we can apply the above to
—. |

Subproof. For y > 0, we have

e — 1]

First, we look at n = 1. Then E[|X|] < 0. Consider

ox(t+ h})l—<px(t) _E [eitXeihXh_ 1] .
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0 k
We have e = >~ %;. Hence

h

n—aoo0

oo (14ihX + G 4 op2) 1 :
lim X ( ! 2 o(h’) = e"XiX almost surely.

For arbitrary h € R, we have

ihX

|eitXeh | < 'h(eihx_l)‘
(2.22.1) | 1
< hihX‘ = |X]|.

Thus the dominated convergence theorem can be applied and we obtain

. . ihX _ 1 )
i PXEEN Zox® g [ (88 Z LY | gy,
h—0 h h—0 h

It follows that ¢ is differentiable and ¢x () = E[e!'XiX]. For t = 0 we
get ¢’y (0) =iE[X], ie. -ip/x(0) = E[X].

Adapting the proof of (ii) gives that ¢’ (¢) is continuous.
Adapting the proof of (iii) gives the statement for arbitrary n € N.

(iv) Easy exercise.

Lemma 2.23. For X ~ N(0,1), we have ¢x(t) = e=7 forall t € R.

Proof of Lemma 2.23. We have

1 T )
- [t
—o0
= — cos(tx) +isin(tz))e” 2 dz
5= | (eostta) + isin(ex))

L[ cosiaye % a
= — cos(tx)e” 2 da
2 [oo ’

M

x

since, as « — sin(tz) is odd and = — e~z is even, their product is odd, wich
gives that the integral is 0.
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/ 1tX

1 / . _z2
— (cos(tx) +isin(tx))e” = da
v2 ©
1 / ) 2?2
— x cos(tx) 2 dx
V2 (
— x cos(tx)e T dr+ —sin(tz)e” 2 dx
~ Vor

—00

OOW—/ \/27T
y(z) T
I'(x)
in(e)—— 12— [ veostia) e d
sin(tx ey — tcos(tx e 2 dx
27re_% e —0 Vam
= —tox(t)
Thus, for all t € R
e (t)
log(px (1)) = = —t.

Hence there exists ¢ € R, such that

log(px (1)) = —= +c.

Since ¢x(0) = 1, we obtain ¢ = 0. Thus

Now, we can finally prove the Central Limit Theorem (2.17):

Proof of Theorem 2.17. Let X1, X, ... be i.i.d. random variables with E[X;] =
w1, Var(Xy) = o

Let
Xi—p

g

Y =
i.e. we normalize to E[Y7] = 0 and Var(Y7) = 1. We need to show that

Sn—n,u_ Y1+...+Yn w,n—00

Y~

N(0,1)
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Let t € R. Then

where @(t) == @y, (¢).
We have

5% +o(s?), as s — 0
+o0(s%), as s = 0

2

:1—%4—0(82), as s >0

Setting s := ﬁ we obtain

t ) t2+ t? .
— |=1——+4+o0|—) asn—
v A/n 2n n

1= () - (- Bon(B)) =

where we have used the following:

Claim 2.17.1. For a sequence a,,n € N with lim na, = A\, it holds that

n—o0
lim (1 + a,)" = e*.
n—ao0

We have shown that

n—o0

t2
Pn(t) ——= €77 = @pno,1)(t).

Using Levy’s Continuity Theorem (2.14), we obtain the Central Limit Theorem
(2.17). O
Remark 2.23.33. If X : Q — R with distribution v, we define

px: RY — C
t— E[ei<t’x>]
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where (¢, X) = Zgzl t: X;.

Exercise: Find out, which properties also hold for d > 1. | ,—_

[Lecture 13, 2023-05]
We have seen, that if X7, Xo, ... are i.i.d. with u = E[X;], 0? = Var(X;), then

Zﬁ:a(\)/%_p‘) ﬂ N<Oa 1)

Question 2.23.34. What happens if X;, X5, ... are independent, but not
identically distributed? Do we still have a CLT?

Theorem 2.24 (Lindeberg CLT). Assume X;, Xo, ..., are independent
(but not necessarily identically distributed) with p; = E[X;] < o and

0? = Var(X;) < o0. Let S, =4/, 02 and assume that
,}E’f&os—g;E ~ 1)L, es, ] = 0
for all € > 0 (Lindeberg condition?).

Then the CLT holds, i.e.

Eilii) @, 3

%“The truncated variance is negligible compared to the variance.”

Theorem 2.25 (Lyapunov condition). Let X;, X5,... be independent,
wi = E[X;] < 00, 02 = Var(X;) < w0 and S,, = 4/X,;—, 0Z. Then, as-
sume that, for some 6 > 0,

1
A3 MZE — )"t =0
=1

(Lyapunov condition). Then the CLT holds.

Remark 2.25.35. The Lyapunov condition implies the Lindeberg condi-
tion. (Exercise).

We will not prove Lindeberg’s CLT (2.24) or Lyapunov’s CLT (2.25) in this
lecture. However, they are quite important.

We will now sketch the proof of Levy’s Continuity Theorem (2.14), details can
be found in the notes.,
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Definition 2.26. Let (X,,), be a sequence of random variables. The dis-
tribution of (X,,), is called tight (dt. “straff”), if

lim supP[|X,| > a] = 0.

=0 pneN

Example’ 2.26.36 (Exercise 8.1). -

A generalized version of Levy’s Continuity Theorem (2.14) is the following:

Theorem 2.27 (A generalized version of Levy’s Continuity Theorem (2.14)).
Suppose we have random variables (X,,), such that E[e"X»] 2225 (t)
for all ¢ € R for some function ¢ on R. Then the following are equivalent:

(a) The distribution of X, is tight.

(b) X, @, X for some real-valued random variable X.

(c)  is the characteristic function of X.

(d) ¢ is continuous on all of R.
) ¢

(e

is continuous at 0.

Example 2.28. Let Z ~ N(0,1) and X,, := nZ. We have px, (t) =
E[[eltX»] = e~3t'n® 120, Ig—oy- Iyg—oy is not continuous at 0. By

Theorem 2.27, X,, can not converge to a real-valued random variable.

)

Exercise: X, 9, x X, where P[X = ] = = P[X = —0].

1
2
Similar examples are pu,, = §, and u, = %5n + %5_,1.

Example 2.29. Suppose that X1, Xo,... are i.d.d. with E[X;] = 0. Let
= Var(X;). Then the distribution of —L is tight:

Sn

>
N

7
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verifying Theorem 2.27.

Example 2.30. Suppose C is a random variable which is Cauchy dis-

tributed, i.e. C has probability distribution fc(z) = + k.
0.3 |
0.2+ |
0.1 |

0 ‘ | | | | |
—6 —4 —2 0 2 4 6

Figure 1: Probability density function of C'

We know that E[|C|] =

We have o (t) = E[el*“] = eIt Suppose C1,Cs, ..., C, are i.i.d. Cauchy
distributed and let S,, :=C1 + ...+ C,,.

Exercise: Psn (t) = e7 It = ¢, (t), thus STn ~C.

We will prove Levy’s Continuity Theorem (2.14) assuming Theorem 2.13. The-
orem 2.13 will be shown in the notes.We will need the following:

Lemma 2.31. Given a sequence (F},), of probability distribution func-
tions, there is a subsequence (F, )r of F, and a right continuous, non-
decreasing function F', such that F,,, — F at all continuity points of F'
(We do not yet claim, that F' is a probability distribution function, as we
ignore wh_r)rgo F(z) and wEmw F(z) for now).

Lemma 2.32. Let ,u € Ml( ), A > 0 and ¢ the characteristic function of
2
p. Then p((—A ‘f“g (t)dt‘ -1
A
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Proof of Lemma 2.32. We have

g Ny
/ o(t) dtz/ /emu(dx) dt
,% 7% R
i
:// e dtp(dr)
R/-%
%
=/ cos(tx) dtu(dx)
RJ/-%
2sin (22
-/ 25 () )
R x
Hence
2 . 2z
I E A/S”l(f‘)u(dt)
2 7% R X
. 2z
=2 /Rsmc (A) u(dt)‘

e () o

M(dx)l

<2/
|z|<A

sinc 2x> ' u(dz) + /
A 2| A
—_—

<1

<2 u((—A,A>>+‘§/>A

[ sin(2z/A)|
||

N

2| n(-a4)+5 [ y jlu(dx)}

< 2u((—A,A) + p((—4, 4)%)
1+ M((_A’ A))

O

Proof of Theorem 2.14. “ = 7 If p,, = p, then by definition [ fdu, —
[ fdp for all f e Cy. Since x — €' is continuous and bounded, it follows that
wn(t) — @(t) for all t € R.

“ ”

—

Claim 2.14.1. Givene > 0 there exists A > 0 such that liminf,, u, ((—A4, A)) =
1—2e.

Proof of Claim 2.14.1. If f is continuous, then
1

T+n
: / ()t % f(a).
T—1
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Applying this to ¢ at t = 0, one obtains:

A (&
1 [ p(t)dt — 1

< (4)

N

Claim 2.14.1.1. For n large enough, we have

A (%
/ en(t)dt — 1| <e. (5)
4 ) =2
A
Subproof. Apply dominated convergence. |

So to prove g, ((—A, A)) = 1 — 2¢, apply Lemma 2.32. It suffices to show that

2
Al ra
— / on(t)dt| —1>1—2¢
2 |J_z2
A
or ,
A Aa
-3
which follows from Equation 5. O

By Lemma 2.31 there exists a right continuous, non-decreasing F' and a subse-
quence (Fy,, ) of (F,)n where F,, is the probability distribution function of iy,
such that F),, (x) — F(z) for all  where F is continuous.

Claim 2.14.2.
lim F(z)=0
n——au
and
lim F(x) =1,
n—0o0

i.e. F is a probability distribution function.?
Subproof. We have

Koy ((—OO,J?]) = Fnk (l‘) - F(.’L‘)

Again, given & > 0, there exists A > 0, such that p,, ((—4,A4)) > 1 — 2¢
(Claim 2.14.1).

Hence F(z) = 1 — 2¢ for ¢ > A and F(x) < 2¢ for # < —A. This proves the
claim. |

3This does not hold in general!
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Since F' is a probability distribution function, there exists a probability measure
v on R such that F is the distribution function of v. Since F, () — F,(z) at

all continuity points « of F', by Theorem 2.13 we obtain that u,, o v. Hence
Ppn, (1) = pu(t), by the other direction of that theorem. But by assumption,
Ppn, () = #n() 50 @u(-) = @ (). By the Uniqueness Theorem (2.3), we get
h=V.

We have shown, that u,, = p along a subsequence. We still need to show
that u, = pu.

Fact 2.32.37. Suppose a, is a bounded sequence in R, such that any
convergent subsequence converges to a € R. Then a,, — a.

Assume that p, does not converge to u. By Theorem 2.13, pick a continu-
ity point z¢ of F, such that F,(xq) + F(zo). Pick 6 > 0 and a subse-
quence F,,, (zo), Fp,(z0), ... which are all outside (F'(zg) — §, F(x¢) + ). Then

OnysPngy--- — @. Now, there exists a further subsequence G1,Ga,... of F,,,
which converges. G1,Go, ... is a subsequence of F, Fy,.... However G1,Go, ...
is not converging to F, as this would fail at xy. This is a contradiction. O
Proof of Theorem 2.27. O

2.4 Summary

What did we learn:
e How to construct product measures
e WLLN and SLLN
e Kolmogorov’s three series theorem

e Fourier transform, weak convergence and CLT

[Lecture 14, 2023-05-25]

3 Conditional Expectation

3.1 Introduction
Consider a probability space (Q, F,P) and two events A, B € F with P(B) > 0.

Definition 3.1. The conditional probability of A given B is defined as

P(A n B)

P(A|B) = F(5)

Suppose we have two random variables X and Y on €2, such that X takes distinct
values x1,x9,..., T, and Y takes distinct values y,...,y,. Then for this case,
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define the conditional expectation of X given Y = y; as

E[X|Y = y;] = > 2P[X = 2]V = y;].
=1

The random variable Z = E[X Y] is defined as follows: If Y (w) = y; then

Z(w) =E[X|Y =y,].
—_—

=izj

Note that Q; := {w: Y(w) = y;} defines a partition of  and on each Q; (“the
j*® Y-atom”) Z is constant.

Let G := o(Y). Then Z is measurable with respect to G. Furthermore
/ ZdP = Zj / dP
{Y=y;} {Y=y;}
= zP[Y = y;]

= Y mP[X = ]V =y ]P[Y = y;]
i=1

2 {ITZ]P)[X = ZL'Z',Y = yj]
i=1

= / X dP.
{Y=y;}

/ZdIP’:/Xd]P’
G G

We now want to generalize this to arbitrary random variables.

Hence

for all G e G.

Theorem 3.2. Let (€2, F,P) be a probability space, X € L'(P) and G € F
a sub-g-algebra. Then there exists a random variable Z such that

(a) Z is G-measurable and Z € L'(P),
(b) Ji ZdP = [, X dP for all G € G.

Such a Z is unique up to sets of measure 0 and is called the conditional
expectation of X given the o-algebra G and written Z = E[X|G].

Remark 3.2.38. Suppose G = {F, 2}, then

E[X|G] = (w— E[X])
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is a constant random variable.

Definition 3.3 (Conditional probability). Let A = Q be an event and
G < F a sub-c-algebra. We define the conditional probability of A
given G by

P[A|G] == E[14]G].

3.2 Existence of Conditional Probability

We will give two different proves of Theorem 3.2. The first one will use orthog-
onal projections. The second will use the Radon-Nikodym theorem. We’ll first
do the easy proof, derive some properties and then do the harder proof.

Lemma 3.4. Suppose H is a Hilbert space, i.e. H is a vector space with
an inner product (-,-yy which defines a norm by |z|% = (z,z)y making
H a complete metric space.

For any = € H and closed, convex subspace K < H, there exists a unique
z € K such that the following equivalent conditions hold:

(a) Vye K : {x — z,yyg = 0,
(b) Vye K : |z —z|g < |2 — =&

Proof. O

Proof of Theorem 3.2. Almost sure uniqueness of Z:

Suppose X € L' and Z and Z’ satisfy (a) and (b). We need to show that
P[Z # Z'] = 0. By (a), we have Z, Z' € L}(Q,G,P). By (b), E[(Z — Z")1g] =0
for all G e G.

Assume that P[Z > Z'] > 0. Since {Z > Z' + 1} 1 {Z > Z'}, we see that
P[Z > Z' + 1] > 0 for some n. However {Z > Z' + 1} € G, which is a
contradiction, since

1
P[Z-2 > —]>0.

]E[(Z - ZI)]lsz/>L] >
" n

Sl

Existence of E(X|G) for X € L?:
Let H = L?(Q, F,P) and K = L*(Q,G,P).

K is closed, since a pointwise limit of G-measurable functions is G measurable
(if it exists). By Lemma 3.4, there exists z € K such that

E[(X - 2)’] = inf{E[(X — W)’] | W € L*(G)}
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and
VY € L3(G) :{X — Z,Y) = 0. (6)

Now, if G€ G, then Y := 1g € L?(G) and by (6) E[Z1¢] = E[X1¢].

Existence of E(X|G) for X e L! :

Let X = X* — X~. Tt suffices to show (a) and (b) for X*. Choose bounded
random variables X,, > 0 such that X,, 1 X. Since each X,, € L?, we can choose
a version Z,, of E(X,|G).

e

.S,

Claim 3.2.1. 0 < Z, 1.

Subproof. | ]

Define Z(w) = limsup,,_,., Zn(w). Then Z is G-measurable and since Z,, 1 Z,
by the Conditional Monotone Converence Theorem (3.10), E(Z1¢g) = E(X1g)
for all G e G. O

[Lecture 15, 2023-06-06]

3.3 Properties of Conditional Expectation

We want to derive some properties of conditional expectation.

Theorem 3.5 (Law of total expectation).

E[E[X|F]] = E[X].

Proof. Apply (b) from the definition for G = Q € G. O

Theorem 3.6. If X is G-measurable, then X = E[X|G].

Proof. Suppose P[X # Y] > 0. Without loss of generality P[X > Y] > 0.
Hence P[X >Y + 1] > 0 for some ne N. Let A := {X >Y + 1}, Then

/Xd}P’> l]P’(A)ﬁ—/Yd]P’,
A n A

contradicting property (b) from Theorem 3.2. O

Example 3.7. Suppose X € L}(P), G := 0(X). Then X is measurable
with respect to G. Hence E[X|G] = X.
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Theorem 3.8 (Linearity). For all a,b € R we have

E[aX; + bX3|G] = aE[X1|G] + bE[X3|G].

Proof. trivial O -

Theorem 3.9 (Positivity). If X > 0, then E[X|G] > 0 a.s.

Proof. Let W be a version of E[X|G]. Suppose P[W < 0] > 0. Then
1
G={W<—— .
we<-lieg
For some n € N, we have P[G] > 0. However it follows that

/G [X|G] dP ——IP’ /XdIP’

O

Theorem 3.10 (Conditional monotone convergence theorem). Let X,,, X €
LY(Q, F,P). Suppose X,, = 0 with X,, 1 X. Then E[X,,|G] 1 E[X|G].

Proof. Let Z, be a version of E[X,|Y]. Since X,, > 0 and X,, 1, by the
Positivity of Conditional Expectation (3.9), we have
a.s.
E[X,|g] = 0

and

E[X,|G] 1 a.s.
(consider X,,+1 — X, ).

Define Z := limsup,,_,, Z,. Then Z is G-measurable and Z,, 1 Z a.s.

Take some G € G. We know by (b) that E[Z,1¢] = E[X,1s]. The LHS
increases to E[Z1¢] by the monotone convergence theorem. Again by MCT,
E[X,1¢] increases to E[X1¢]. Hence Z is a version of E[X|G]. O

Theorem 3.11 (Conditional Fatou). Let X,, € L*(, F,P), X,, > 0. Then

E[lim i£f X,|G] < lim ioréfE[Xn|g].

Proof.
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Theorem 3.12 (Conditional dominated convergence theorem). Let X,,,Y €
L'(Q,F,P). Suppose that sup,, | X,(w)| < Y(w) a.e. and that X,, con-
verges to a pointwise limit X. Then E[X,|G] — E[X]|J] a.e.

Proof. |

Recall

Fact 3.12.39 (Jensen’s inequality). If ¢ : R — R is convex and E[|co X |] <
o0, then E[co X] = c(E[X]).

For conditional expectation, we have

Theorem 3.13 (Conditional Jensen’s inequality). Let X € L' (Q, F,P). If
¢: R — R is convex and E[|c o X|] < 00, then E[co X|G] = ¢(E[X]|F]) a.s.

Fact 3.13.40. If c is convex, then there are two sequences of real numbers
Qn, b, € R such that
c(x) = sup(anz + by).

n

Proof of Theorem 3.13. By Fact 3.13.40, ¢(z) > a, X + b, for all n. Hence
E[le(X)|G] = a,E[X]|G] + E[b,|G] = a,E[X|G] + b, a.s.

for all n. Using that a countable union of sets o f measure zero has measure
zero, we conclude that a.s this happens simultaneously for all n. Hence

E[e(X)|G] > sup(a,E[X|G] + br) “ 2" ¢(B(X]0)).

Recall

Fact 3.13.41 (Holder’s inequality). Let p,q = 1 such that % + % = 1.
Suppose X € LP(P) and Y € L4(P). Then

E(XY) < E(X|?)» E(Y|%)7.
—_——

=[IXlr

Theorem 3.14 (Conditional Hoélder’s inequality). Let p,q > 1 such that
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+ = =1. Suppose X € LP(P) and Y € L%(PP). Then

1,1
P q

E(XY|9) < E(IX[PIG)PE()Y||g)7.
Theorem 3.15 (Tower property). Suppose F 2 G 2 H are sub-o-algebras.

Then ‘
E[E[X|G] | #] * E[X|].

Proof. By definition, E[E[X|G]|H] is H-measurable. For any H € H, we have

/HIE[]E[X\Q]\H]d]P’:/ E[X|G] dP

H

=/XdIF’.
H

Hence E[E[X|G]|H] = E[X|H]. O

Theorem 3.16 (Taking out what is known). If Y is G-measurable and
bounded, then
E[Y X|G] = YE[X]|G].

Proof. Assume w.l.o.g. X > 0. Assume Y = 1p, then Y simple, then take the

limit (using that Y is bounded). O

Definition 3.17. Let G and H be o-algebras. We call G and H indepen-
dent, if P(G n H) = P(G)P(H) for all events G € G, H € H.

Theorem 3.18 (Role of independence). Let X be a random variable, and
let G, H be o-algebras.

If H is independent of o (¢(X),G), then

E[X|o(G,H)] = E[X|F].

In particular, if X is independent of G, then

E[X|G] = E[X].

Example 3.19 (Martingale property of the simple random walk). Suppose
Xl,XQ, ...arei.i.d. with ]P)[XZ = 1] = P[X,L = —1] = % Let Sn = Z?:l Xz
be the simple random walk. Let F denote the g-algebra on the product
space. Define F,, := o(X7,...). Intuitively, F,, contains all the information
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gathered until time n. We have F; € Fo € F3C ...
For E[Sy,+1|Fn] we obtain

Lineari
E[Spi1Fa] “TENY E[Su|Fa] + B[ X 1] Fn]
s Sn + E[Xn+1 |-7:n]
Indepe:ndence Sn T E[Xn]
= Shn-

[Lecture 16, 2023-06-13]

Proof of Theorem 3.18. Let H be independent of o(c(X),G). Then for all H €
‘H, we have that 15 and any random variable measurable with respect to either
0(X) or G must be independent.

It suffices to consider the case of X > 0. Let G € G and H € ‘H. By assumption,
X1 and 1y are independent. Let Z := E[X|G]. Then

E[X;Gn H] = E[(X16)14]

| S—

=Jgnu X dP

E[X1¢]|E[1#]
E[Z1¢]P(H)
E[Z;G n H]

The identity above means, that the measures A — E[X;A] and A — E[Z; A]
agree on the o-algebra (G, H) for events of the form G n H. Since sets of this
form generate o(G,H), these two measures must agree on o(G,H). The claim
of the theorem follows by the uniqueness of conditional expectation.

To deduce the second statement, choose G = {F, 2}. O

3.4 The Radon Nikodym Theorem

First, let us recall some basic facts:

Fact 3.19.42. Let (2, F, 1) be a o-finite measure space, i.e. ) can be
decomposed into countably many subsets of finite measure. Let f : Q —
[0,0) be measurable. Define v(A) := [, fdu. Then v is also a o-finite
measure on (2, F). Moreover, v is finite iff f is integrable.

Note that in this setting, if ;(A) = 0 it follows that v(A) = 0.
The Radon Nikodym theorem is the converse of that:

Theorem 3.20 (Radon-Nikodym). Let ¢ and v be two o-finite measures
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n (2, F). Suppose
VAe F. u(A) =0 = v(A) =0.

Then
(1) there exists Z : Q — [0, 00) measurable, such that

VAe F.v(A) =/Zdu.
A

(2) Such a Z is unique up to equality a.e. (w.r.t. p).
(3) Z is integrable w.r.t. p iff v is a finite measure.

Such a Z is called the Radon-Nikodym derivative.

Definition 3.21. Whenever the property YA € F, u(4) =0 = v(4) =
0 holds for two measures i and v, we say that v is absolutely continuous
w.r.t. p. This is written as v « p.

Definition! 3.21.43. Two measures p and v on a measure space (£, F)
are called singular, denoted p v, iff there exists A € F such that

u(A) = v(A°) = 0.

With the Radon-Nikodym Theorem (3.20) we get a very short proof of the
existence of conditional expectation:

Proof (Second proof of Theorem 5.2). Let (Q,F,P) as always, X € L'(P) and
G < F. It suffices to consider the case of X > 0. For all G € G, define
v(G) == [, X dP. Obviously, v « P on G. Then apply the Radon-Nikodym
Theorem (3.20). O

Proof of Theorem 3.20. We will only sketch the proof. A full proof can be found
in the official notes.

Step 1: Uniqueness

Step 2: Reduction to the finite measure case

Step 3: Getting hold of 7 Assume now that p and v are two finite measures.
Let

C:= {f:Qe[O,oo]‘VAe]-". /Afdusy(A)}.
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We have C # J since 0 € C. The goal is to find a maximal function Z in C.
Obviously its integral will also be maximal.

(a) If f,geC, than f v g (the pointwise maximum) s also in C.

(b) Suppose {fn}n>1 is an increasing sequence in C. Let f be the pointwise
limit. Then f € C.

(¢) For all f € C, we have
/fdug v(Q) < oo.
Q
Define o := sup{[ fdp: f € C} < v(Q) < c0. Let f, € C,n € N be a sequence

with [ f, dp — . Define g,, := max{fi,..., fn} € C. Applying (b), we get that
the pointwise limit, Z, is an element of C.

Step 4: Showing that our choice of Z works Define \(A) := v(A) —
J4Zdp=0. Xis a measure.

Claim 3.20.1. A = 0.

Subproof. Call G € F good if the following hold:
() AG) — 2u(G) > 0.
(i) VBc G,Be F. A(B) — %M(B) = 0.

Suppose we know that for all A € F,k € N we have A(A) < 7u(A). Then
A(A) = 0 since p is finite.

Assume the claim does not hold. Then there must be some k € N, A € F such
that A(4) — £1(A) > 0. Fix this A and k. Then A satisfies condition (i) of
being good, but it need not satisfy (ii).

The tricky part is to make A smaller such that it also satisfies (ii). L

O

4 Martingales

4.1 Definition

We have already worked with martingales, but we will define them rigorously
now.

Definition 4.1 (Filtration). A filtration is a sequence (F,,) of o-algebras
such that F,, € F, 41 for all n > 1.

Intuitively, we can think of a F,, as the set of information we have gathered up
to time n. Typically F,, = o(X;1,...,X,) for a sequence of random variables.
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Definition 4.2. Let (F,,) be a filtration and X3, ..., X,, be random vari-
ables such that X; € L'(P). Then we say that (X,)n>1 is an (F,)n-
martingale if the following hold:

e X, is F,-measurable for all n.
(X, is adapted to the filtration F, ).
o E[X,11|Fn] 2 X, for all n.
(X,)n is called a submartingale, if it is adapted to F,, but

E[Xpi1|Fn] = X

a.s.

It is called a supermartingale if it is adapted but E[X,, 1| F,] < X,.

Corollary 4.3. Suppose that f : R — R is a convex function such that
f(X,,) € L (P). Suppose that (X,,), is a martingale®. Then (f(X,)), is a
submartingale. Likewise, if f is concave, then ((f(Xp,))n is a supermartin-
gale.

%In this form it means, that there is some filtration, that we don’t explicitly specify

Proof. Apply Jensen’s Inequality (3.13). O
Corollary 4.4. If (X,,), is a martingale, then E[X,,] = E[X,].

Example 4.5. The simple random walk:

Let 51,52,.. lld, P[gz = 1] = P[éz = —1] = %, Xn = 51 =+ .. +€n and ]:n =
o(&1,...,&) = 0(Xy,...,X,). Then X,, is F,-measurable. Showing that
(X,)n is a martingale is left as an exercise.

Example 4.6. See exercise sheet 9.

[Lecture 17, 2023-06-15]

4.2 Doob’s Martingale Convergence Theorem

Definition 4.7 (Stochastic process). A stochastic process is a collection
of random variables (X;)¢r for some index set 7. In this lecture we will
consider the case T' = N.

Definition 4.8 (Previsible process). Consider a filtration (Fy)n>0. A
stochastic process (C,)n>1 is called previsible, iff C,, is F,,_1-measurable.

4 MARTINGALES 61



Goal. What about a “gambling strategy”?
Consider a stochastic process (X,)nen-

Note that the increments X 11 — X,, can be thought of as the win or loss per
round of a game. Suppose that there is another stochastic process (Cp)n>1 such
that C,, is determined by the information gathered up until time n, i.e. C, is
previsible. Think of C,, as our strategy of playing the game. Then C,(X
X,—1) defines the win in the n-th game, while

n
= D C(X; = X;1) (7)
j=1
defines the cumulative win process.
Lemma 4.9. If (C,),>1 is previsible and (X, ),>0 is a martingale and

there exists a constant K, such that |Cy,(w)| < K,,. Then (Y;,)n>1 defined
in (7) is also a martingale.

Remark 4.9.44. The assumption of K,, being constant can be weakened
to Gy, € LP(P), X,, € LU(P) with § + 1 = 1.

If C,, = 0 the assumption of (X, ),>¢ being a martingale can be weakened
to it being a sub-/supermartingale. Then (Y,,)n>1 is a sub-/supermartingale
as well.

Proof of Lemma 4.9. Tt is clear that Y, is F,,-measurable. Suppose that C,, €
LP(P) and X,, € LI(P) for all n. We have

1Yol 1 ZHC Xi = Xi—1)|

Holder

Z |Cill Lo | (X — Xim1)|

A
8||

and

]E[YnJrl - Ynlfn] = E[Cn+1(Xn+1 - Xn)‘fn]
= n+1(E[Xn+1|]'—n] - Xn)
= 0.
0
Suppose we have (X,,) adapted, X,, € L*(P), (C,)n>1 previsible. We play

according to the following principle: Pick two real numbers a < b. Wait until
X, < a, then start playing. Stop playing when X,, > b. L.e. define
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Cl = O,
Cn=1ic,_,=1y  Lix,_<ty + Licni=0y Lix, 1 <a}-

Definition 4.10. Fix N € N and let
UR ([a,b]) := #{Upcrossings of [a,b] made by n — X, (w) by time N},

i.e. Un([a,b])(w) is the largest k € Ny such that we can find a sequence
0<s <t <83 <ty <...<s, <t <N suchthat X (w) < a and
Xt (w) >bforall 1 <j<k.

Clearly Uz ([a,b]) 1 as N increases. It follows that the monotonic limit
Usx([a,b]) = lim Un([a,b])
N—0
exists pointwise.

Lemma 4.11.

{w] li]\rfn_)icr)lof Zyw)<a<b< li]r\?j;p Zn(w)} € {w: UZ([a,b])(w) = oo}

for every sequence of measurable functions (Zp,)n>1-
Lemma 4.12. Let Yy, (w) == }77_, Cj(X; — X;_1), where C,, is defined as

in (8) Then
Yy = (b—a)Un([a,b]) — (Xn —a)”.

Proof. Every upcrossing of [a, b] increases the value of Y by (b — a), while the
last interval of play (X,, — a)~ overemphasizes the loss. O

Lemma 4.13. Suppose (X, ), is a supermartingale. Then in the above
setup
(b—a)E[Un([a,b]))] <E[(Xy —a)7].

Proof. Since C,, = 0, by Lemma 4.9 we have that Y,, is a supermartingale.
Hence E[Yy] < E[Y1] = 0. From Lemma 4.12 it follows that

(b= a)E[Un([a,0])] < E[Ya] + E[(Xy —a)7] <E[(Xy —a)7].
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Corollary 4.14. Let (X,,),, be a supermartingale bounded in L!(P),
i.e. sup,, E[|X,,|] < . Then (b—a)E(Uy) < |a| + sup,, E(|X,|). In partic-
ular, P[Uy = 0] = 0.

Proof. By Lemma 4.13 we have that

(b= a)E[Un([a,0])] < E[[Xn[] + |a] < sup E[|Xn]] + [a].

Since Un(:) = 0 and Un(+) 1 Ux(+), by the monotone convergence theorem

E(Un([a,b])] 1 E[Ux([a,b])].

O

Let us now consider the case that our process (X,)n>1 is a supermartingale
bounded in L!(P).

Theorem 4.15 (Doob’s martingale convergence theorem). Any super-
martingale bounded in L' converges almost surely to a random variable,
which is almost surely finite. In particular, any non-negative supermartin-
gale converges a.s. to a finite random variable.

Proof of Theorem 4.15. Let
A = {w|X,,(w) does not converge to anything in [—o0, c0]}.
We have
A = {w| limNianN(w) < lim;upXN(w)}
= {w| limNianN(w) <a<b< lim;upXN(w)}

= U {w/liminf Xy (w) < a < b < limsup Xy (w)}
a,beQ N N

~~

Aa,b

oo} by Lemma 4.11. By Lemma 4.13 we

We have Ay € {w : Ug([a,b])(w) =
= 0. Thus there exists a random variable X,

have P(Ayp) = 0, hence P(A)
such that X, = X..

Claim 4.15.1. P[ X € {£+o0}] = 0.
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Subproof. Tt suffices to show that E[|X|] < co. We have.

E[IX.[] = Eliminf|X,]]

Fatou

< liminf E[|X,]]
< sup E[|X|]

< 00.

The second part follows from

Claim 4.15.2. Any non-negative supermartingale is bounded in L'.

Subproof. We need to show sup, E(|X,|) < oo. Since the supermartingale
is non-negative, we have E[|X,|] = E[X,] and since it is a supermartingale

E[X,] < E[Xo]. [ |

O

[Lecture 18, 2023-06-20]

Recall our key lemma 4.13 for supermartingales from last time:

(b —a)E[Ux([a,b])] < E[(Xn —a)7].

What happens for submartingales? If (X,,),en is a submartingale, then (— X, )nen
is a supermartingale. Hence the same holds for submartingales, i.e.

Lemma 4.16. A (sub-/super-) martingale bounded in L' converges a.s. to
a finite limit, which is a.s. finite.

4.3 Doob’s LP Inequality

Question 4.16.45. What about LP convergence of martingales?

Example 4.17 (A martingale not converging in L' ). Fix u > 1 and let

p= 1 Let (Zn)n=1 be iid. £1 with P[Z, = 1] = p.

Let Xo = = > 0 and define X, ;1 := uln+r X, .
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Then (X,,), is a martingale, since

E[Xn41|Fn] = XnE[u?"1]

=X, <p~U+(1p)~i)

X, (p(u2 —ul) + 1)
X,

By Doob’s Martingale Convergence Theorem (4.15), there exists an a.s. limit
Xo. By the SLLN, we have almost surely

3\'—‘

n
sz%w:zl]_zp—l

Hence

1
X\
(n D WA AL S
x

Since (X, )n>0 is a martingale, we have E[u?1] = 1. Hence 2p — 1 < 0,
because u > 1. Choose € > 0 small enough such that u??~1(1 +¢) < 1.
Then there exists No(g) (possibly random) such that for all n > Ny(e)
almost

3=

X, .s.
() L1 te) = [P (14" —E 0.
X | — n—ao0
<1

However, X,, cannot converge to 0 in L!, as E[X,,] = E[X,] = 2 > 0.

L? is nice, since it is a Hilbert space. So we will first consider L2.

Fact 4.17.46 (Martingale increments are orthogonal in L? ). Let (X,,),
be a martingale with X,, € L? for all n and let Y, := X,, — X,,_; denote
the martingale increments. Then for all m # n we have that

Y|V = E[Y,,Y,,] =0.

Proof. As E[Y,?] = E[X2] — 2E[X,,X,,_1] + E[X2_,] < o, we have Y,, € L2

Since E[X,,|Fn—1] = X,,—1 a.s., by induction E[X,,|Fx] = X} a.s. for all k < n
In particular E[Y,,|Fx] = 0 for k < n. Suppose that m < n. Then

E[Y, Y] = E[E[Y,, Yo | Fonl]
= E[Y,,E[Y,|Fn]]
=0
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Fact 4.17.47 (Parallelogram identity). Let X,Y € L% Then

2E[X?] + 2E[Y?] = E[(X + Y)?] + E[(X - Y)?].

Theorem 4.18. Suppose that (X,,), is a martingale bounded in L2,
i.e. sup,, E[X2] < oo. Then there is a random variable X, such that

x, 2 x.,.

Proof. Let Y, = X,, — X,,_1 and write

Xn:iyj.

Jj=1

We have .
E[X]] = E[X3] + ) E[Y}]

j=1
by Fact 4.17.46. In particular,

[e¢]
supE[X?] < 0 = Z E[Y]] < .

Since (X,,),, is bounded in L2, there exists X, such that X,, == X, by Doob’s
Martingale Convergence Theorem (4.15).

. L? .
It remains to show X,, — X. For any r € N, consider

n+r
E[(Xn+r _Xn)2] = Z IE[Y}Q] no®, 0
j=n+1

as a tail of a convergent series.
Hence (X,,), is Cauchy, thus it converges in L?. Since E[(X — X,,)?] converges
to the increasing limit
>, P50
j=n+1
we get E[(Xop — X,,)%] =55 0. O

Now let p = 1 be not necessarily 2. First, we need a very important inequal-
ity:
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Theorem 4.19 (Doob’s L? inequality). Suppose that (X,,), is a martin-

gale or a non-negative submartingale. Let X* := max{|X1|,|X2/|,...,|Xn|}
denote the running maximum.
(1) Then
. 1 1
V> 0. PX* >0 < - 1 X, dP < ZE[| X, [].
¢ Jixt= ¢

(Doob’s L' inequality).
(2) Fix p > 1. Then

Bly] < (27) Bl

(Doob’s LP inequality).

In order to prove Doob’s Martingale Inequalities (4.19), we first need

Lemma 4.20. Let p > 1 and X,Y non-negative random variables such
that

vz>0.1P>[Y>é]<1/ X dP
¢ Jiy=g

Then
E[Y?] < <p>p E[X"].

Proof. First, assume Y € LP.

Then

Y%, = E[Y7] ©)
- / Y (w)? dP(w) (10)

Y (w)
= /</ pzp—1d£> dP(w) (11)

Q 0

Fubini * p—1

b /opg /Qnyﬂdpde. (12)
P[Y >4]
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By the assumption it follows that
o0
(12) < / P2 / X (w)P(dw) d¢
{Y (w)=¢}

0
Fubini Y(w)
= / X(w) / plP~2 AIP(dw)
Q 0
_ p

—— [ X(w)Y (w)P " P(dw)
p—= 1 w
Holder P
< | XYY,
L Xl Y
where the assumption was used to apply Holder.

Suppose now Y ¢ LP. Then look at Y); =Y A M. Apply the above to Yy, € LP
and use the monotone convergence theorem. O
Proof of Theorem 4.19. Let E = {X}* > (} = Ey u ... u E, where
E; ={|X1| <, |Xo| <¢,...,|X;1] < 4,]X;] =4}
Then
Markov 1
ple) LG [ 1l (13
E;

We have that (|X,|), is a submartingale, by Corollary 4.3 in the case of X,
being a martingale and trivially if X, is non-negative. Hence

E[1g, (1Xn| = [X;DIF5] = 1g,E[(1Xa] = [X50)]F;]

= 0.
By the Law of Total Expectation (3.5), it follows that
E[1g, (| Xn] = |X;])] = 0. (14)
Now
PE) = 1B
j=

| X, |dP + . .. +/ Xn|d]P’>
E1 n

1
[ 1% e
E

Sl S

This proves the first part.
For the second part, we apply the first part and Lemma 4.20 (choose Y :=

v
X*). O
L

[Lecture 19, 2023-06-22]

4 MARTINGALES 69




4.4 Uniform Integrability

Example 4.21. Let Q = [0,1], 7 = B and P = A|[g1}. Consider X, :=
nl(, 1y). We know that X, 22%, 0 a.s., however E[X,,] = E[|X,,]] = 1,
hence X,, does not converge in L*(P).

Let pn () = P[X, € -].

Intuitively, for a series that converges in probability, for L'-convergence to
hold we somehow need to make sure that probability measures don’t assign
mass far away from 0. This will be made precise in the notion of uniform
integrability.

Goal. We want to show that uniform integrability and convergence in probability
is equivalent to convergence in L'.

Definition 4.22. A sequence of random variables (X,,), is called uni-
formly integrable (UI), if

Ve > 0. 3K > 0. Vn. E[|Xn|]]-{|Xn|>K}] < &

Similarly, we define uniformly integrable for sets of random variables.

Example 4.23. X, :==nl 1) is not uniformly integrable.

There is no nice description of uniform integrability. However, some subsets can
be easily described, e.g.

Fact 4.23.48. If (X,,),,>1 is a sequence bounded in L'+9(PP) for some 6 > 0
(i.e. sup,, E[|X,|'T%] < o), then (X,,), is uniformly integrable.

Proof. Let ¢ > 0. Let p:=1+ 6 > 1. Choose ¢ such that % + % = 1. Then

1 1
E[[Xnl1ix,>x] < E[[Xn "] P[|Xn| > K7,

i.e.

1 1
SupE[|Xn|]l|Xn|>k] < SupE[‘XnV)]p Sup]P)“Xn| > K]q
n n n Se—_——

e S _1
<0 <K q]EUXnH

Q=

where we have applied Markov’s Inequality (0.8).

Since sup,, E[|X,|'T%] < oo, we have that sup,, E[|X,|] < o by Jensen’s In-
equality (3.12.39). Hence for K large enough the relevant term is less than
E. O
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Fact 4.23.49. If (X,,),, is uniformly integrable, then (X,,), is bounded in
L'

Proof. Take some ¢ > 0 and K such that sup, E[|X,[1x, ~x] < €. Then

sup,, |[Xnllpr < K +e. O

Fact 4.23.50. Suppose Y € L' (P) and sup,, | X,,(-)| < Y(-). Then (X,,),
is uniformly integrable.

Fact 4.23.51. Let X € L!(P).
(a) Ve>0.36>0.YFe F.P(F) <§ — [,|X|dP <e.
(b) Y& > 0.3k e (0,90). [y X|dP <e.

Proof. (a) Suppose not. Then for § = 1, %, 2%, ... there exists Fj, such that
P(F,) < 5= but [, |X|dP >e.

Since ), P(F;,) < o0, by Borel-Cantelli (0.10),

We have

/ X | dP
F

I
—
-~
=

eS|
o,
=

/lim sup(|X|1g,)dP

Reverse Fatou

= limsup/|X\]an dp

= €

where the assumption that X is in L' was used to apply the reverse of
Fatou’s lemma.

This yields a contradiction since P(F') = 0.

(b) We want to apply part (a) to F' = {|X| > k}. By Markov’s Inequality (0.8),
P(F) < +E[|X|]. Since E[|X|[] < o, we can choose k large enough to get
P(F) <é.

O

Proof of Fact 4.23.50. Fix € > 0. We have

IE[|)(n|]l|Xn|>k] < IE[|Y|]l|Y|>k] <e€
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for k large enough by Fact 4.23.51 (b). O

Fact 4.23.52. Let X € L'(P). Then F := {E[X|G] : G < F sub-o-algebra}
is uniformly integrable.

Proof. Fix € > 0. Choose § > 0 such that
VFeF.P(F)<d§d = E[X|lr] <e. (15)

Let Y = E[X|G] for some sub-o-algebra G. Then, by Jensen’s Inequality (3.13),
Y| < E[|X]||G]. Hence E[|Y]] < E[|X|]. By Markov’s Inequality (0.8), it follows
that P[|Y| > k] < 6 for k > %. Note that {[Y| > k} € G. We have

E[[Y[Lyy|sxy] <e

by (15), since P[|Y]| > k] < 4. O

Theorem 4.24. Assume that X,, € L! for all n and X € L'. Then the
following are equivalent:

(1) X,, » X in L.
(2) (Xp)n is uniformly integrable and X,, — X in probability.

Proof. (2) = (1)

Define
—k, < -k
o(z) =1 =, x € (—k,k)
k, r=k

¢ is 1-Lipschitz.
We have

/\Xn _ X|dP < /|Xn (X[ dP / p(X) — X| dP + / 0(X) — o(X)|dP

We have f‘X =k | X, —¢(X,)] dP < e by uniform integrability and Fact 4.23.51
" —_

S| Xn |+ (Xn)|<2[Xn |
part (b). Similarly f‘ka | X — p(X)|dP < e.

Since ¢ is Lipschitz, X, — X = o(Xn) 5 ©(X). By the Bounded Conver-
gence Theorem (0.7) |o(X,)| <k = [|o(X,) — o(X)|dP — 0.

1) = (2
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X, x — X, & X by Markov’s Inequality (0.8) (see Claim 0.6.4.3).
Fix ¢ > 0. We have
E[|Xn[] = E[| X — X + X]]
<e+E[|X]]
< 0k
for all 6 > 0 and suitable k.

Hence P[|X,,| > k] < § by Markov’s Inequality (0.8). Then by Fact 4.23.51 part
(a) it follows that

/ |Xn|dIP’</|X—Xn|d]P’+/ 1 X|dP < 2.
| X0 |>k | X0 >k

<e

4.5 Martingale Convergence Theorems in [P p > 1

Let (92, F,P) as always and let (F,,), always be a filtration.

Fact 4.24.53. Suppose that X € LP for some p > 1.
Then (E[X|Fy.])n is an F,,-martingale.

Proof. Tt is clear that (E[X|F,]), is adapted to (Fy,)n.
Let X,, = E[X|F,]. Consider
E[X, — Xpn-1|Fn-1] = E[E[X|F] — E[X|Fn-1]|Fn-1]
=E[X|F,-1] — E[X|Fn-1]
= 0.

Theorem 4.25. Let X € L? for some p > 1 and |J,, Fn — F 2 o(X).
Then X, := E[X|F,] defines a martingale which converges to X in LP.

Theorem 4.26. Let p > 1. Let (X,,),, be a martingale bounded in LP.
Then there exists a random variable X € LP, such that X,, = E[X|F,] for

all n. In particular, X, I, x.

[Lecture 20, 2023-06-27]
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Proof of Theorem 4.25. By the Tower Property (3.15) it is clear that (E[X|F,])n

is a martingale.

First step: Assume that X is bounded. Then, by Jensen’s Inequality (3.13),
| Xn| < E[|X]||Fn.], hence SUPnel | X (w)] < 0. Thus (X,,), is a martingale in
we

L* < L?. By the convergence theorem for martingales in L? (Theorem 4.18)

2
there exists a random variable Y, such that X,, Ly,

Fix me N and A € F,,. Then

/ YdP = lim [ X,dP
A n—%0 A
= lim E[X,14]
n—0o0
~ i, EIELX|7]L]
AeF, .
7 i ELXL
n=m
Hence [, Y dP = [, X dP for all m € N, A € F,,. Since 0(X) = | J F,, this holds
for all A € o(X). Hence X =Y as., so X, L%, X. Since (Xn)n is uniformly

bounded, this also means X,  x.

Second step: Now let X € LP be general and define

Xy o (X)X <,
0 otherwise

for some M > 0. Then X’ € L* and
/\X—X’|deED:/ X[ dp 222, 0
{|X|>M}

as P is regular, i.e. Ve > 0. k. P[|X|P € [k, k]] = 1 —¢.
Take some € > 0 and M large enough such that

/\X—X’|d]P’<s.

Let (X7})n be the martingale given by (E[X'|F,])n. Then X, L x by the
first step.

It is
1%, = Xol7, = E[E[X - X'|F.]7]
Jensen
< E[E[(X - X')P|Fa]]
= | X-X'%.
< E&.
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Hence

HXn — XHLP < ”Xn — X;L”Lp + HX;I — X/HLP + HX — XIHLP < 38.
Thus X,, =5 X. O

For the proof of Theorem 4.26, we need the following theorem, which we won’t
prove here:

Theorem 4.27 (Banach Alaoglu). Let X be a normed vector space and X *
its continuous dual. Then the closed unit ball in X* is compact w.r.t. the
weak™ topology.
Fact 4.27.54. We have LP ~ (L%)* for 1% + % =1 via
P — (LY*
frlgm [orap)

We also have (L')* >~ L*, however (L*)* % L.

Proof of Theorem 4.26. Since (X, )y is bounded in L?, by Banach Alaoglu (4.27),
there exists X € L? and a subsequence (X, )i such that for all Y € L9, where
as always % + % =1,

/XndeIP’ N /XYdJP’
(Note that this argument does not work for p = 1, because (L*)* % L1).

Let A € F,, for some fixed m and choose Y = 1 4. Then

/ XdP = lim [ X, dP
A k= J 4
= lim E[X, 14]
k—o0
forme=m iy 1.4].

Hence X,, = E[X|F,,] by the uniqueness of conditional expectation and by
Theorem 4.25, we get the convergence. 0

Example' 4.27.55 (Branching Process; Exercise 10.1, 12.4). Let (Yo k) neNg keN
be i.i.d. with values in Ny such that 0 < E[Y}, 1] = m < 00. Define

Sn_1
SO = 1,Sn = Z Ynfl’k
k=1
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and let M, = % S, models the size of a population.

Claim 3. M, is a martingale.

Subproof. We have

s
1 1 &

E[My+1 — My|Fp]=— | — E| X, k] — S
[Mor — Mol mn<m,§1[ " s)
1

_W(Sn_sn)~

Claim 5. If m > 1 and M,, — M, then

Var(My) = o?(m(m —1))~%

Claim 4. (M,)en is bounded in L* iff m > 1. -

4.6 Stopping Times

Definition 4.28 (Stopping time). A random variable T : Q — Ny u {00}
on a filtered probability space (Q, F, {F,}»,P) is called a stopping time,
if

{T<n}eF,
for all n € N. Equivalently, {T' = n} € F,, for all n € N.

Example 4.29. A constant random variable T' = ¢ is a stopping time.

Example 4.30 (Hitting times). For an adapted process (X,,), with values
in R and A € B(R), the hitting time

T:=inf{neN: X, € A}

is a stopping time, as

{T<n}= O{XkeA}e]-"n.
k=1

However, the last exit time

T:=sup{neN: X, e A}

is not a stopping time.
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Example 4.31. Consider the simple random walk, i.e. X, ii.d. with
P[X, =1] =P[X, = —1] = 3. Set S, :== Y[, X,,. Then

T:=inf{neN:S, >Av S, <B}
is a stopping time.

Fact 4.31.56. If 17,75 are stopping times with respect to the same filtra-
tion, then

o Ty + 15,
e min{7}, 7>} and
o max{7Ty,T>}

are stopping times.
Warning 4.32. Note that T3 — T5 is not a stopping time.

Remark 4.32.57. There are two ways to look at the interaction between
a stopping time T and a stochastic process (X, )n:

e The behaviour of X,, until T, i.e.
XT = (X1 )

is called the stopped process.
e The value of (X,,),,) at time T, i.e. looking at Xr.

Example 4.33. If we look at a process

oS

=1

=

for some (X,,),, then

and
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Theorem 4.34. If (X,,), is a supermartingale and T is a stopping time,
then X7 is also a supermartingale, and we have E[ Xt ,,] < E[X,] for all
n. If (X,,)n is a martingale, then so is X7 and E[ X1 .,,] = E[Xo].

Proof. First, we need to show that X7 is adapted. This is clear since

XZ: = XTI]-T<n + Xn]]-TZn
n—1

= > Xelreg + Xplrs.
k=1

It is also clear that X! is integrable since

E[| X7 1] < ), E[|Xe]] < co.
k=1

We have
E[X, — Xp 1| Fn]

n—1
=E [Xn]l{TZn} + Z Xy — Xno1(Lrsn + Lip—p_1})
k=1

+ Z Xelir—py fnl]
k=1

= E[(Xn - Xn—l)]l{TZn}LFn—l]

n—2

<0

= 1o (B[ X | Foa] — X,
r=n) (LY ! J {z 0 if (X,), is a martingale.

Remark 4.34.58. We now want a similar statement for X7. In the case
that T'< M is bounded, we get from the above that

n < E[X, ingale,
E[X7] >M E[X7] [Xo] super.martmga e
=E[Xo] martingale.

However if T is not bounded, this does not hold in general.

Example 4.35. Let (S,,),, be the simple random walk and take T' := inf{n :
Sp = 1}. Then P[T < o] = 1, but

1 = E[S7] # E[So] = 0.
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Theorem 4.36 (Optional Stopping). Let (X,,),, be a supermartingale and
let T be a stopping time taking values in N.

If one of the following holds
(i) T < M is bounded,
(ii) (X, )n is uniformly bounded and T < oo a.s.,

(i) E[T] < 0 and |X,,(w) — Xp—1(w)| < K for all n € N,w €  and some
K >0,

then E[X7] < E[X,].

If (X,,)n even is a martingale, then under the same conditions E[X7] =
E[Xo].

Proof. (i) was already done in Remark 4.34.58.
(ii): Since (X), is bounded, we get that

EHXT . X()H dominatedéonvergence lim EHXT/\TL . X0|]

n—0o0
part (i)

< 0.
(iii): Tt is

TAn

[ Xpan — Xo| <1 ). Xi — Xpi
k=1
<(TnaAn) K
<

T K< oo.
Hence, we can apply dominated convergence and obtain
E[XT - Xo] = lim E[XTA” — Xo]
n—o0

Thus, we can apply (ii).

The statement about martingales follows from applying this to (X,), and
(=X, )n, which are both supermartingales. O

Remark’ 4.36.59. Let (X, ), be a supermartingale and T a stopping
time. If (X,), itself is not bounded, but T ensures boundedness, i.e.
T < o as. and (X7 .n)n is uniformly bounded, the Optional Stopping
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Theorem (4.36) can still be applied, as

Optional Stopping

E[X7] = E[XTAT] < E[X7 0] = E[X0].

[Lecture 21, 2023-06-29]

4.7 An Application of the Optional Stopping Theorem

This is the last lecture relevant for the exam. (Apart from lecture 22 which will
be a repetion).

Goal. We want to see an application of the 4.36.
Notation 4.36.60. Let E be a complete, separable metric space (e.g. E =
R). Suppose that for all € E we have a probability measure P(x,dy)

on E. Such a probability measure is a called a transition probability
measure.

Example 4.37. F = R,

1 @y?
2

e
V2T

P(z,dy) = dy

is a transition probability measure.

Example 4.38 (Simple random walk as a transition probability measure).
E =7, P(z,dy) assigns mass % toy=ax+1landy=a—1.

Definition 4.39. For every bounded, measurable function f : E — R,
z € F define

(P/)(x) = /E ()P, dy).

This P is called a transition operator.

Fact 4.39.61. If f > 0, then (Pf)(-) > 0.
If f=1, we have (Pf) =1.

Notation 4.39.62. Let I denote the identity operator, i.e.

(If)(z) = f(z)

for all f. Then for a transition operator P we write

L=I-P.
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Goal. Take E = R. Suppose that A° < R is a bounded domain. Given a
bounded function f on R, we want a function u which is bounded, such that
Lu=0 on A¢ and u = f on A.

We will show that u(x) = E,[f(Xr,)] is the unique solution to this problem.
Definition 4.40. Let (2, F,{F,}n,P:) be a filtered probability space,
where for every x € R, P, is a probability measure. Let E, denote expec-

tation with respect to P(z,-). Then (X,,)n>0 is a Markov chain starting
at x € R with transition probability P(z,-) if

(i) Py[Xo=2] =1,
(ii) for all bounded, measurable f : R — R,

Eo[f (Xne1)|Fal %2 Eolf (Xns1) 1 Xo] = / F)P(Xn, dy).
(Recall F,, = 0(X1,...,Xy).)

Example 4.41. Suppose B € B(R) and f = 1. Then the first equality
of (ii) simplifies to

Po[Xpi1 € B|Fn] = Po[Xni1 € Blo(X,)].

Example 4.42. Let &; be i.i.d. withP[§; = 1] = P[¢; = —1] = § and define
Xn = Z?:l £i~

Intuitively, conditioned on X,,, X,, 1 should be independent of o( X1, ..., X,,—1).

Claim. For a set B, we have

E[]lxn+1EB|U(X17 B 7X’ﬂ)] = E[]lxn+1EB|U(X71)]'

Subproot. .

New information after this point is not relevant for the exam.
Stopping times and optional stopping are very relevant for the exam, the Markov
property is not. No notes will be allowed in the exam. Theorems from the lecture
as well as homework exercises might be part of the exam.
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.5 Markov Chains

[Lecture 22, 2023-07-04]

Goal. We want to start with the basics of the theory of Markov chains.

Example 5.1 (Markov chains with two states). Suppose there are two
states of a phone line, 0,“free”, or 1, “busy”. We assume that the state
only changes at discrete units of time and model this as a sequence of
random variables. Assume

P[Xu1 = 0]X, = 0] = p
P[X,1 = 01X, = 1] = (1 - p)
P[Xp+1 =1X, =0] =¢

P[Xns1 = X, = 1] = (1— )

for some p, g € (0,1). We can write this as a matrix

P- (5 470)

Note that the rows of this matrix sum up to 1.

Additionally, we make the following assmption: Given that at some time
n, the phone is in state i € {0, 1}, the behavior of the phone after time n
does not depend on the way, the phone reached state i.

Question 5.1.63. Suppose Xy = 0. What is the probability, that
the phone will be free at times 1&2 and will become busy at time 3,
i.e. what is ]P[Xl = 0,X2 = O,Xg = 1]7

We have

P[X, = 0, X5 = 0, X3 = 1]

P[X5 = 0] X5 = 0, X, = O]P[X2 = 0, X; = 0]
P[X3 = 0|Xs = 0]P[Xs = 0, X; = 0]

P[X3 = 0| X5 = 0]P[Xs = 0|X, = 0]P[X; = 0]
Py 1Py,0P,0

Question 5.1.64. Assume X, = 0. What is P[X5 = 1]?
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For {X3 = 1} to happen, we need to look at the following disjoint events:

P({X3=1,X2 =0,X, = 0}) = P15,
P{X5 =1,X,=0,X; = 1}) = P3, Py,
P{X3=1,Xo=1,X; =0}) = Py oPo1 P11,
P{X3;=1,Xo=1,X; =1}) = P)1 P} ;.

More generally, consider a Matrix P € (0,1)"*™ whose rows sum up to 1.
Then we get a Markov Chain with n states by defining

P Xp+1 =i|X,, = j] = P ;.
Definition 5.2. Let F denote a discrete state space, usually £ =

{1,...,N}or E=Nor E =7Z.

Let a be a probability measure on E. We say that (p; ;)icg, jer is a tran-
sition probability matrix, if

VivjEE-pi,jZOAViEEZpi’j=1_

jeE

Given a triplet (E, a, P), we say that a stochastic process (X, )n>o0, i.e. X, :
Q) — E, is a Markov chain taking values on the state space F with
initial distribution o and transition probability matrix P, if the
following conditions hold:

(i) P[Xo =i] = (i) for all i € E,
(i)
P[Xn+1 = ins1|Xo = i0, X1 = i1,..., Xp = in)
= P[Xn-i—l = Z‘n+1|AXrn = Zn]

forallm =0,...,40,...,int1 € E (provided P[ Xy = ig, X1 = i1,...,Xp =
in] #0).

Fact 5.2.65. For all n € Ny and ig,...,i, € E/, we have

P[Xo = i0, X1 = @1,..., Xy = in] = (l0)  Pig,ir * Dinyis * -+ Pin_1,in-

Fact 5.2.66. For all n e N, i,, € E/, we have

P[Xp =in] = Z Qg Pigyiy * -+ Pinyin-

§0sesin_1€E
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Example 5.3 (Simple random walk on Z). Let E = Z, (§,), i.i.d. with
P[& = 1] ZP[fz = —1] = % Let XQ =O,Xn =€1+---+£n-

Let o = g € M1(Z). Consider

o 0
1 1
o 3+ 0 % 0 ..
P = 0 3 0 %+ 0
1 1
.. 0 £ 0 3 o0

Definition 5.4. Let E be a complete, separable metric space, « € M; (E).
For every x € E, let P(x,-) be a probability measure on E.*

Given the triples (F,a, {P(x,)}secr), we say that a stochastic process
(Xn)n>0 is a Markov chain taking values on F with starting distri-
bution « and transition probability {P(z,-)}.cp if

(i) P[Xo €] = (),
(ii) For all bounded, measurable f : B — R,

MﬂxHMEJ:Mﬂxmnmﬂzly@ﬁmn@mas

oP(z, ) corresponds to a row of our matrix in the discrete case

Remark 5.4.67. This agrees with the definition in the discrete case, as all
bounded, measurable f : E — R can be approximated by simple functions,
i.e. (ii) from the discrete case implies (ii) from the general definition.

Notation 5.4.68. If {P(z,-)}.cr is a transition probability, then for all
f: E — R bounded and measurable, define P : Byqq(E) — Bpaa by

@ﬁ@%=éj@?@dw-

We get the following fundamental link between martingales and Markov chains:

Theorem 5.5. Suppose (E,, {P(z,-)}.cr) is given. Then a stochastic
process (X, )n>0 is a Markov chain iff for every f : E — R bounded,
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measurable,

MA(f) = F(Xa) ~ F(Xo) = 3 (I-P)F(X))

is a martingale with respect to the canonical filtration of (X,,).

Proof. = Fix some bounded, measurable f : F — R. Then, for all n, M, (f)
is bounded and hence M,,(f) € L*. M,(f) is F,-measurable for all n € N.

In order to prove E[M, 11 (f)|Fn] = M,(f), it suffices to show E[M,+1(f) —
M, (f)|F.] =0 as.

We have

E[M, 41 (f) = M ()| F0] = Blf (Xnt1|Fa] = (PF)(Xn)
Markov:propcrty Pf)(Xn) . (Pf) (Xn)

—~

o

<= Suppose (M,,(f))n is a martingale for all bounded, measurable f. By the
martingale property, we have

= /f(y)P(dey)

This proves (ii). O

Definition 5.6. Given {P(z,)},er, we say that f : E — R is harmonic,
iff f(x) = (Pf)(x) for all z € E. We call f super-harmonic, if (I-P)f >
0 and sub-harmonic, if (I -P)f < 0.

Corollary 5.7. If f is (sub/super) harmonic, then for every (E, {P(z, ) }sep, @)
and every Markov chain (X,,),>0, we have that f(X,) is a (sub/super)
martingale.

Question 5.7.69. Given a set A and a function f on a superset of A. Find
a function u, such that u is harmonic, and v = f on A.

Let u(x) := Ey[f (X1, ], where E, is the expectation with respect to the Markov
chain starting in x, and T4 is the stopping time defined by the Markov chain
hitting A.
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6 Appendix

6.1 List of Distributions

98

Symbol ~ Mass (PMF) Distribution (CDF) E  Var ox(t) = E[el*X]

Deterministic 4, 1,—0 L1a,00) a O elta
Bernoulli Bin(1, p)
Binomial Bin(n,p) (R)p"(1—p)" ™ S (1 —p)" 7 mp mp(l—p) ((1—p)+pe")"  ((1—p)+pe)"
Geometric Geo(p) (1k tf))kflp 1—-(1-p) LwJ % 1p_2p %
Poisson Poi(\) e e Z?:Jo j‘—f A eMet =)

Symbol Density (PDF) Distribution (CDF) E Var ox(t) = E[e™X] Mx(t) = E[e!¥]

. . 1 _ b b—a)? itb___ita 5
Uniform Unif([a, b]) 7=a La.b] 5=a La.b] T Lb,o0) app o) eerd
Exponential Exp(\) IosoAe™® Ioso(1 —e™?) : = T
Cauchy Cauchy(xq,7) M(TEC%IO)Q) L arctan (%) +3 n/a n/a eToit—7lt|
1 w==)? o 5 it o2

Normal N(p,0) vl P (£ w o ert—=
Yox(0) =1

SMx(0) =1




6.2 Notions of boundedness

The following is just a short overview of all the notions of boundedness we used

in the lecture.

We say that X is

e uniformly bounded iff

sup sup | X (w)| < o,
XeX wed

e dominated by f e LP for p > 1 iff

VX eX. |X|<f,

e bounded in L? for p > 1 iff

sup | X|rr < o0,
Xex

e uniformly integrable iff

Ve > 0. IK. VX € X. E[|X|Ljx|»x] <&

Then the following implications hold:

X is uniformly bounded

=

X is dominated by f e L?

ﬂ e X is bounded in L9
X is dominated by f e LP ﬂ

U - X is bounded in LP
X is dominated by f € L'

~

X is uniformly integrable

~

X is bounded in L'

6.3 Laplace Transforms

Definition’ 6.0.70 (Boundedness). Let X be a set of random variables.

Fact! 6.0.71. Let X be a set of random variables. Let 1 < p < ¢ < ®©

[Lecture 23, 2023-07-06]
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6.4 Recap

6.4.1 Construction of iid random variables.
o Definition of a consistent family (Definition 1.5)
e Important construction:

Consider a distribution function F' and define

n

[ [(F®:) = Fai))=:pn ((a1,b1] x 2. x 2(an, ba]) -

i=1

e Examples of consistent and inconsistent families

e Kolmogorov’s consistency theorem (Theorem 1.6)

6.4.2 Limit theorems
e Work with iid. random variables.
e Notions of convergence (Definition' 0.6.3)

e Implications between different notions of convergence (very important)
and counter examples. (Theorem' 0.6.4)

e Laws of large numbers: (Theorem 1.11)
— WLLN: convergence in probability
— SLLN: weak convergence

e Theorem 1.12 (building block for SLLN): Let (X,,) be independent with
mean 0 and >, 02 < oo, then Y. X,, converges a.s.

— Counter examples showing that <= does not hold in general are
important

— <= holds for iid. uniformly bounded random variables

— Application:

© - (41)
Dt ~To converges a.s. for all € > 0.

>, —L does not converge a.s. for any ¢ > 0.
n2

e Kolmogorov’s Inequality (1.14)

e Kolmogorov’s 0-1 Law (1.22)

In particular, a series of independent random variables converges with
probability 0 or 1.

e Kolmogorov’s Three-Series Theorem (1.16)
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— What are those 3 series?

— Applications

6.4.2.1 Fourier transform / characteristic functions / weak convegence

e Definition of Fourier transform (Definition 2.1)

e The Fourier transform uniquely determines the probability distribution.
It is bounded, so many theorems are easily applicable.

e Uniqueness Theorem (2.3), Inversion Formula (2.2), ...
e Levy’s Continuity Theorem (2.14), Theorem 2.27

e Bochner’s Theorem for Positive Definite Functions (2.8)
e Bochner’s Formula for the Mass at a Point (2.6)

e Related notions

— Laplace transforms E[e~*¥] for some A > 0 (not done in the lecture,
but still useful).

— Moments E[X*] (not done in the lecture, but still useful) All mo-
ments together uniquely determine the distribution.
Weak convergence
o Definition of weak convergence (Definition 2.9)

o Examples:

e Non-examples: (d,),

e How does one prove weak convergence? How does one write this down in
a clear way?

— Theorem 2.13,
— Levy’s Continuity Theorem (2.14),

— Generalization of Levy’s continuity theorem 2.27
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Convolution

6.4.2.2 CLT

Definition of convolution.

Xi~piiid. = Xq+.. .+ X, ~py .o iy

Statement of the Central Limit Theorem (2.17)
Several versions:

— iid,

— Lindeberg’s CLT (2.24),

— Lyapunov’s CLT (2.25)
How to apply this? Exercises!

6.4.3 Conditional expectation

Definition and existence of conditional expectation for X € LY(Q, F,P)
(Theorem 3.2)

If H = L*(Q,F,P), then E[-|G] is the (unique) projection on the closed
subspace L%(,G,P). Why is this a closed subspace? Why is the projec-
tion orthogonal?

Radon-Nikodym Theorem (3.20) (Proof not relevant for the exam)

(Non-)examples of mutually absolutely continuous measures Singularity
in this context?

6.4.4 Martingales

Definition of Martingales (Definition 4.2)

Doob’s convergence theorem (Doob’s Martingale Convergence Theorem
(4.15)), Upcrossing inequality (Lemma 4.11, Lemma 4.12, Lemma 4.13)
(downcrossings for submartingales)

Examples of Martingales converging a.s. but not in L* (Example 4.17)
Bounded in L? = convergence in L? (Theorem 4.18).

Martingale increments are orthogonal in L?! (Fact 4.17.46)

Doob’s (sub-)martingale inequalities (Doob’s Martingale Inequalities (4.19)),

P[supy<,, Mr = x] ~ Look at martingale inequalities! Estimates might
come from Doob’s inequalities if (M} )y is a (sub-)martingale.

Doob’s LP convergence theorem (Theorem 4.25, Theorem 4.26).
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— Why is p > 1 important? Role of Banach Alaoglu (4.27)

— This is an important proof.

Uniform integrability (Definition 4.22)

e What are stopping times? (Definition 4.28)

(Non-)examples of stopping times

Optional Stopping Theorem (4.36) - be really comfortable with this.

6.4.5 Markov Chains

e What are Markov chains?

State space, initial distribution

Important examples

¢ What is the relation between Martingales and Markov chains?
u harmonic < Lu = 0. (sub-/super-) harmonic u <= for a Markov
chain (X,,), u(X,) is a (sub-/super-)martingale

Dirichlet problem (Not done in the lecture)

e ... (more in Probability Theory II)
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Index

P-Trivial, 28
o-algebra
independent, 57

Absolutely continuous, 59

Bounded in LP, 87
Branching Process, 75

Cauchy distribution, 48
Characteristic function, 31
CLT, 40
Conditional expectation, 52
Conditional probability, 51, 53
Consistent, 13, 14
Convergence

almost surely, 7

in distribution, 7, 38

in mean, 7

in probability, 7

weak, 37
Convergence along a subset, 16
Convolution, 31

Discrete state space, 83
Distribution, 13

tight, 47
Distribution function, 5
Dominated by f € LP, 87

Event, 4
Exponential distribution, 6

Filtration, 60

Gaussian distribution, 6
Harmonic, 85, 91
Hilbert space, 53
Hitting time, 76

Identity operator, 80
Infinite path, 30

Joint distribution, 13

92

Lindeberg condition, 46
Lyapunov condition, 46

Marginal distribution, 13
Markov chain, 81, 84
discrete, 83
Transition probability, 81
Martingale, 61
Martingale increments, 66
Measure, 11
Measure space
o-finite, 58
Moment, 5
Mutually independent, 13

Parallelogram identity, 67
Percolation, 29

Edge
closed, 29
open, 29

Positive definite function, 36
Probability measure, 4
Probability space, 4

Radon-Nikodym derivative, 59
Random variable, 5
Running maximum, 68

Sequence
adapted to a filtration, 61
Simple random walk, 57
Singular, 59
Stochastic process, 61
previsible, 61
Stopped process, 77
Stopping time, 76
Strong law of large numbers, 19
Sub-harmonic, 85
Submartingale, 61
Super-harmonic, 85
Supermartingale, 61
bounded in L', 64

Tail event, 27



Tail-o-algebra, 27

Transition operator, 80

Transition probability matrix, 83
Transition probability measure, 80
Truncated mean, 24

Truncated variance, 24

INDEX

Uniform distribution, 5
Uniformly bounded, 24, 87
Uniformly integrable, 70, 87

Weak convergence, 31
Weak law of large numbers, 19
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