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These are my notes on the lecture Probability Theory, taught by Prof. Chiran-
jib Mukherjee in the summer term 2023 at the University Münster.

Warning 0.1. This is not an official script. The official lecture notes can
be found on Learnweb.

These notes contain errors almost surely. If you find some of them or want to
improve something, please send me a message:
notes probability theory@jrpie.de.

Topics of this lecture

(1) Limit theorems: Laws of large numbers and the central limit theorem for
i.i.d. sequences,

(2) Conditional expectation and conditional probabilities,

(3) Martingales,

(4) Markov chains.

This notes follow the way the material was presented in the lecture rather closely.
Additions (e.g. from exercise sheets) and slight modifications have been marked
with :.

Prerequisites
[Lecture 1, 2023-04-04]

First, let us recall some basic definitions:

Definition 0.2. A probability space is a triplet pΩ,F ,Pq, such that

• Ω ‰ H,

• F is a σ-algebra over Ω, i.e. F Ď PpΩq and

– H,Ω P F ,

– A P F ùñ Ac P F ,

– A1, A2, . . . P F ùñ
Ť

iPN Ai P F .

The elements of F are called events.

• P is a probability measure, i.e. P is a function P : F Ñ r0, 1s such
that

– PpHq “ 0, PpΩq “ 1,

– P p
Ů

nPN Anq “
ř

nPN PpAnq for mutually disjoint An P F .
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Definition: 0.2.1. Let X be a random variable and k P N. Then the k-th
moment of X is defined as ErXks.

Definition 0.3. A random variable X : pΩ,Fq Ñ pR,BpRqq is a mea-
surable function, i.e. for all B P BpRq we have X´1pBq P F . (Equivalently
X´1 ppa, bsq P F for all a ă b P R ).

Definition 0.4. F : R Ñ R` is a distribution function iff

• F is monotone non-decreasing,

• F is right-continuous,

• lim
xÑ´8

F pxq “ 0 and lim
xÑ8

F pxq “ 1.

Fact 0.4.2. Let P be a probability measure on pR,BpRqq. Then F pxq :“
P pp´8, xsq is a probability distribution function. (See lemma 2.4.2 in the
lecture notes of Stochastik)

The converse to this fact is also true:

Theorem 0.5 (Kolmogorov’s existence theorem / basic existence theorem
of probability theory). Let FpRq be the set of all distribution functions on
R and let MpRq be the set of all probability measures on R. Then there
is a one-to-one correspondence between FpRq and MpRq given by

MpRq ÝÑ FpRq

P ÞÝÑ

ˆ

R ÝÑ R`

x ÞÝÑ Ppp´8, xsq.

˙

Proof. See theorem 2.4.3 in Stochastik.

Example 0.6 (Some important probability distribution functions).

(1) Uniform distribution on r0, 1s:

F pxq “

$

’

&

’

%

0 x P p´8, 0s,

x x P p0, 1s,

1 x P p1,8q.
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(2) Exponential distribution:

F pxq “

#

1 ´ e´λx x ě 0,

0 x ă 0.

´2 ´1 0 1 2 3 4 5

0

0.5

1

(3) Gaussian distribution:

Φpxq :“
1

?
2π

ˆ x

´8

e´
y2

2 dy.

(4) PrX “ 1s “ PrX “ ´1s “ 1
2 :

F pxq “

$

’

&

’

%

0 x P p´8,´1q,
1
2 x P r´1, 1q,

1 x P r1,8q.

CONTENTS 6



´2 ´1.5 ´1 ´0.5 0 0.5 1 1.5 2

0

0.5

1

This section provides a short recap of things that should be known from the
lecture on stochastic.

0.1 Notions of Convergence

Definition: 0.6.3. Fix a probability space pΩ,F ,Pq. Let X,X1, X2, . . . be
random variables.

• We say that Xn converges to X almost surely (Xn
a.s.

ÝÝÑ X) iff

Pptω|Xnpωq Ñ Xpωquq “ 1.

• We say that Xn converges to X in probability (Xn
P

ÝÑ X) iff

lim
nÑ8

Pr|Xn ´ X| ą εs “ 0

for all ε ą 0.

• We say that Xn converges to X in the p-th mean (Xn
Lp

ÝÝÑ X ) iff

Er|Xn ´ X|ps
nÑ8

ÝÝÝÑ 0.

• We say that Xn converges to X in distributiona (Xn
d

ÝÑ X) iff for
every continuous, bounded f : R Ñ R

ErfpXnqs
nÑ8

ÝÝÝÑ ErfpXqs.

aThis notion of convergence was actually defined during the course of the lecture,
but has been added here for completeness; see Definition 2.9.
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Theorem: 0.6.4. Let X be a random variable and Xn, n P N a sequence
of random variables. Let 1 ď p ă q ă 8. Then

Xn
a.s.

ÝÝÑ X

Xn
P

ÝÑ X

Xn
d

ÝÑ X

Xn
Lp

ÝÝÑ X

Xn
Lq

ÝÝÑ X

and none of the other implications hold (apart from the transitive closure).

Proof of Theorem: 0.6.4.

Claim 0.6.4.1. Xn
a.s.

ÝÝÑ X ùñ Xn
P

ÝÑ X.

Subproof. Let Ω0 :“ tω P Ω : lim
nÑ8

Xnpωq “ Xpωqu. Fix some ε ą 0 and consider

An :“
Ť

měntω P Ω : |Xmpωq ´ Xpωq| ą εu. Then An Ě An`1 Ě . . . Define

A :“
Ş

nPN An. Then PrAns
nÑ8

ÝÝÝÑ PrAs. Since Xn
a.s.

ÝÝÑ X we have that

@ω P Ω0. Dn P N. @m ě n. |Xmpωq ´ Xpωq| ă ε.

We have A Ď Ωc
0, hence PrAns Ñ 0. Thus

Prtω P Ω| |Xnpωq ´ Xpωq| ą εus ă PrAns Ñ 0.

■

Claim 0.6.4.2. Let 1 ď p ă q ă 8. Then Xn
Lq

ÝÝÑ X ùñ Xn
Lp

ÝÝÑ X.

Subproof. Take r such that 1
p “ 1

q ` 1
r . We have

}Xn ´ X}Lp “ }1 ¨ pXn ´ Xq}Lp

Hölder
ď }1}Lr}Xn ´ X}Lq

“ }Xn ´ X}Lq

Hence Er|Xn ´ X|qs
nÑ8

ÝÝÝÑ 0 ùñ Er|Xn ´ X|ps
nÑ8

ÝÝÝÑ 0. ■
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Claim 0.6.4.3. Xn
L1

ÝÝÑ X ùñ Xn
P

ÝÑ X.

Subproof. Suppose Er|Xn ´ X|s Ñ 0. Then for every ε ą 0

Pr|Xn ´ X| ě εs
Markov

ď
Er|Xn ´ X|s

ε
nÑ8

ÝÝÝÑ 0,

hence Xn
P

ÝÑ X. ■

Claim 0.6.4.4. Xn
P

ÝÑ X ùñ Xn
d

ÝÑ X.

Subproof. Let F be the distribution function of X and pFnqn the distribution
functions of pXnqn. By Theorem 2.13 it suffices to show that Fnptq Ñ F ptq for
all continuity points t of F . Let t be a continuity point of F . Take some ε ą 0.
Then there exists δ ą 0 such that |F ptq ´ F pt1q| ă ε

2 for all t1 with |t ´ t1| ď δ.
For all n large enough, we have Pr|Xn ´ X| ą δs ă ε

2 . It is

|Fnptq ´ F ptq| “ |PrXn ď ts ´ F ptq|

ď maxp|
ε

2
` PrX ď t ` δs ´ F ptq|, |PrX ď t ´ δs ´ F ptq|q

ď maxp|
ε

2
` F pt ` δq ´ F ptq|, |F pt ´ δq ´ F ptq|q

ď ε,

hence Fnptq Ñ F ptq. ■

Claim 0.6.4.5. Xn
P

ÝÑ X ùñ Xn
L1

ÝÝÑ X.1

Subproof. Take pr0, 1s,Bpr0, 1sq, λq and define Xn :“ n1r0, 1
n s. We have Pr|Xn| ą

εs “ 1
n for n large enough.

However Er|Xn|s “ 1. ■

Claim 0.6.4.6. Xn
a.s.

ÝÝÑ X ùñ Xn
L1

ÝÝÑ X.

Subproof. We can use the same counterexample as in Claim 0.6.4.5

Pr lim
nÑ8

Xn “ 0s ě PrXn “ 0s “ 1´ 1
n Ñ 0. We have already seen, that Xn does

not converge in L1. ■

Claim 0.6.4.7. Xn
L1

ÝÝÑ X ùñ Xn
a.s.

ÝÝÑ X.

1Note that the implication holds under certain assumptions, see Theorem 4.24.
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Subproof. Take Ω “ r0, 1s,F “ Bpr0, 1sq,P “ λ. Define An :“ rj2´k, pj `1q2´ks

where n “ 2k ` j. We have

Er|Xn|s “

ˆ
Ω

|Xn|dP “
1

2k
Ñ 0.

However Xn does not converge a.s. as for all ω P r0, 1s the sequence Xnpωq takes
the values 0 and 1 infinitely often. ■

Claim 0.6.4.8. Xn
d

ÝÑ X ùñ Xn
P

ÝÑ X.

Subproof. Note that Xn
d

ÝÑ X only makes a statement about the distributions
of X and X1, X2, . . . For example, take some p P p0, 1q and let X, X1, X2, . . . be

i.i.d. with X „ Binp1, pq. Trivially Xn
d

ÝÑ X. However

Pr|Xn ´ X| “ 1s “ PrXn “ 0sPrX “ 1s ` PrXn “ 1sPrX “ 0s “ 2pp1 ´ pq.

■

Claim 0.6.4.9. Let 1 ď p ă q ă 8. Then Xn
Lp

ÝÝÑ X ùñ Xn
Lq

ÝÝÑ X.

Subproof. Consider Ω “ r0, 1s, F “ Bpr0, 1sq, P “ λ æ r0, 1s and Xnpωq “ 1
n q

?
ω
.

Then }X0pωq}Lp ă 8, since p ă q. Thus Xn
Lp

ÝÝÑ 0. However }Xnpωq}Lq “ 8

for all n. ■

Theorem 0.7 (Bounded convergence theorem). Suppose that Xn
P

ÝÑ X

and there exists some K such that |Xn| ď K for all n. Then Xn
L1

ÝÝÑ X.

Proof. Note that |X| ď K a.s. since

Pr|X| ě K ` εs ď Pr|Xn ´ X| ą εs
nÑ8

ÝÝÝÑ 0.

Hence ˆ
|Xn ´ X|dP ď

ˆ
|Xn´X|ěε

|Xn ´ X|dP ` ε

ď 2KPr|Xn ´ X| ě εs ` ε.

0.2 Some Facts from Measure Theory
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Fact: 0.7.5 (Finite measures are regular, Exercise 3.1). Let µ be a finite
measure on pR,BpRqq. Then for all ε ą 0, there exists a compact set
K P BpRq such that µpKq ą µpRq ´ ε.

Proof. We have r´k, ks Ò R, hence µpr´k, ksq Ò µpRq.

Theorem: 0.7.6 (Change of variables formula). Let X be a random vari-
able with a continuous density f , and let g : R Ñ R be continuous such
that gpXq is integrable. Then

ErgpXqs “

ˆ
g ˝ X dP “

ˆ 8

´8

gpyqfpyqλpdyq “

ˆ 8

´8

gpyqfpyqdy.

Theorem: 0.7.7 (Riemann-Lebesgue). Let f : R Ñ R be integrable. Then

lim
nÑ8

ˆ
R
fpxq cospnxqλpdxq “ 0.

Theorem: 0.7.8 (Fubini-Tonelli). Let pΩi,Fi,Piq, i P t0, 1u be probability
spaces and Ω :“ Ω0 bΩ1, F :“ F1 bF2, P :“ P0 bP1. Let f ě 0 be pΩ,Fq-
measurable, then

Ω0 Q x ÞÑ

ˆ
Ω2

fpx, yqP2pdyq

and

Ω1 Q y ÞÑ

ˆ
Ω1

fpx, yqP1pdxq

are measurable, and

ˆ
f dP “

ˆ
Ω1

ˆ
Ω2

fpx, yqP2pdyqP1pdxqpdxq “

ˆ
Ω2

ˆ
Ω1

fpx, yqP1pdxqP2pdyq.

0.3 Inequalities

This is taken from section 6.1 of the notes on Stochastik.

Theorem 0.8 (Markov’s inequality). Let X be a random variable and
a ą 0. Then

Pr|X| ě as ď
Er|X|s

a
.
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Proof. We have

Er|X|s ě

ˆ
|X|ěa

|X|dP

“ a

ˆ
|X|ěa

dP “ aPr|X| ě as.

Theorem 0.9 (Chebyshev’s inequality). Let X be a random variable and
a ą 0. Then

Pr|X ´ EpXq| ě as ď
VarpXq

a2
.

Proof. We have

Pr|X ´ EpXq| ě as “ Pr|X ´ EpXq|2 ě a2s

Markov
ď

Er|X ´ EpXq|2s

a2
.

How do we prove that something happens almost surely? The first thing that
should come to mind is:

Lemma 0.10 (Borel-Cantelli). If we have a sequence of events pAnqně1

such that
ř

ně1 PpAnq ă 8, then PrAnfor infinitely many ns “ 0 (more
precisely: Prlim supnÑ8 Ans “ 0).

For independent events An the converse holds as well.

[Lecture 2, 2023-04-11]

1 Independence and Product Measures

In order to define the notion of independence, we first need to construct product
measures.

The finite case of a product is straightforward:

Theorem 1.1. Product measure (finite) Let pΩ1,F ,Pq and pΩ2,F2,P2q be
probability spaces. Let Ω :“ Ω1ˆΩ2 and R :“ tA1ˆA2|A1 P F1, A2 P F2u.

Let F be σpRq (the sigma algebra generated by R). Then there exists
a unique probability measure P on Ω such that for every rectangle R “

A1 ˆ A2 P R, PpA1 ˆ A2q “ PpA1q ˆ PpA2q.

Proof. See Theorem 5.1.1 in the lecture notes on Stochastik.
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We now want to construct a product measure for infinite products.

Definition 1.2 (Independence). A collection X1, X2, . . . , Xn of random
variables are called mutually independent if

@a1, . . . , an P R : PrX1 ď a1, . . . , xn ď ans “

n
ź

i“1

PrXi ď ais

This is equivalent to

@B1, . . . , Bn P BpRq : PrX1 P B1, . . . , Xn P Bns “

n
ź

i“1

PrXi P Bis

Example 1.3. Suppose we throw a dice twice. Let A :“ tfirst throw evenu,
B :“ tsecond throw evenu and C :“ tsum evenu.

It is easy the see, that the random variables are pairwise independent, but
not mutually independent.

Definition 1.4. Let pΩ,F ,Pq be a probability space and X : pΩ,Fq Ñ

pR,BpRqq a random variable. Then Qp¨q :“ PrX P ¨s is called the distri-
bution of X under P.

Let X1, . . . , Xn be random variables and Qbp¨q :“ PrpX1, . . . , Xnq P ¨s their
joint distribution. Then Qb is a probability measure on Rn.

The definition of mutual independence can be rephrased as follows:

Fact 1.4.9. X1, . . . , Xn are mutually independent iff Qb “ Q1 b . . .bQn,
whereQi is the distribution ofXi. In this setting, Qi is called themarginal
distribution of Xi.

By constructing an infinite product, we can thus extend the notion of indepen-
dence to an infinite number of random variables.

Goal. Can we construct infinitely many independent random variables?

Definition 1.5 (Consistent family of random variables). Let Pn, n P N
be a family of probability measures on pRn,BpRnqq. The family is called
consistent if Pn`1rB1 ˆ B2 ˆ . . . ˆ Bn ˆ Rs “ PnrB1 ˆ . . . ˆ Bns for all
n P N, Bi P BpRq.

Theorem 1.6 (Kolmogorov extension / consistency theorem). a

Let Pn, n P N be probability measures on pRn,BpRnqq which are consis-
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tent, then there exists a unique probability measure Pb on pR8, BpR8qq

(where BpR8q has to be defined), such that

@n P N, B1, . . . , Bn P BpRq : PbrX : Xi P Bi@1 ď i ď ns “ PnrB1ˆ. . .ˆBns

aInformally: “Probability measures are determined by finite-dimensional marginals
(as long as these marginals are nice)”

Remark 1.6.10. Kolmogorov’s theorem can be strengthened to the case of
arbitrary index sets. However this requires a different notion of consistency.

Example 1.7 (A consistent family). Let F1, . . . , Fn be probability distri-
bution functions and let Pn be the probability measure on Rn defined by

Pnrpa1, b1s ˆ . . . pan, bnss :“ pF1pb1q ´ F1pa1qq ¨ . . . ¨ pFnpbnq ´ Fnpanqq.

It is easy to see that each Pn is a probability measure.

Define Xipωq “ ωi where ω “ pω1, .., ωnq. Then X1, . . . , Xn are mutually
independent with Fi being the distribution function of Xi. In the case of
F1 “ . . . “ Fn, then X1, . . . , Xn are i.i.d.

[Lecture 3, 2023-04-13]

Notation 1.7.11. Let Bn denote BpRnq.

Goal. Suppose we have a probability measure µn on pRn,BpRnqq for each n P N.
We want to show that there exists a unique probability measure Pb on pR8,B8q

(where the σ-algebra B8 still needs to be defined), such that

Pb

˜

ź

nPN
Bn

¸

“
ź

nPN
µnpBnq

for all tBnunPN, Bn P B1.

Remark 1.7.12.
ś

nPN µnpBnq converges, since 0 ď µnpBnq ď 1 for all n.

First we need to define B8. This σ-algebra must contain all “boxes”
ś

nPN Bn for
Bi P B1. We simply take the smallest σ-algebra with this property:

Definition 1.8.

B8 :“ σ

˜#

ź

nPN
Bn : @n. Bn P BpRq

+¸

.
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Question 1.8.13. What is there in B8? Can we identify sets in B8 for
which we can define the desired product measure easily?

Let Fn :“ tCˆR8|C P Bnu. It is easy to see that Fn Ď Fn`1 and using that Bn

is a σ-algebra, we can show that Fn is also a σ-algebra. Now, for any C Ď Rn

let C˚ :“ C ˆR8. Note that C P Bn ùñ C˚ P Fn. Thus Fn “ tC˚ : C P Bnu.
Define λn : Fn :Ñ r0, 1s by λnpC˚q :“ pµ1 b . . . b µnqpCq. It is easy to see that
λn`1|Fn “ λn, i.e. the λn form a consistent family.

Recall the following theorem from measure theory:

Theorem 1.9 (Caratheodory’s extension theorem). Suppose A is an al-
gebra (i.e. closed under finite union) und Ω ‰ H. Suppose P is countably
additive on A (i.e. if pAnqn are pairwise disjoint and

Ť

nPN An Ď A then
P p

Ť

nPN Anq “
ř

nPN PpAnq). Then P extends uniquely to a probability
measure on pΩ,Fq, where F “ σpAq.

Proof. See theorem 2.3.3 in Stochastik.

Define F “
Ť

nPN Fn. Then F is an algebra. We’ll show that if we define
λ : F Ñ r0, 1s with λpAq “ λnpAq for any n where this is well defined, then
λ is countably additive on F . Using Theorem 1.9, λ will extend uniquely to a
probability measure on σpFq.

We want to prove:

Claim 1. σpFq “ B8.

Claim 2. λ is countably additive on F .

Proof of Claim 1. Consider an infinite dimensional box
ś

nPN Bn. We have

˜

N
ź

n“1

Bn

¸˚

P Fn Ď F

thus
ź

nPN
Bn “

č

NPN

˜

N
ź

n“1

Bn

¸˚

P σpFq.

Since σpFq is a σ-algebra, B8 Ď σpFq. This proves “Ě”. For the other direction
we’ll show Fn Ď B8 for all n. Let C :“ tQ P Bn|Q˚ P B8u. For B1, . . . , Bn P B,
B1 ˆ . . . ˆ Bn P Bn and pB1 ˆ . . . ˆ Bnq˚ P B8. We have B1 ˆ . . . ˆ Bn P C.
And C is a σ-algebra, because:

• Bn is a σ-algebra

• B8 is a σ-algebra,

• H˚ “ H, pRnzQq˚ “ R8zQ˚,
Ť

iPI Q
˚
i “ p

Ť

iPI Qiq
˚.
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Since C Ď Bn is a σ-algebra and contains all rectangles, it holds that C “ Bn.
Hence Fn Ď B8 for all n, thus F Ď B8. Since B8 is a σ-algebra, σpFq Ď

B8.

For the proof of Claim 2, we are going to use the following:

Fact 1.9.14. Suppose A is an algebra on Ω ‰ H, and suppose P : A Ñ

r0, 1s is a finitely additive probability measure. Suppose whenever tBnun

is a sequence of sets from A decreasing to H it is the case that PpBnq Ñ 0.
Then P must be countably additive.

Proof. Let pAnqnPN be a sequence of disjoint, measurable sets withA :“
Ť

n An P

A. Let A1
n :“ Az

Ťn
i“1 Ai. Then we have PrAs “ PrA1

ns `
řn

i“1 PrAis for all n.
Thus

PrAs ´ lim
nÑ8

PrA1
ns “ lim

nÑ8

n
ÿ

i“1

PrAis.

Since
Ş

nPN A1
n “ H, we have lim

nÑ8
PrA1

ns “ 0, hence

P

«

ď

iPN
Ai

ff

“ PrAs “
ÿ

iPN
PrAis.

Proof of Claim 2. Let us prove that λ is finitely additive. We have λpR8q “

λ1pR8q “ 1 and λpHq “ λ1pHq “ 0. Suppose that A1, A2 P F are disjoint.
Then pick some n such that A1, A2 P Fn. Take C1, C2 P Bn such that C˚

1 “ A1

and C˚
2 “ A2. Then C1 and C2 are disjoint and A1 Y A2 “ pC1 Y C2q˚. Hence

λpA1 Y A2q “ λnpA1 Y A2q “ pµ1 b . . . b µnqpC1 Y C2q “ λnpC1q ` λnpC2q

by the definition of the finite product measure.

[Lecture 4, ]

To finish the proof of Claim 2, we need the following:

Fact 1.9.15. Suppose tx
pnq

k unPN is a bounded sequence of real numbers
for each k P N. Then there exists a strictly increasing sequence of natural

number tniuiPN such that for all k P N the series tx
pniq

k uiPN converges.

Proof. We’ll use a diagonalization argument. For S Ď N infinite, we say that a
sequence of real number, pxnqnPN, converges along S, if

lim
nÑ8
nPS

xn
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exists.

Let S1 be such that tx
pnq

1 unPN converges along S1. Such an S1 exists by
Bolzano-Weierstraß. We proceed recursively. Suppose we have already cho-

sen S1, . . . , Sk´1. Consider tx
pnq

k unPSk´1
. By Bolzano-Weierstraß, there exists

Sk Ď Sk´1 such that tx
pnq

k unPSk´1
converges along Sk. For an infinite subset

T Ď N and ν P N let #νpT q denote the ν-th smallest element of T . Let

S :“ t#νpSkq : k P Nu.

Since Sk`1 Ď Sk, we have #pk ` 1qpSk`1q ą #kpSk`1q ě #kpSkq. Hence S is

infinite. Each tx
pnq

k unPN converges along S, since all but finitely many elements
of S belong to Sk.

Lemma 1.10. Let tKnunPN be a sequence of compact sets Kn Ď Rln for
some ln. Suppose for all n

n
č

i“1

K˚
i ‰ H.

Then
č

iPN
K˚

i ‰ H.

Proof of Lemma 1.10. We know from analysis that if tKnunPN is a sequence of
compact sets such that the intersection of finitely many of them is non-empty,
then

č

nPN
Kn ‰ H.

Here, different Kn may have different dimensions ln, but we can view them as
subsets of R8 by applying ˚. For each n, choose xpnq P

Şn
i“1 K

˚
i . We can

assume x
pnq

k “ 0 for k ą maxtl1, . . . , lnu. For all k P N we will show that tx
pnq

k u

is bounded.

• Case 1: Suppose every ln ď k. Then tx
pnq

k un only contains zeros.

• Case 2: Suppose some ln0
ě k. Let Z be the projection of Kn0

Ď Rln0

onto its k-th component. Z is a compact subset of R. Hence it is bounded.

For all n ě n0, we have xpnq P K˚
n0

and x
pnq

k P Z, so tx
pnq

k un is bounded.

By Fact 1.9.15, there is an infinite set S Ď N, such that tx
pnq

k unPS converges for

every k. Let xk :“ lim
nÑ8
nPS

x
pnq

k . Now let x “ px1, x2, . . .q P R8.

Claim 1.10.1. x P
Ş

iPN K˚
i .
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Subproof. Consider xpnq for n ą i and n P S. Then px
pnq

1 , . . . , x
pnq

li
q P Ki and

lim
nÑ8
nPS

px
pnq

1 , . . . , x
pnq

li
q “ px1, . . . , xliq.

Since Ki is compact, it follows that x P K˚
i . ■

Continuation of proof of Claim 2. In order to apply Fact 1.9.14, we need the
following:

Claim 2.3. For any sequence Bn P F with Bn
nÑ8

ÝÝÝÑ H we have λpBnq
nÑ8

ÝÝÝÑ 0.

Subproof. Suppose that B˚
1 Ě B˚

2 Ě . . . is a decreasing sequence such that
lim
nÑ8

λpB˚
nq “ ε ą 0. For each n, let ln be such that Bn P Bln . By regularity of

Borel probability measures, given ε ą 0, there exists a compact set Ln Ď Bn,
such that

pµ1 b . . . b µnqpBnzLnq ă
ε

2n`1

We have

B˚
nz

n
č

k“1

L˚
k Ď

n
ď

k“1

pB˚
k zL˚

kq .

Hence

λ

˜

B˚
nz

n
č

k“1

L˚
k

¸

ď λ

˜

n
ď

k“1

B˚
k zL˚

k

¸

ď

n
ÿ

k“1

λpB˚
k zL˚

kq

ď

n
ÿ

k“1

ε

2k`1

ď
ε

2
.

By our assumption, λpB˚
nq Ó ε ą 0. Hence λpB˚

nq ě ε for all n. Thus

λ

˜

n
č

k“1

L˚
k

¸

ě ε ´
ε

2
“

ε

2
.

In particular, for all n
n

č

k“1

L˚
k ‰ H.

By Lemma 1.10, it follows that
č

kPN
L˚
k ‰ H.
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Since
č

kPN
B˚

k Ě
č

kPN
L˚
k ,

we have
Ş

kPN B˚
k ‰ H. ■

The measure λ is as desired: For all n P N take some Bn P B1 and let Cn :“
śn

i“1 Bi. Then C˚
n Ó

ś8

i“1 Bi, hence

λ

˜

8
ź

i“1

Bi

¸

continuity
“ lim

NÑ8
λpC˚

N q

“ lim
NÑ8

λN pC˚
N q

“ lim
NÑ8

N
ź

n“1

µnpBnq

“
ź

nPN
µnpBnq.

For the definition of λ as well as the proof of Claim 2 we have only used that
pλnqnPN is a consistent family. Hence we have in fact shown Theorem 1.6.

[Lecture 5, 2023-04-21]

1.1 The Laws of Large Numbers

We want to show laws of large numbers: The LHS is random and represents
“sane” averaging. The RHS is constant, which we can explicitly compute from
the distribution of the RHS.

We fix a probability space pΩ,F ,Pq once and for all.

Theorem 1.11. LetX1, X2, . . . be i.i.d. random variables on pR,BpRqq and
m “ ErXis ă 8 and σ2 “ VarpXiq “ ErpXi´EpXiqq2s “ ErX2

i s´ErXis
2 ă

8.

Then

(a) X1`...`Xn

n

nÑ8
ÝÝÝÑ m in probability (weak law of large numbers,

WLLN),

(b) X1`...`Xn

n

nÑ8
ÝÝÝÑ m almost surely (strong law of large numbers,

SLLN).

Proof of Theorem 1.11. (a) Given ε ą 0, we need to show that

P
„

ˇ

ˇ

ˇ

ˇ

X1 ` . . . ` Xn

n
´ m

ˇ

ˇ

ˇ

ˇ

ą ε

ȷ

nÑ0
ÝÝÝÑ 0.
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Let Sn :“ X1 ` . . . ` Xn. Then ErSns “ ErX1s ` . . . ` ErXns “ nm. We
have

P
„

ˇ

ˇ

ˇ

ˇ

X1 ` . . . ` Xn

n
´ m

ˇ

ˇ

ˇ

ˇ

ą ε

ȷ

“ P
„

ˇ

ˇ

ˇ

ˇ

Sn

n
´ m

ˇ

ˇ

ˇ

ˇ

ą ε

ȷ

Chebyshev
ď

Var
`

Sn

n

˘

ε2
“

1

n

VarpX1q

ε2
nÑ8

ÝÝÝÑ 0

since

Var

ˆ

Sn

n

˙

“
1

n2
Var pSnq “

1

n2
nVarpXiq.

For the proof of (b) we need the following general result:

Theorem 1.12. Let X1, X2, . . . be independent (but not necessarily iden-
tically distributed) random variables with ErXis “ 0 for all i and

n
ÿ

i“1

VarpXiq ă 8.

Then
ř

ně1 Xn converges almost surely.

We’ll prove this later Move proof

Question 1.12.16. Does the converse hold? I.e. does
ř

ně1 Xn ă 8

a.s. then
ř

ně1 VarpXnq ă 8.

This does not hold. Consider the following:

Example 1.13. Let X1, X2, . . . be independent random variables, where
Xn has distribution 1

n2 δn ` 1
n2 δ´n ` p1´ 2

n2 qδ0. We have PrXn ‰ 0s “ 2
n2 .

Since this is summable, Borel-Cantelli (0.10) yields

PrXn ‰ 0 for infinitely many ns “ 0.

In particular, Xn is summable almost surely. However VarpXnq “ 2 is not
summable.

[Lecture 6, ]

Continuation of proof of Theorem 1.11. We want to deduce the SLLN (Theo-
rem 1.11) from Theorem 1.12. W.l.o.g. let us assume that ErXis “ 0 (otherwise
define X 1

i :“ Xi ´ ErXis). We will show that Sn

n

a.s.
ÝÝÑ 0. Define Yi :“ Xi

i .

Then the Yi are independent and we have ErYis “ 0 and VarpYiq “ σ2

i2 . Thus
ř8

i“1 VarpYiq ă 8. From Theorem 1.12 we obtain that
ř8

i“1 Yi converges a.s.
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Claim 1.11.3. Let panq be a sequence in R such that
ř8

n“1
an

n converges, then
a1`...`an

n Ñ 0.

Subproof. Let Sm :“
ř8

n“1
an

n . By assumption, there exists S P R such that

Sm
mÑ8

ÝÝÝÝÑ S. Note that j ¨ pSj ´ Sj´1q “ aj . Define S0 :“ 0. Then

a1 ` . . . ` an “ pS1 ´ S0q ` 2pS2 ´ S1q ` . . . ` npSn ´ Sn´1q

“ nSn ´ pS1 ` S2 ` . . . ` Sn´1q.

Thus

a1 ` . . . ` an
n

“ Sn ´
S1 ` . . . ` Sn´1

n

“ Sn
loomoon

ÑS

´

ˆ

n ´ 1

n

˙

loooomoooon

Ñ1

¨
S1 ` . . . ` Sn´1

n ´ 1
looooooooomooooooooon

ÑS

Ñ 0,

where we have used

Fact 1.13.17.

lim
nÑ8

Sn “ lim
nÑ8

1

n

n
ÿ

i“1

Si

.

■

The SLLN follows from the claim.

In order to prove Theorem 1.12, we need the following:

Theorem 1.14 (Kolmogorov’s inequality). If X1, . . . , Xn are independent
with ErXis “ 0 and VarpXiq “ σ2

i , then

P

«

max
1ďiďn

ˇ

ˇ

ˇ

ˇ

ˇ

i
ÿ

j“1

Xj

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

ff

ď
1

ε2

m
ÿ

i“1

σ2
i .

Proof. Let

A1 :“ tω : |X1pωq| ą εu,

A2 :“ tω : |X1pωq| ď ε, |X1pωq ` X2pωq| ą εu,

. . .

Ai :“ tω : |X1pωq| ď ε, |X1pωq ` X2pωq| ď ε, . . . , |X1pωq ` . . . ` Xi´1pωq| ď ε,

|X1pωq ` . . . ` Xipωq| ą εu.

It is clear, that the Ai are disjoint. We are interested in
Ť

1ďiďn Ai.
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We have ˆ
Ai

pX1 ` . . . ` Xi
looooooomooooooon

C

`Xi`1 ` . . . ` Xn
looooooooomooooooooon

D

q2 dP

“

ˆ
Ai

C2 dP `

ˆ
Ai

D2 dP
loooomoooon

ě0

`2

ˆ
Ai

CD dP

ě

ˆ
Ai

C2
loomoon

ěε2

dP ` 2

ˆ
1Ai

pX1 ` . . . ` Xiq
looooooooooomooooooooooon

E

pXi`1 ` . . . ` Xnq
loooooooooomoooooooooon

D

dP

ě

ˆ
Ai

ε2 dP,

since by the independence of E and D, and EpXi`1q “ . . . “ EpXnq “ 0 we
have

´
DE dP “ 0.

Hence

PpAiq ď
1

ε2

ˆ
Ai

pX1 ` . . . ` Xnq2 dP.

Since the Ai are disjoint, we obtain

P

˜

ď

iPN
Ai

¸

ď
1

ε2

ˆ
Ť

iPN Ai

pX1 ` . . . ` Xnq2 dP

ď
1

ε2

ˆ
Ω

pX1 ` . . . ` Xnq2 dP

independence
“

1

ε2
pErX2

1 s ` . . . ` ErX2
nsq

ErXis“0
“

1

ε2
pVarpX1q ` . . . ` VarpXnqq .

Proof of Theorem 1.12. Let Sn :“ x1 ` . . .` xn. We’ll show that tSnpωqunPN is
a Cauchy sequence for almost every ω.

Let
ampωq :“ sup

kPN
t|Sm`kpωq ´ Smpωq|u

and
apωq :“ inf

mPN
ampωq.

Then tSnpωqunPR is a Cauchy sequence iff apωq “ 0.

We want to show that Prapωq ą 0s “ 0. For this, it suffices to show that
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Prapωq ą εs “ 0 for all ε ą 0. For a fixed ε ą 0, we obtain:

Pram ą εs “ Prsup
kPN

|Sm`k ´ Sm| ą εs

“ lim
lÑ8

Pr sup
kďl

|Sm`k ´ Sm| ą ε
loooooooooooomoooooooooooon

:“BlÒB:“tsupkPN |Sm`k´Sm|ąεu

s

Now,

maxt|Sm`1 ´ Sm|, |Sm`2 ´ Sm|, . . . , |Sm`l ´ Sm|u

“ maxt|Xm`1|, |Xm`1 ` Xm`2|, . . . , |Xm`1 ` Xm`2 ` . . . ` Xm`l|u

Kolmogorov
ď

1

ε2

l
ÿ

i“m

VarpXiq

ď
1

ε2

8
ÿ

i“m

VarpXiq
mÑ8

ÝÝÝÝÑ 0,

since by our assumption,
ř

nPN VarpXiq ă 8.

Hence
Pram ą εs

mÑ8
ÝÝÝÝÑ 0.

It follows that Pra ą εs “ 0, as claimed.

1.1.1 Application: Renewal Theorem

Theorem 1.15 (Renewal theorem). Let X1, X2, . . . i.i.d. random variables
with Xi ě 0, ErXis “ m ą 0. The Xi model waiting times. Let Sn :“
řn

i“1 Xi. For all t ą 0 let

Nt :“ suptn : Sn ď tu.

Then Nt

t

a.s.
ÝÝÑ 1

m as t Ñ 8.

The Xi can be thought of as waiting times. Si models how long you have to
wait for i events to occur.

Proof. By SLLN, Sn

n

a.s.
ÝÝÑ m as n Ñ 8. Note that

Nt Ò 8 a.s. as t Ñ 8, (1)

since tNt ě nu “ tX1 ` . . . ` Xn ď tu.

Claim 1. PrSn

n

nÑ8
ÝÝÝÑ m ^ Nt

tÑ8
ÝÝÝÑ 8s “ 1.

Subproof. Let A :“ tω : Snpωq

n

nÑ8
ÝÝÝÑ mu and B :“ tω : Ntpωq

tÑ8
ÝÝÝÑ 8u. By the

SLLN we have PpACq “ 0 and by (1) it holds that PpBCq “ 0. ■
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Equivalently, P
”

SNt

Nt

tÑ8
ÝÝÝÑ m ^

SNt`1

Nt`1

tÑ8
ÝÝÝÑ m

ı

“ 1.

By definition, we have SNt
ď t ď SNt`1. Thus

SNt

Nt
ď

t

Nt
ď

SNt`1

Nt
ď

SNt`1

Nt ` 1
¨
Nt ` 1

Nt
.

Hence t
Nt

Ñ m.

[Lecture 7, ]

Goal. We want to drop our assumptions on finite mean or variance and say
something about the behaviour of

ř

ně1 Xn when the Xn are independent.

Theorem 1.16 (Kolmogorov’s three-series theorem). Let Xn be a family
of independent random variables.

(a) Suppose for some C ě 0, the following three series of numbers converge:

•
ř

ně1 Pp|Xn| ą Cq,

•
ř

ně1

ˆ
|Xn|ďC

Xn dP
loooooooomoooooooon

truncated mean

,

•
ř

ně1

ˆ
|Xn|ďC

X2
n dP ´

˜ˆ
|Xn|ďC

Xn dP

¸2

loooooooooooooooooooooooomoooooooooooooooooooooooon

truncated variance

.

Then
ř

ně1 Xn converges almost surely.

(b) Suppose
ř

ně1 Xn converges almost surely. Then all three series above
converge for every C ą 0.

For the proof we’ll need a slight generalization of Theorem 1.12:

Theorem 1.17. Let tXnun be independent and uniformly bounded (i.e.
DM ă 8 : supn supω |Xnpωq| ď M). Then

ř

ně1 Xn converges almost
surely ðñ

ř

ně1 EpXnq and
ř

ně1 VarpXnq converge.

Proof of Theorem 1.16. Assume, that we have already proved Theorem 1.17.
We prove part (a) first. Put Yn “ Xn ¨ 1t|Xn|ďCu. Since the Xn are inde-
pendent, the Yn are independent as well. Furthermore, the Yn are uniformly
bounded. By our assumption, the series

ř

ně1

´
|Xn|ďC

Xn dP “
ř

ně1 ErYns

and
ř

ně1

´
|Xn|ďC

X2
n dP ´

´´
|Xn|ďC

Xn dP
¯2

“
ř

ně1 VarpYnq converges. By

Theorem 1.17 it follows that
ř

ně1 Yn ă 8 almost surely. Let An :“ tω :
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|Xnpωq| ą Cu. Since
ř

ně1 PpAnq ă 8 by assumption, Borel-Cantelli (0.10)
yields Prinfinitely many An occurs “ 0.

For the proof of (b), suppose
ř

ně1 Xnpωq ă 8 for almost every ω. Fix an
arbitrary C ą 0. Define

Ynpωq :“

#

Xnpωq if|Xnpωq| ď C,

C if |Xnpωq| ą C.

Then the Yn are independent and
ř

ně1 Ynpωq ă 8 almost surely and the Yn are
uniformly bounded. By Theorem 1.17

ř

ně1 ErYns and
ř

ně1 VarpYnq converge.
Define

Znpωq :“

#

Xnpωq if |Xn| ď C,

´C if |Xn| ą C.

Then the Zn are independent, uniformly bounded and
ř

ně1 Znpωq ă 8 almost
surely. By Theorem 1.17 we have

ř

ně1 EpZnq ă 8 and
ř

ně1 VarpZnq ă 8.

We have

EpYnq “

ˆ
|Xn|ďC

Xn dP ` CPp|Xn| ě Cq,

EpZnq “

ˆ
|Xn|ďC

Xn dP ´ CPp|Xn| ě Cq.

Since EpYnq ` EpZnq “ 2
´

|Xn|ďC
Xn dP the second series converges, and since

EpYnq ´EpZnq converges, the first series converges. For the third series, we look
at

ř

ně1 VarpYnq and
ř

ně1 VarpZnq to conclude that this series converges as
well.

Recall Theorem 1.12. We will see, that the converse of Theorem 1.12 is true if
the Xn are uniformly bounded. More formally:

Theorem 1.18 (Theorem 5). Let Xn be a series of independent variables
with mean 0, that are uniformly bounded. If

ř

ně1 Xn ă 8 almost surely,
then

ř

ně1 VarpXnq ă 8.

Proof of Theorem 1.17. Assume we have proven Theorem 1.18.

“ ðù ” Assume tXnu are independent, uniformly bounded and
ř

ně1 EpXnq ă

8 as well as
ř

ně1 VarpXnq ă 8. We need to show that
ř

ně1 Xn ă 8 a.s. Let
Yn :“ Xn ´ EpXnq. Then the Yn are independent, EpYnq “ 0 and VarpYnq “

VarpXnq. By Theorem 1.12
ř

ně1 Yn ă 8 a.s. Thus
ř

ně1 Xn ă 8 a.s.

“ ùñ ”We assume that tXnu are independent, uniformly bounded and
ř

ně1 Xnpωq ă

8 a.s. We have to show that
ř

ně1 EpXnq ă 8 and
ř

ně1 VarpXnq ă 8.

Consider the product space pΩ,F ,Pq b pΩ,F ,Pq. On this product space, we
define Yn ppω, ω1qq :“ Xnpωq and Zn ppω, ω1qq :“ Xnpω1q.
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Claim 1.17.1. For every fixed n, Yn and Zn are independent.

Subproof. This is obvious, but we will prove it carefully here.

pP b PqrYn P pa, bq, Zn P pa1, b1qs

“ pP b Pq
`

pω, ω1q : Xnpωq P pa, bq ^ Xnpω1q P pa1, b1q
˘

“ pP b PqpA ˆ A1qwhere A :“ X´1
n ppa, bqq and A1 :“ X´1

n

`

pa1, b1q
˘

“ PpAqPpA1q

■

Now ErYn ´Zns “ 0 (by definition) and VarpYn ´Znq “ 2VarpXnq. Obviously,
pYn ´ Znqně1 is also uniformly bounded.

Claim 1.17.2.
ř

ně1pYn ´ Znq ă 8 almost surely on pΩ b Ω,F b F ,P b Pq.

Subproof. Suppose Ω0 “ tω :
ř

ně1 Xnpωq ă 8u. Then PpΩ0q “ 1. Thus pP b

PqpΩ0bΩ0q “ 1. Furthermore
ř

ně1 pYnpω, ω1q ´ Znpω, ω1qq “
ř

ně1 pXnpωq ´ Xnpω1qq.
Thus

ř

ně1 pYnpω, ω1q ´ Znpω, ω1qq ă 8 a.s. on Ω0 b Ω0. ■

By Theorem 1.18,
ř

n VarpXnq “ 1
2

ř

ně1 VarpYn ´ Znq ă 8 a.s. Define Un :“
Xn ´ EpXnq. Then EpUnq “ 0 and the Un are independent and uniformly
bounded. We have

ř

n VarpUnq “
ř

n VarpXnq ă 8. Thus
ř

n Un converges
a.s. by Theorem 1.12. Since by assumption

ř

n Xn ă 8 a.s., it follows that
ř

n EpXnq ă 8.

Remark 1.18.18. In the proof of Theorem 1.17 “ ðù ” is just a trivial
application of Theorem 1.12 and uniform boundedness was not used. The
idea of “ ùñ ” will lead to coupling.

A proof of Theorem 1.18 can be found in the notes. TODO: copy
from official
notesExample 1.19 (Application of Theorem 1.17). The series

ř

n
1

n
1
2

`ε
does

not converge for ε ă 1
2 . However

ÿ

n

Xn
1

n
1
2 `ε

where PrXn “ 1s “ PrXn “ ´1s “ 1
2 converges almost surely for all ε ą 0.

And
ÿ

n

Xn
1

n
1
2 ´ε

does not converge.

[Lecture 8, 2023-05-02]
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1.2 Kolmogorov’s 0-1-law

Some classes of events always have probability 0 or 1. One example of such a
0-1-law is the Borel-Cantelli Lemma and its inverse statement.

We now want to look at events that capture certain aspects of long term be-
haviour of sequences of random variables.

Definition 1.20. Let Xn, n P N be a sequence of random variables on a
probability space pΩ,F ,Pq. Let Ti :“ σpXi, Xi`1, . . .q be the σ-algebra
generated by Xi, Xi`1, . . .. Then the tail-σ-algebra is defined as

T :“
č

iPN
Ti.

The events A P T Ď F are called tail events.

Remark 1.20.19. (i) Since intersections of arbitrarily many σ-algebras
is again a σ-algebra, T is indeed a σ-algebra.

(ii) We have

T “ tA P F | @i DB P BpRqbN : A “ tω|pXipωq, Xi`1pωq, . . .q P Buu.

Example 1.21 (What are tail events?). Let Xn, n P N be a sequence of
independent random variables on a probability space pΩ,F ,Pq. Then

(i) tω|
ř

nPN Xnpωq convergesu is a tail event, since for all ω P Ω we have

8
ÿ

i“1

Xipωq converges

ðñ

8
ÿ

i“2

Xipωq converges

ðñ . . .

ðñ

8
ÿ

i“k

Xipωq converges.

(Since the Xi are independent, the convergence of
ř

nPN Xn is not
influenced by X1, . . . , Xk for any k.)

(ii) tω|
ř

nPN Xnpωq “ cu for some c P R is not a tail event, because
ř

nPN Xn depends on X1.
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(iii) tω| lim
nÑ8

1
n

řn
i“1 Xipωq “ cu is a tail event, since

c “ lim
nÑ8

n
ÿ

i“1

Xi “ lim
nÑ8

1

n
X1

loooomoooon

“0

` lim
nÑ8

1

n

n
ÿ

i“2

Xi “ . . . “ lim
nÑ8

1

n

n
ÿ

i“k

Xi.

So T includes all long term behaviour of Xn, n P N, which does not depend on
the realisation of the first k random variables for any k P N.

Theorem 1.22 (Kolmogorov’s 0-1 law). Let Xn, n P N be a sequence of
independent random variables and let T denote their tail-σ-algebra. Then
T is P-trivial, i.e. PrAs P t0, 1u for all A P T .

Idea. The idea behind proving, that a T is P-trivial is to show that for any
A,B P F we have

PrA X Bs “ PrAs ¨ PrBs.

Taking A “ B, it follows that PrAs “ PrAs2, hence PrAs P t0, 1u.

Proof of Theorem 1.22. Let Fn :“ σpX1, . . . , Xnq and remember that Tn “

σpXn, Xn`1, . . .q. The proof rests on two claims:

Claim 1.22.1. For all n ě 1, A P Fn and B P Tn`1 we have PrA X Bs “

PrAsPrBs.

Subproof. This follows from the independence of the Xi. It is

σ pX1, . . . , Xnq “ σ

¨

˝tX´1
1 pB1q X . . . X X´1

n pBnq|B1, . . . , Bn P BpRqu
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

:“A

˛

‚.

A is a semi-algebra, since

(i) H,Ω P A,

(ii) A,B P A ùñ A X B P A,

(iii) for A P A, Ac “
Ůn

i“1 Ai for disjoint sets A1, . . . , An P A.

Hence it suffices to show the claim for sets A P A. Similarly

σpTn`1q “ σ

¨

˚

˝

tX´1
n`1pM1q X . . . X X´1

n`kpMkq|k P N,M1, . . . ,Mk P BpRqu
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

:“B

˛

‹

‚

.

Again, B is closed under intersection.

So let A P A and B P B. Then

PrA X Bs “ PrAs ¨ PrBq
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by the independence of tX1, . . . , Xn`ku, and sinceA only depends on tX1, . . . , Xnu

and B only on tXn`1, . . . , Xn`ku. ■

Claim 1.22.2.
Ť

nPN Fn is an algebra and

σ

˜

ď

nPN
Fn

¸

“ σpX1, X2, . . .q “ T1.

Subproof. “Ě ” If An P σpXnq, then An P Fn. Hence An P
Ť

nPN Fn.

Since σpX1, X2, . . .q is generated by tAn P σpXnq : n P Nu, this also means
σpX1, X2, . . .q Ď σ p

Ť

nPN Fnq.

“Ď ” Since Fn “ σpX1, . . . , Xnq, obviously Fn Ď σpX1, X2 . . .q for all n. It
follows that

Ť

nPN Fn Ď σpX1, X2, . . .q. Hence σ p
Ť

nPN Fnq Ď σpX1, X2, . . .q.
■

Now let T P T . Then T P Tn`1 for any n. Hence PrA X T s “ PrAsPrT s for all
A P Fn by the first claim.

It follows that the same folds for all A P
Ť

nPN Fn, hence for all A P σ p
Ť

nPN Fnq,
and by the second claim for all A P σpX1, X2, . . .q “ T1. But since T P T , in
particular T P T1, so by choosing A “ T , we get

PrT s “ PrT X T s “ PrT s2

hence PrT s P t0, 1u.

Fact: 1.22.20 (Exercise 5.2 (b)). Any random variable measurable with
respect to a P-trivial σ-algebra is a.s. a constant.

[Lecture 9, ]

1.2.1 Application: Percolation

We will now discuss another application of Kolmogorov’s 0-1 Law (1.22), per-
colation.

Definition 1.23 (Percolation). Consider the graph with nodes Zd, d ě 2,
where edges from the lattice are added with probability p. The added edges
are called open; all other edges are called closed.

More formally, we consider

• Ω “ t0, 1uEd , where Ed are all edges in Zd,

• F :“ product σ-algebra,
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• P :“

¨

˚

˝

p δt1u
loomoon

edge is open

`p1 ´ pq δt0u
loomoon

edge is absent closed

˛

‹

‚

bEd

.

Question 1.23.21. Starting at the origin, what is the probability, that
there exists an infinite path (without moving backwards)?

Definition 1.24. An infinite path consists of an infinite sequence of
distinct points x0, x1, . . . such that xn is connected to xn`1, i.e. the edge
txn, xn`1u is open.

Let C8 :“ tω|an infinite path existsu.

Exercise. Show that changing the presence / absence of finitely many edges
does not change the existence of an infinite path. Therefore C8 is an element
of the tail σ-algebra. Hence PpC8q P t0, 1u.

Obviously, PpC8q is monotonic with respect to p. For d “ 2 it is known that
p “ 1

2 is the critical value. For d ą 2 this is unknown.

We’ll get back to percolation later.

2 Characteristic Functions, Weak Convergence
and the Central Limit Theorem

So far we have dealt with the average behaviour,

i.i.d.
hkkkkkkkikkkkkkkj

X1 ` . . . ` Xn

n
Ñ EpX1q.

We now want to understand fluctuations from the average behaviour, i.e.

X1 ` . . . ` Xn ´ n ¨ EpX1q.

The question is, what happens on other timescales than n? An example is

X1 ` . . . ` Xn ´ nEpX1q
?
n

nÑ8
ÝÝÝÑ N p0,VarpXiqq (2)

Why is
?
n the right order? Handwavey argument:

Suppose X1, X2, . . . are i.i.d. with X1 „ N p0, 1q. The mean of the l.h.s. is 0 and
for the variance we get

Varp
X1 ` . . . ` Xn ´ nEpX1q

?
n

q “ Var

ˆ

X1 ` . . . ` Xn
?
n

˙

“
1

n
pVarpX1q ` . . . ` VarpXnqq “ 1

2 CHARACTERISTIC FUNCTIONS, WEAK CONVERGENCE AND THE
CENTRAL LIMIT THEOREM

30



For the r.h.s. we get a mean of 0 and a variance of 1. So, to determine what (2)
could mean, it is necessary that

?
n is the right scaling. To make (2) precise,

we need another notion of convergence. This will be the weakest notion of
convergence, hence it is called weak convergence. This notion of convergence
will be defined in terms of characteristic functions of Fourier transforms.

2.1 Convolutions:

Definition: 2.0.22 (Convolution). Let µ and ν be probability measures
on Rd. Then the convolution of µ and ν, µ˚ν, is the probability measure
on Rd defined by

pµ ˚ νqpAq “

ˆ
Rd

ˆ
Rd

1Apx ` yqµpdxqνpdyq.

Fact 2.0.23. If µ and ν have Lebesgue densities fµ and fν , then the con-
volution has Lebesgue density

fµ˚νpxq “

ˆ
Rd

fµpx ´ tqfνptqλdpdtq.

Fact: 2.0.24 (Exercise 6.1). If X1, X2, . . . are independent with distribu-
tions X1 „ µ1, X2 „ µ2, . . ., then X1 ` . . . ` Xn has distribution

µ1 ˚ µ2 ˚ . . . ˚ µn. TODO

2.2 Characteristic Functions and Fourier Transform

Definition 2.1. Consider pR,BpRq,Pq. The characteristic function of
P is defined as

φP : R ÝÑ C

t ÞÝÑ

ˆ
R
eitxPpdxq.

Abuse of Notation 2.1.25. φPptq will often be abbreviated as φptq.

We have

φptq “

ˆ
R
cosptxqPpdxq ` i

ˆ
R
sinptxqPpdxq.

• Since |eitx| ď 1 the function φp¨q is always defined.

• We have φp0q “ 1.

• |φptq| ď
´
R |eitx|Ppdxq “ 1.
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Fact: 2.1.26. Let X, Y be independent random variables and a, b P R.
Then

• φaX`bptq “ eitbφXp t
a q,

• φX`Y ptq “ φXptq ¨ φY ptq.

Proof. We have

φaX`bptq “ EreitpaX`bqs

“ eitbEreitaX s

“ eitbφXp
t

a
q.

Furthermore

φX`Y ptq “ EreitpX`Y qs

“ EreitX sEreitY s

“ φXptqφY ptq.

Remark 2.1.27. Suppose pΩ,F ,Pq is an arbitrary probability space and
X : pΩ,Fq Ñ pR,BpRqq is a random variable. Then we can define

φXptq :“ EreitX s “

ˆ
eitXpωqPpdωq “

ˆ
R
eitxµpdxq “ φµptq,

where µ “ P ˝ X´1.

Theorem 2.2 (Inversion formula). Let pΩ,BpRq,Pq be a probability space.
Let F be the distribution function of P (i.e. F pxq “ Ppp´8, xsq for all x P R
). Then for every a ă b we have

F pbq ` F pb´q

2
´

F paq ` F pa´q

2
“ lim

TÑ8

1

2π

ˆ T

´T

e´itb ´ e´ita

´it
φptqdt (3)

where F pb´q is the left limit.

We will prove this later.

Theorem 2.3 (Uniqueness theorem). Let P and Q be two probability
measures on pR,BpRqq. Then φP “ φQ ùñ P “ Q.

Therefore, probability measures are uniquely determined by their charac-

2 CHARACTERISTIC FUNCTIONS, WEAK CONVERGENCE AND THE
CENTRAL LIMIT THEOREM

32



teristic functions. Moreover, (3) gives a representation of P (via F ) from
φ.

Proof of Theorem 2.3. Assume that we have already shown the Inversion For-
mula (2.2). Suppose that F and G are the distribution functions of P and Q.
Let a, b P R with a ă b. Assume that a and b are continuity points of both F
and G. By the Inversion Formula (2.2) we have

F pbq ´ F paq “ Gpbq ´ Gpaq

Since F and G are monotonic, Equation 4 holds for all a ă b outside a countable
set.

Take an outside this countable set, such that an % ´8. Then, Equation 4
implies that F pbq ´ F panq “ Gpbq ´ Gpanq hence F pbq “ Gpbq. Since F and G
are right-continuous, it follows that F “ G.

[Lecture 10, 2023-05-09]

First, we will prove some of the most important facts about Fourier transforms.

We consider pR,BpRqq.

Notation 2.3.28. By M1pRq we denote the set of all probability measures
on pR,BpRqq.

For all P P M1pRq we define φPptq “
´
R eitxPpdxq. If X : pΩ,Fq Ñ pR,BpRqq is

a random variable, we write φXptq :“ EreitX s “ φµptq, where µ “ PX´1.

Proof of Theorem 2.2. We will prove that the limit in the RHS of Equation 3
exists and is equal to the LHS. Note that the term on the RHS is integrable, as

lim
tÑ0

e´itb ´ e´ita

´it
φptq “ a ´ b

and note that φp0q “ 1 and |φptq| ď 1.
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We have

lim
TÑ8

1

2π

ˆ T

´T

ˆ
R

e´itb ´ e´ita

´it
eitx dtPpdxq

Fubini
“ lim

TÑ8

1

2π

ˆ
R

ˆ T

´T

e´itb ´ e´ita

´it
eitx dtPpdxq

“ lim
TÑ8

1

2π

ˆ
R

ˆ T

´T

eitpb´xq ´ eitpx´aq

´it
dtPpdxq

“ lim
TÑ8

1

2π

ˆ
R

ˆ T

´T

„

cosptpx ´ bqq ´ cosptpx ´ aqq

´it

ȷ

dt
looooooooooooooooooooooooomooooooooooooooooooooooooon

“0, as the function is odd

Ppdxq

` lim
TÑ8

1

2π

ˆ
R

ˆ T

´T

sinptpx ´ bqq ´ sinptpx ´ aqq

´t
dtPpdxq

“ lim
TÑ8

1

π

ˆ
R

ˆ T

0

sinptpx ´ aqq ´ sinptpx ´ bqq

t
dtPpdxq

(2.3.29),DCT
“

1

π

ˆ
´
π

2
1xăa `

π

2
1xąa ´ p´

π

2
1xăb `

π

2
1xąbqPpdxq

“
1

2
Pptauq `

1

2
Pptbuq ` Pppa, bqq

“
F pbq ` F pb´q

2
´

F paq ´ F pa´q

2

Fact 2.3.29. ˆ 8

0

sinx

x
dx “

π

2

where the LHS is an improper Riemann-integral. Note that the LHS is not
Lebesgue-integrable. It follows that

lim
TÑ8

ˆ T

0

sinptpx ´ aqq

t
dt “

$

’

&

’

%

´π
2 if x ă a,

0 if x “ a,
π
2 if x ą a.

Theorem 2.4. Let P P M1pRq such that φP P L1pλq. Then P has a
continuous probability density given by

fpxq “
1

2π

ˆ
R
e´itxφPptqdt.
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Example 2.5. • Let P “ δ0. Then

φPptq “

ˆ
eitxδ0pdxq “ eit0 “ 1

• Let P “ 1
2δ1 ` 1

2δ´1. Then

φPptq “
1

2
eit `

1

2
e´it “ cosptq

Proof of Theorem 2.4. Let fpxq :“ 1
2π

´
R e´itxφptqdt.

Claim 2.4.1. If xn Ñ x, then fpxnq Ñ fpxq.

Subproof. Suppose that e´itxnφptq
nÑ8

ÝÝÝÑ e´itxφptq for all t. Since

|e´itxφptq| ď |φptq|

and φ P L1, we get fpxnq Ñ fpxq by the dominated convergence theorem. ■

We’ll show that for all a ă b we have

P ppa, bsq “

ˆ b

a

fpxqdx.

Let F be the distribution function of P. It is enough to prove Claim 2.3.29 for
all continuity points a and b of F . We have

RHS
Fubini

“
1

2π

ˆ
R

ˆ b

a

e´itxφptqdxdt

“
1

2π

ˆ
R
φptq

ˆ b

a

e´itx dxdt

“
1

2π

ˆ
R
φptq

ˆ

e´itb ´ e´ita

´it

˙

dt

dominated convergence
“ lim

TÑ8

1

2π

ˆ T

´T

φptq

ˆ

e´itb ´ e´ita

´it

˙

dt

By the Inversion Formula (2.2), the RHS is equal to F pbq´F paq “ P ppa, bsq.

However, Fourier analysis is not only useful for continuous probability density
functions:

Theorem 2.6 (Bochner’s formula for the mass at a point). Let P P M1pλq.
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Then

@x P R. P ptxuq “ lim
TÑ8

1

2T

ˆ T

´T

e´itxφptqdt.

Proof of Theorem 2.6. We have

RHS “ lim
TÑ8

1

2T

ˆ T

´T

e´itx

ˆ
R
eityPpdyq

Fubini
“ lim

TÑ8

1

2T

ˆ
R

ˆ T

´T

e´itpy´xq dtPpdyq

“ lim
TÑ8

1

2T

ˆ
R

ˆ T

´T

cosptpy ´ xqq ` i sinptpy ´ xqq
looooooomooooooon

odd

dtPpdyq

“ lim
TÑ8

1

2T

ˆ
R

ˆ T

´T

cosptpy ´ xqqdtPpdyq

“ lim
TÑ8

1

2T

ˆ
R
2T sincpT py ´ xqq2Ppdyq

DCT
“

ˆ
R

lim
TÑ8

sincpT py ´ xqqPpdyq

“ Pptxuq.

Theorem 2.7. Let φ be the characteristic function of P P M1pλq. Then

(a) φp0q “ 1, |φptq| ď 1, φp´tq “ φptq and φp¨q is continuous.

(b) φ is a positive definite function, i.e.

@t1, . . . , tn P R, pc1, . . . , cnq P Cn
n

ÿ

j,k“1

cjckφptj ´ tkq ě 0

Equivalently, the matrix pφptj ´ tkqqj,k is positive definite.

Proof of Theorem 2.7. Part (a) is obvious.

2sincpxq “

#

sinpxq

x
if x ‰ 0,

1 otherwise.
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For part (b) we have:

ÿ

j,k

cjckφptj ´ tkq “
ÿ

j,k

cjck

ˆ
R
eiptj´tkqxPpdxq

“

ˆ
R

ÿ

j,k

cjcke
itjxeitkxPpdxq

“

ˆ
R

ÿ

j,k

cje
itjxckeitkxPpdxq

“

ˆ
R

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

l

cle
itlx

ˇ

ˇ

ˇ

ˇ

ˇ

2

ě 0

Theorem 2.8 (Bochner’s theorem). The converse to Theorem 2.7 holds,
i.e. any φ : R Ñ C satisfying (a) and (b) of Theorem 2.7 must be the
Fourier transform of a probability measure P on pR,BpRqq.

Unfortunately, we won’t prove Bochner’s Theorem for Positive Definite Func-
tions (2.8) in this lecture.

Definition 2.9 (Convergence in distribution / weak convergence). We
say that Pn P M1pRq converges weakly towards P P M1pRq (notation:
Pn ùñ P), iff

@f P CbpRq

ˆ
f dPn Ñ

ˆ
f dP.

Where
CbpRq :“ tf : R Ñ R continuous and boundedu

In analysis, this is also known as weak˚ convergence.

Remark 2.9.30. This notion of convergence makes M1pRq a separable
metric space. We can construct a metric on M1pRq that turns M1pRq into
a complete and separable metric space:

Consider the sets

tP P M1pRq : @i “ 1, . . . , n

ˆ
f dP ´

ˆ
fi dP ă εu

for any f, f1, . . . , fn P CbpRq. These sets form a basis for the topology on
M1pRq. More of this will follow later.
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Example 2.10. • Let Pn “ δ 1
n
. Then

´
f dPn “ fp 1

n q Ñ fp0q “´
fdδ0 for any continuous, bounded function f . Hence Pn Ñ δ0.

• Pn :“ δn does not converge weakly, as for example

ˆ
cospπxqdPnpxq

does not converge.

• Pn :“ 1
nδn ` p1 ´ 1

n qδ0. Let f P CbpRq arbitrary. Then

ˆ
f dPn “

1

n
pnq ` p1 ´

1

n
qfp0q Ñ fp0q

since f is bounded. Hence Pn ùñ δ0.

• Pn :“ 1?
2πn

e´ x2

2n . This “converges” towards the 0-measure, which

is not a probability measure. Hence Pn does not converge weakly.
(Exercise)

Definition 2.11. We say that a series of random variables Xn converges

in distribution to X (notation: Xn
d

ÝÑ X), iff Pn ùñ P, where Pn is
the distribution of Xn and P is the distribution of X.

It is easy to see, that this is equivalent to ErfpXnqs Ñ ErfpXqs for all f P

CbpRq.

Example 2.12. Let Xn :“ 1
n and Fn the distribution function, i.e. Fn “

1r 1
n ,8q. Then Pn “ δ 1

n
ùñ δ0 which is the distribution of X ” 0. But

Fnp0q Ñ F p0q.

Theorem 2.13. Xn
d

ÝÑ X iff Fnptq Ñ F ptq for all continuity points t of F .

Theorem 2.14 (Levy’s continuity theorem). Xn
d

ÝÑ X iff φXnptq Ñ φptq
for all t P R.

We will assume these two theorems for now and derive the central limit theorem.
The theorems will be proved later.

[Lecture 11, ]

2.3 The Central Limit Theorem

For X1, X2, . . . i.i.d. we were looking at Sn :“
řn

i“1 Xi. Then the LLN basically
states, that Sn can be approximated by nErX1s.

2 CHARACTERISTIC FUNCTIONS, WEAK CONVERGENCE AND THE
CENTRAL LIMIT THEOREM

38



Question 2.14.31. What is the error of this approximation?

We set µ :“ ErX1s and σ2 :“ VarpX1q P p0,8q. We know that ErSns “ nµ and
VarpSnq “ nσ2.

The central limit theorem basically states, that the distribution of Sn can
be approximated by a normal distribution with mean nµ and variance nσ2,
i.e. Sn « nµ ` σ

?
nN for N „ N p0, 1q, where « is to be made precise.

For intuition, watch https://3blue1brown.com/lessons/clt.

Example 2.15. We throw a fair die n “ 100 times and denote the sum of
the faces by Sn :“ X1 ` . . .`Xn, where X1, . . . , Xn are i.i.d. and uniformly
distributed on t1, . . . , 6u. Then ErSns “ 350 and

a

VarpSnq “ σ « 17.07. Missing pic-
tures

Question 2.15.32. Why do statisticians care about σ instead of σ2?

By definition, VarpXq “ ErpX ´ EpXqq2s, hence
a

VarpXq can be interpreted
as a distance. One could also define VarpXq to be Er|X ´EpXq|s but this is not
well behaved.

Example 2.16. Let X1, . . . , Xn be i.i.d. and X1 „ Expp1q. We knot that
for n P N, ErSns “ n and

a

VarpSnq “
?
n. For n “ 100, 300, 500, we get

the following picture Missing pic-
ture

In order to make things nicer, we do the following:

1. center: Sn ´ ErSns,

2. normalize: Sn´ErSns?
VarpSnq

.

Then Er
Sn´ErSns?

VarpSnq
s “ 0 and Varp Sn´ErSns?

VarpSnq
q “ 1.

Theorem 2.17 (Central limit theorem, 1920s, Lindeberg and Levy). Let
X1, X2, . . . be i.i.d. random variables with ErX1s “ µ and VarpX1q “ σ2 P

p0,8q.

Let Sn :“
řn

i“1 Xi. Then

Sn ´ nν

σ
?
n

d
ÝÑ N p0, 1q,

i.e. @x P R :

lim
nÑ8

P
„

Sn ´ nµ

σ
?
n

ď x

ȷ

“ Φpxq “

ˆ x

´8

1
?
2π

e
´t2

2 dt.
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We will abbreviate the central limit theorem by CLT.

There exists a special case of this theorem, which was proved earlier:

Theorem 2.18 (de-Moivre (1730, p “ 0.5), Laplace (1812, general p )).
Let Sn “ Binpn, pq, where p P p0, 1q is constant. Then, for all x P R :

lim
nÑ8

P

«

Sn ´ np
a

npp1 ´ pq
ď x

ff

“ Φpxq.

Proof. Let X1, X2, . . . i.i.d. with X1 „ Berppq. Then ErX1s “ p and VarpX1q “

pp1 ´ pq. Furthermore
řn

i“1 Xi „ Binpn, pq, and the special case follows from
Central Limit Theorem (2.17).

Theorem 2.18 is a useful tool for approximating the Binomial distribution with
the normal distribution. If Sn „ Binpn, pq and ra, bs Ď R, we have

Pra ď Sn ď bs “ P

«

a ´ np
a

npp1 ´ pq
ď

Sn ´ np
a

npp1 ´ pq
ď

b ´ np
a

npp1 ´ pq

ff

« Φpb1q´Φpa1q.

Example 2.19. We consider a n “ 40-times Bernoulli trial with success
probability p “ 1

2 . Then 0.9597 “ PrS ď 25s « Φp 5?
10

« 0.9431.

However, S takes only integer values, which means PrS ď 25s “ PrS26s.
With this in mind, a better approximation is

PrS ď 25s “ PrS ď 25.5s « Φ

ˆ

5.5
?
10

˙

« 0.9541.

Example 2.20. Consider a particle that start at 0 and moves on the lattice
Z. In every step, takes a step `1 with probability 1

2 or ´1 with probability
1
2 .

More formally: Let X1, X2, . . . be i.i.d. with PrX1 “ 1s “ PrX1 “ ´1s “ 1
2

and consider Sn :“
řn

i“1 Xi.

Then the Central Limit Theorem (2.17) states, that Sn « N p0, nq.

Example 2.21. Consider an election with two candidates A and B. The
relative number of votes for A is p P p0, 1q (constatn, but unknown) How
many ballots do we need to count to make sure that the probability of
erring more than 1% is not bigger than 5%?

Each ballot is a vote for A with probability p. We have Sn „ Binpn, pq and
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we want to find n such that Pr|Sn ´ np| ď 0.01ns ď 0.05. We have that

Pr|Sn ´ np| ď 0.01ns

“ Pr´0.01n ď Sn ´ np ď 0.01ns

“ Pr´
0.01n

a

npp1 ´ pq
ď

Sn ´ np
a

npp1 ´ pq
ď

0.01n
a

npp1 ´ pq

« Φp0.01

c

n

pp1 ´ pq
q ´ Φp´0.01

c

n

pp1 ´ pq
q

“ 2Φp0.01

c

n

pp1 ´ pq
q ´ 1

Hence, we want Φp0.01
b

n
pp1´pq

q « 1.95
2 , i.e. n “ p1.96q21002p ¨ p1 ´ pq We

have p ¨ p1 ´ pq ď 1
4 , thus n « p1.96q2 ¨ 1002 ¨ 1

4 “ 9600 suffices.

[Lecture 12, 2023-05-16]

We now want to prove the Central Limit Theorem (2.17). The plan is to do the
following:

1. Identify the characteristic function of a standard normal

2. Show that the characteristic functions of the Vn converge pointwise to that
of N .

3. Apply Levy’s Continuity Theorem (2.14)

First, we need to prove some properties of characteristic functions.

Lemma 2.22. For every real random variable X, we have

(i) φXp0q “ 1 and |φXptq| ď 1 for all t P R.

(ii) φX is uniformly continuous.

(iii) If Er|X|ns ă 8 for any n P N, then φX i n-times continuously differ-

entiable and ErXns “ p´iqnφ
pnq

X p0q.

(iv) For independent random variables X and Y , we have

φX`Y ptq “ φXptq ¨ φY ptq.

Proof of Lemma 2.22. (i) φXp0q “ Erei0X s “ Er1s “ 1. For t P R, we have

|φXptq| “ |EreitX s|
Jensen

ď Er|eitX |s “ 1.
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(ii) Let t, h P R. Then

|φXpt ` hq ´ φXptq| “ |Ereipt`hqX ´ eitX s|

“ |EreitXpeihX ´ 1qs|

Jensen
ď Er|eitX | ¨ |eihX ´ 1|s

“ Er|eihX ´ 1|s :“gphq

Hence suptPR |φXpt ` hq ´ φXptq| ď gphq. We show that lim
hÑ0

gphq “ 0.

For all ω P Ω, we realize

lim
hÑ0

|eihXpωq ´ 1| “ 0.

Thus |eihX ´ 1|
hÑ0

ÝÝÝÑ 0 almost surely. Since also for all h P R we have
|eihX ´ 1| ď 2, it follow that |eihX ´ 1| is dominated for all h P R. Thus,
we can apply the dominated convergence theorem and obtain

lim
hÑ0

gphq “ lim
hÑ0

Er|eihX ´ 1|s “ Er lim
hÑ0

|eihX ´ 1|s “ 0.

It follows that
lim
nÑ0

sup
tPR

|φXpt ` hq ´ φXptq| “ 0,

which means that φX is uniformly continuous.

(iii)

Claim 2.22.1. For y P R, we have |eiy ´ 1| ď |y|.

Subproof. For y ě 0, we have

|eiy ´ 1| “ |

ˆ y

0

cospsqds ` i

ˆ y

0

sinpsqds|

“ |

ˆ y

0

eis ds|

Jensen
ď

ˆ y

0

|eis|ds “ y.

For y ă 0, we have |eiy ´ 1| “ |e´iy ´ 1| and we can apply the above to
´y. ■

First, we look at n “ 1. Then Er|X|s ă 8. Consider

φXpt ` hq ´ φXptq

h
“ E

„

eitX
eihX ´ 1

h

ȷ

.
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We have ez “
ř8

n“0
zk

n! . Hence

lim
nÑ8

eitX

˜

1 ` ihX `
pihXq

2

2 ` oph2q ´ 1

h

¸

“ eitX iX almost surely.

For arbitrary h P R, we have

|eitX
eihX

h
| ď

ˇ

ˇ

ˇ

ˇ

1

h

`

eihX ´ 1
˘

ˇ

ˇ

ˇ

ˇ

(2.22.1)
ď

ˇ

ˇ

ˇ

ˇ

1

h
ihX

ˇ

ˇ

ˇ

ˇ

“ |X|.

Thus the dominated convergence theorem can be applied and we obtain

lim
hÑ0

φXpt ` hq ´ φXptq

h
“ lim

hÑ0
E

„

eitX
ˆ

eihX ´ 1

h

˙ȷ

“ EreitX iXs.

It follows that φX is differentiable and φXptq “ EreitX iXs. For t “ 0 we
get φ1

Xp0q “ iErXs, i.e. -iφ1
Xp0q “ ErXs.

Adapting the proof of (ii) gives that φ1
Xptq is continuous.

Adapting the proof of (iii) gives the statement for arbitrary n P N.

(iv) Easy exercise.

Lemma 2.23. For X „ N p0, 1q, we have φXptq “ e´ t2

2 for all t P R.

Proof of Lemma 2.23. We have

φXptq “
1

?
2π

ˆ 8

´8

eitxe´ x2

2 dx

“
1

?
2π

ˆ 8

´8

pcosptxq ` i sinptxqqe´ x2

2 dx

“
1

?
2π

ˆ 8

´8

cosptxqe´ x2

2 dx,

since, as x ÞÑ sinptxq is odd and x ÞÑ e´ x2

2 is even, their product is odd, wich
gives that the integral is 0.
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φ1
Xptq “ EriXeitX s

“
1

?
2π

ˆ 8

´8

ix pcosptxq ` i sinptxqq e´ x2

2 dx

“
1

?
2π

ˆ

i

ˆ 8

´8

x cosptxq

˙

e´ x2

2 dx

“
1

?
2π

¨

˚

˚

˝

i

ˆ 8

´8

x cosptxqe´ x2

2 dx
looooooooooooomooooooooooooon

“0

`

ˆ 8

´8

´ sinptxqe´ x2

2 dx

˛

‹

‹

‚

“

ˆ 8

´8

sinptxq
loomoon

ypxq

1
?
2π

p´xqei
x2

2

looooooomooooooon

f 1pxq

dx

“ rsinptxq
1

?
2πe´ x2

2

s8
x“´8

loooooooooooooomoooooooooooooon

“0

´

ˆ 8

´8

t cosptxq
1

?
2π

e´ x2

2 dx

“ ´tφXptq

Thus, for all t P R

plogpφXptqqq1 “
φ1
Xptq

φXptq
“ ´t.

Hence there exists c P R, such that

logpφXptqq “ ´
t2

2
` c.

Since φXp0q “ 1, we obtain c “ 0. Thus

φXptq “ e´ t2

2 .

Now, we can finally prove the Central Limit Theorem (2.17):

Proof of Theorem 2.17. Let X1, X2, . . . be i.i.d. random variables with ErX1s “

µ1, VarpX1q “ σ2.

Let

Yi :“
Xi ´ µ

σ

i.e. we normalize to ErY1s “ 0 and VarpY1q “ 1. We need to show that

Vn :“
Sn ´ nµ

σ
?
n

“
Y1 ` . . . ` Yn

?
n

ω,nÑ8
ÝÝÝÝÝÑ N p0, 1q
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Let t P R. Then

φVn
ptq “ EreitYns

“ Ere
it

´

Y1`...`Yn?
n

¯

s

“ E
”

e
it

Y1?
n

ı

¨ . . . ¨ E
”

e
it Yn?

n

ı

“

ˆ

φ

ˆ

t
?
n

˙˙n

.

where φptq :“ φY1
ptq.

We have

φpsq “ φp0q ` φ1p0qs `
φ2p0q

2
s2 ` ops2q, as s Ñ 0

“ 1 ´ iErY1ss
loomoon

“0

´ErY 2
1 s

s2

2
` ops2q, as s Ñ 0

“ 1 ´
s2

2
` ops2q, as s Ñ 0

Setting s :“ t?
n
we obtain

φ

ˆ

t
?
n

˙

“ 1 ´
t2

2n
` o

ˆ

t2

n

˙

as n Ñ 8

φVnptq “

ˆ

φ

ˆ

t
?
n

˙˙n

“

ˆ

1 ´
t2

2n
` o

ˆ

t2

n

˙˙n
nÑ8

ÝÝÝÑ e´ t2

2 ,

where we have used the following:

Claim 2.17.1. For a sequence an, n P N with lim
nÑ8

nan “ λ, it holds that

lim
nÑ8

p1 ` anqn “ eλ.

We have shown that

φnptq
nÑ8

ÝÝÝÑ e´ t2

2 “ φN p0,1qptq.

Using Levy’s Continuity Theorem (2.14), we obtain the Central Limit Theorem
(2.17).

Remark 2.23.33. If X : Ω Ñ Rd with distribution ν, we define

φX : Rd ÝÑ C
t ÞÝÑ Ereixt,Xys
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where xt,Xy :“
řd

i“1 tiXi.

Exercise: Find out, which properties also hold for d ą 1. TODO

[Lecture 13, 2023-05]

We have seen, that if X1, X2, . . . are i.i.d. with µ “ ErX1s, σ2 “ VarpX1q, then
řn

i“1pXi´µq

σ
?
n

pdq
ÝÝÑ N p0, 1q.

Question 2.23.34. What happens if X1, X2, . . . are independent, but not
identically distributed? Do we still have a CLT?

Theorem 2.24 (Lindeberg CLT). Assume X1, X2, . . . , are independent
(but not necessarily identically distributed) with µi “ ErXis ă 8 and
σ2
i “ VarpXiq ă 8. Let Sn “

a

řn
i“1 σ

2
i and assume that

lim
nÑ8

1

S2
n

n
ÿ

i“1

E
“

pXi ´ µiq
2
1|Xi´µi|ąεSn

‰

“ 0

for all ε ą 0 (Lindeberg conditiona).

Then the CLT holds, i.e.

řn
i“1pXi ´ µiq

Sn

pdq
ÝÝÑ N p0, 1q.

a“The truncated variance is negligible compared to the variance.”

Theorem 2.25 (Lyapunov condition). Let X1, X2, . . . be independent,
µi “ ErXis ă 8, σ2

i “ VarpXiq ă 8 and Sn :“
a

řn
i“1 σ

2
i . Then, as-

sume that, for some δ ą 0,

lim
nÑ8

1

S2`δ
n

n
ÿ

i“1

ErpXi ´ µiq
2`δs “ 0

(Lyapunov condition). Then the CLT holds.

Remark 2.25.35. The Lyapunov condition implies the Lindeberg condi-
tion. (Exercise).

We will not prove Lindeberg’s CLT (2.24) or Lyapunov’s CLT (2.25) in this
lecture. However, they are quite important.

We will now sketch the proof of Levy’s Continuity Theorem (2.14), details can
be found in the notes. TODO: copy

from official
notes
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Definition 2.26. Let pXnqn be a sequence of random variables. The dis-
tribution of pXnqn is called tight (dt. “straff”), if

lim
aÑ8

sup
nPN

Pr|Xn| ą as “ 0.

Example: 2.26.36 (Exercise 8.1). Copy

A generalized version of Levy’s Continuity Theorem (2.14) is the following:

Theorem 2.27 (A generalized version of Levy’s Continuity Theorem (2.14)).

Suppose we have random variables pXnqn such that EreitXns
nÑ8

ÝÝÝÑ φptq
for all t P R for some function φ on R. Then the following are equivalent:

(a) The distribution of Xn is tight.

(b) Xn
pdq

ÝÝÑ X for some real-valued random variable X.

(c) φ is the characteristic function of X.

(d) φ is continuous on all of R.

(e) φ is continuous at 0.
Proof of The-
orem 2.27
(Exercise 8.2)Example 2.28. Let Z „ N p0, 1q and Xn :“ nZ. We have φXn

ptq “

ErreitXns “ e´ 1
2 t

2n2 nÑ8
ÝÝÝÑ 1tt“0u. 1tt“0u is not continuous at 0. By

Theorem 2.27, Xn can not converge to a real-valued random variable.

Exercise: Xn
pdq

ÝÝÑ X, where PrX “ 8s “ 1
2 “ PrX “ ´8s.

Similar examples are µn :“ δn and µn :“ 1
2δn ` 1

2δ´n.

Example 2.29. Suppose that X1, X2, . . . are i.d.d. with ErX1s “ 0. Let
σ2 :“ VarpXiq. Then the distribution of Sn

σ
?
n
is tight:

E

«

ˆ

Sn
?
n

2˙2
ff

“
1

n
ErpX1 ` . . . ` Xnq2s

“ σ2

For a ą 0, by Chebyshev’s Inequality (0.9), we have

P
„

ˇ

ˇ

ˇ

ˇ

Sn
?
n

ˇ

ˇ

ˇ

ˇ

ą a

ȷ

ď
σ2

a2
aÑ8

ÝÝÝÑ 0.
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verifying Theorem 2.27.

Example 2.30. Suppose C is a random variable which is Cauchy dis-
tributed, i.e. C has probability distribution fCpxq “ 1

π
1

1`x2 .

´6 ´4 ´2 0 2 4 6

0

0.1

0.2

0.3

Figure 1: Probability density function of C

We know that Er|C|s “ 8.

We have φCptq “ EreitCs “ e´|t|. Suppose C1, C2, . . . , Cn are i.i.d. Cauchy
distributed and let Sn :“ C1 ` . . . ` Cn.

Exercise: φSn
n

ptq “ e´|t| “ φC1ptq, thus Sn

n „ C.

We will prove Levy’s Continuity Theorem (2.14) assuming Theorem 2.13. The-
orem 2.13 will be shown in the notes. TODO: copy

from official
notes

We will need the following:

Lemma 2.31. Given a sequence pFnqn of probability distribution func-
tions, there is a subsequence pFnk

qk of Fn and a right continuous, non-
decreasing function F , such that Fnk

Ñ F at all continuity points of F .
(We do not yet claim, that F is a probability distribution function, as we
ignore lim

xÑ8
F pxq and lim

xÑ´8
F pxq for now).

Lemma 2.32. Let µ P M1pRq, A ą 0 and φ the characteristic function of

µ. Then µ pp´A,Aqq ě A
2

ˇ

ˇ

ˇ

´ 2
A

´ 2
A

φptqdt
ˇ

ˇ

ˇ
´ 1.
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Proof of Lemma 2.32. We have
ˆ 2

A

´ 2
A

φptqdt “

ˆ 2
A

´ 2
A

ˆ
R
eitxµpdxqdt

“

ˆ
R

ˆ 2
A

´ 2
A

eitx dtµpdxq

“

ˆ
R

ˆ 2
A

´ 2
A

cosptxqdtµpdxq

“

ˆ
R

2 sin
`

2x
A

˘

x
µpdxq.

Hence

A

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 2
A

´ 2
A

φptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

A

ˆ
R

sin
`

2x
A

˘

x
µpdtq

ˇ

ˇ

ˇ

ˇ

ˇ

“ 2

ˇ

ˇ

ˇ

ˇ

ˆ
R
sinc

ˆ

2x

A

˙

µpdtq

ˇ

ˇ

ˇ

ˇ

ď 2

»

—

—

—

–

ˆ
|x|ăA

ˇ

ˇ

ˇ

ˇ

sinc

ˆ

2x

A

˙
ˇ

ˇ

ˇ

ˇ

loooooomoooooon

ď1

µpdxq `

ˆ
|x|ěA

ˇ

ˇ

ˇ

ˇ

sinc

ˆ

2x

A

˙
ˇ

ˇ

ˇ

ˇ

µpdxq

fi

ffi

ffi

ffi

fl

ď 2

«

µ pp´A,Aqq `
A

2

ˆ
|x|ěA

sinp2x{Aq|

|x|
µpdxq

ff

ď 2

«

µ pp´A,Aqq `
A

2

ˆ
|x|ěA

1

A
µpdxq

ff

ď 2µpp´A,Aqq ` µpp´A,Aqcq

“ 1 ` µpp´A,Aqq.

Proof of Theorem 2.14. “ ùñ ” If µn ùñ µ, then by definition
´
f dµn Ñ´

f dµ for all f P Cb. Since x Ñ eitx is continuous and bounded, it follows that
φnptq Ñ φptq for all t P R.

“ ðù ”

Claim 2.14.1. Given ε ą 0 there exists A ą 0 such that lim infn µn pp´A,Aqq ě

1 ´ 2ε.

Proof of Claim 2.14.1. If f is continuous, then

1

η

ˆ x`η

x´η

fptqdt
ηÓ0

ÝÝÑ fpxq.

2 CHARACTERISTIC FUNCTIONS, WEAK CONVERGENCE AND THE
CENTRAL LIMIT THEOREM

49



Applying this to φ at t “ 0, one obtains:

ˇ

ˇ

ˇ

ˇ

ˇ

A

4

ˆ 2
A

´ 2
A

φptqdt ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ε

2
(4)

Claim 2.14.1.1. For n large enough, we have

ˇ

ˇ

ˇ

ˇ

ˇ

A

4

ˆ 2
A

´ 2
A

φnptqdt ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε. (5)

Subproof. Apply dominated convergence. ■

So to prove µn pp´A,Aqq ě 1 ´ 2ε, apply Lemma 2.32. It suffices to show that

A

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 2
A

´ 2
A

φnptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

´ 1 ě 1 ´ 2ε

or

1 ´
A

4

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 2
A

´ 2
A

φnptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε,

which follows from Equation 5.

By Lemma 2.31 there exists a right continuous, non-decreasing F and a subse-
quence pFnk

qk of pFnqn where Fn is the probability distribution function of µn,
such that Fnk

pxq Ñ F pxq for all x where F is continuous.

Claim 2.14.2.
lim

nÑ´8
F pxq “ 0

and
lim
nÑ8

F pxq “ 1,

i.e. F is a probability distribution function.3

Subproof. We have

µnk
pp´8, xsq “ Fnk

pxq Ñ F pxq.

Again, given ε ą 0, there exists A ą 0, such that µnk
pp´A,Aqq ą 1 ´ 2ε

(Claim 2.14.1).

Hence F pxq ě 1 ´ 2ε for x ą A and F pxq ď 2ε for x ă ´A. This proves the
claim. ■

3This does not hold in general!
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Since F is a probability distribution function, there exists a probability measure
ν on R such that F is the distribution function of ν. Since Fnk

pxq Ñ Fnpxq at

all continuity points x of F , by Theorem 2.13 we obtain that µnk

kÑ8
ùñ ν. Hence

φµnk
ptq Ñ φνptq, by the other direction of that theorem. But by assumption,

φµnk
p¨q Ñ φnp¨q so φµp¨q “ φνp¨q. By the Uniqueness Theorem (2.3), we get

µ “ ν.

We have shown, that µnk
ùñ µ along a subsequence. We still need to show

that µn ùñ µ.

Fact 2.32.37. Suppose an is a bounded sequence in R, such that any
convergent subsequence converges to a P R. Then an Ñ a.

Assume that µn does not converge to µ. By Theorem 2.13, pick a continu-
ity point x0 of F , such that Fnpx0q Ñ F px0q. Pick δ ą 0 and a subse-
quence Fn1px0q, Fn2px0q, . . . which are all outside pF px0q ´ δ, F px0q ` δq. Then
φn1

, φn2
, . . . Ñ φ. Now, there exists a further subsequence G1, G2, . . . of Fni

,
which converges. G1, G2, . . . is a subsequence of F1, F2, . . .. However G1, G2, . . .
is not converging to F , as this would fail at x0. This is a contradiction.

Proof of Theorem 2.27.

2.4 Summary

What did we learn:

• How to construct product measures

• WLLN and SLLN

• Kolmogorov’s three series theorem

• Fourier transform, weak convergence and CLT
[Lecture 14, 2023-05-25]

3 Conditional Expectation

3.1 Introduction

Consider a probability space pΩ,F ,Pq and two events A,B P F with PpBq ą 0.

Definition 3.1. The conditional probability of A given B is defined as

PpA|Bq :“
PpA X Bq

PpBq
.

Suppose we have two random variablesX and Y on Ω, such thatX takes distinct
values x1, x2, . . . , xm and Y takes distinct values y1, . . . , yn. Then for this case,
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define the conditional expectation of X given Y “ yj as

ErX|Y “ yjs :“
m
ÿ

i“1

xiPrX “ xi|Y “ yjs.

The random variable Z “ ErX|Y s is defined as follows: If Y pωq “ yj then

Zpωq :“ ErX|Y “ yjs
loooooomoooooon

:“zj

.

Note that Ωj :“ tω : Y pωq “ yju defines a partition of Ω and on each Ωj (“the
jth Y -atom”) Z is constant.

Let G :“ σpY q. Then Z is measurable with respect to G. Furthermore
ˆ

tY “yju

Z dP “ zj

ˆ
tY “yju

dP

“ zjPrY “ yjs

“

m
ÿ

i“1

xiPrX “ xi|Y “ yjsPrY “ yjs

“

m
ÿ

i“1

xiPrX “ xi, Y “ yjs

“

ˆ
tY “yju

X dP.

Hence ˆ
G

Z dP “

ˆ
G

X dP

for all G P G.

We now want to generalize this to arbitrary random variables.

Theorem 3.2. Let pΩ,F ,Pq be a probability space, X P L1pPq and G Ď F
a sub-σ-algebra. Then there exists a random variable Z such that

(a) Z is G-measurable and Z P L1pPq,

(b)
´
G
Z dP “

´
G
X dP for all G P G.

Such a Z is unique up to sets of measure 0 and is called the conditional
expectation of X given the σ-algebra G and written Z “ ErX|Gs.

Remark 3.2.38. Suppose G “ tH,Ωu, then

ErX|Gs “ pω ÞÑ ErXsq
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is a constant random variable.

Definition 3.3 (Conditional probability). Let A Ď Ω be an event and
G Ď F a sub-σ-algebra. We define the conditional probability of A
given G by

PrA|Gs :“ Er1A|Gs.

3.2 Existence of Conditional Probability

We will give two different proves of Theorem 3.2. The first one will use orthog-
onal projections. The second will use the Radon-Nikodym theorem. We’ll first
do the easy proof, derive some properties and then do the harder proof.

Lemma 3.4. Suppose H is a Hilbert space, i.e. H is a vector space with
an inner product x¨, ¨yH which defines a norm by }x}2H “ xx, xyH making
H a complete metric space.

For any x P H and closed, convex subspace K Ď H, there exists a unique
z P K such that the following equivalent conditions hold:

(a) @y P K : xx ´ z, yyH “ 0,

(b) @y P K : }z ´ x}H ď }z ´ x}H .

Proof. TODO: copy
from official
notesProof of Theorem 3.2. Almost sure uniqueness of Z:

Suppose X P L1 and Z and Z 1 satisfy (a) and (b). We need to show that
PrZ ‰ Z 1s “ 0. By (a), we have Z,Z 1 P L1pΩ,G,Pq. By (b), ErpZ ´Z 1q1Gs “ 0
for all G P G.

Assume that PrZ ą Z 1s ą 0. Since tZ ą Z 1 ` 1
nu Ò tZ ą Z 1u, we see that

PrZ ą Z 1 ` 1
n s ą 0 for some n. However tZ ą Z 1 ` 1

nu P G, which is a
contradiction, since

ErpZ ´ Z 1q1Z´Z1ą 1
n

s ě
1

n
PrZ ´ Z 1 ą

1

n
s ą 0.

Existence of EpX|Gq for X P L2:

Let H “ L2pΩ,F ,Pq and K “ L2pΩ,G,Pq.

K is closed, since a pointwise limit of G-measurable functions is G measurable
(if it exists). By Lemma 3.4, there exists z P K such that

ErpX ´ Zq2s “ inftErpX ´ W q2s | W P L2pGqu
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and
@Y P L2pGq : xX ´ Z, Y y “ 0. (6)

Now, if G P G, then Y :“ 1G P L2pGq and by (6) ErZ1Gs “ ErX1Gs.

Existence of EpX|Gq for X P L1 :

Let X “ X` ´ X´. It suffices to show (a) and (b) for X`. Choose bounded
random variables Xn ě 0 such that Xn Ò X. Since each Xn P L2, we can choose
a version Zn of EpXn|Gq.

Claim 3.2.1. 0
a.s.
ď Zn Ò.

Subproof. TODO: copy
from official
notes

■

Define Zpωq :“ lim supnÑ8 Znpωq. Then Z is G-measurable and since Zn Ò Z,
by the Conditional Monotone Converence Theorem (3.10), EpZ1Gq “ EpX1Gq

for all G P G.

[Lecture 15, 2023-06-06]

3.3 Properties of Conditional Expectation

We want to derive some properties of conditional expectation.

Theorem 3.5 (Law of total expectation).

ErErX|Gss “ ErXs.

Proof. Apply (b) from the definition for G “ Ω P G.

Theorem 3.6. If X is G-measurable, then X
a.s.
“ ErX|Gs.

Proof. Suppose PrX ‰ Y s ą 0. Without loss of generality PrX ą Y s ą 0.
Hence PrX ą Y ` 1

n s ą 0 for some n P N. Let A :“ tX ą Y ` 1
nu. Then

ˆ
A

X dP ě
1

n
PpAq `

ˆ
A

Y dP,

contradicting property (b) from Theorem 3.2.

Example 3.7. Suppose X P L1pPq, G :“ σpXq. Then X is measurable
with respect to G. Hence ErX|Gs “ X.
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Theorem 3.8 (Linearity). For all a, b P R we have

EraX1 ` bX2|Gs “ aErX1|Gs ` bErX2|Gs.

Proof. trivial add details

Theorem 3.9 (Positivity). If X ě 0, then ErX|Gs ě 0 a.s.

Proof. Let W be a version of ErX|Gs. Suppose PrW ă 0s ą 0. Then

G :“ tW ă ´
1

n
u P G.

For some n P N, we have PrGs ą 0. However it follows that
ˆ
G

PrX|GsdP ď ´
1

n
PrGs ă 0 ď

ˆ
G

X dP.

Theorem 3.10 (Conditional monotone convergence theorem). LetXn, X P

L1pΩ,F ,Pq. Suppose Xn ě 0 with Xn Ò X. Then ErXn|Gs Ò ErX|Gs.

Proof. Let Zn be a version of ErXn|Y s. Since Xn ě 0 and Xn Ò, by the
Positivity of Conditional Expectation (3.9), we have

ErXn|Gs
a.s.
ě 0

and
ErXn|Gs Ò a.s.

(consider Xn`1 ´ Xn ).

Define Z :“ lim supnÑ8 Zn. Then Z is G-measurable and Zn Ò Z a.s.

Take some G P G. We know by (b) that ErZn1Gs “ ErXn1Gs. The LHS
increases to ErZ1Gs by the monotone convergence theorem. Again by MCT,
ErXn1Gs increases to ErX1Gs. Hence Z is a version of ErX|Gs.

Theorem 3.11 (Conditional Fatou). Let Xn P L1pΩ,F ,Pq, Xn ě 0. Then

Erlim inf
nÑ8

Xn|Gs ď lim inf
nÑ8

ErXn|Gs.

Proof. TODO: copy
from official
notes
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Theorem 3.12 (Conditional dominated convergence theorem). LetXn, Y P

L1pΩ,F ,Pq. Suppose that supn |Xnpωq| ă Y pωq a.e. and that Xn con-
verges to a pointwise limit X. Then ErXn|Gs Ñ ErX|Gs a.e.

Proof. TODO: copy
from official
notesRecall

Fact 3.12.39 (Jensen’s inequality). If c : R Ñ R is convex and Er|c˝X|s ă

8, then Erc ˝ Xs
a.s.
ě cpErXsq.

For conditional expectation, we have

Theorem 3.13 (Conditional Jensen’s inequality). Let X P L1pΩ,F ,Pq. If
c : R Ñ R is convex and Er|c ˝ X|s ă 8, then Erc ˝ X|Gs ě cpErX|Gsq a.s.

Fact 3.13.40. If c is convex, then there are two sequences of real numbers
an, bn P R such that

cpxq “ sup
n

panx ` bnq.

Proof of Theorem 3.13. By Fact 3.13.40, cpxq ě anX ` bn for all n. Hence

ErcpXq|Gs ě anErX|Gs ` Erbn|Gs “ anErX|Gs ` bn a.s.

for all n. Using that a countable union of sets o f measure zero has measure
zero, we conclude that a.s this happens simultaneously for all n. Hence

ErcpXq|Gs ě sup
n

panErX|Gs ` bnq
(3.13.40)

“ cpEpX|Gqq.

Recall

Fact 3.13.41 (Hölder’s inequality). Let p, q ě 1 such that 1
p ` 1

q “ 1.

Suppose X P LppPq and Y P LqpPq. Then

EpXY q ď Ep|X|pq
1
p

loooomoooon

:“}X}Lp

Ep|Y |qq
1
q .

Theorem 3.14 (Conditional Hölder’s inequality). Let p, q ě 1 such that
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1
p ` 1

q “ 1. Suppose X P LppPq and Y P LqpPq. Then

EpXY |Gq ď Ep|X|p|Gq
1
pEp|Y |q|Gq

1
q .

Theorem 3.15 (Tower property). Suppose F Ě G Ě H are sub-σ-algebras.
Then

E rErX|Gs | Hs
a.s.
“ ErX|Hs.

Proof. By definition, ErErX|Gs|Hs is H-measurable. For any H P H, we have
ˆ
H

ErErX|Gs|HsdP “

ˆ
H

ErX|GsdP

“

ˆ
H

X dP.

Hence ErErX|Gs|Hs
a.s.
“ ErX|Hs.

Theorem 3.16 (Taking out what is known). If Y is G-measurable and
bounded, then

ErY X|Gs
a.s.
“ Y ErX|Gs.

Proof. Assume w.l.o.g. X ě 0. Assume Y “ 1B , then Y simple, then take the
limit (using that Y is bounded). Exercise

Definition 3.17. Let G and H be σ-algebras. We call G and H indepen-
dent, if PpG X Hq “ PpGqPpHq for all events G P G, H P H.

Theorem 3.18 (Role of independence). Let X be a random variable, and
let G,H be σ-algebras.

If H is independent of σ pσpXq,Gq, then

ErX|σpG,Hqs
a.s.
“ ErX|Gs.

In particular, if X is independent of G, then

ErX|Gs
a.s.
“ ErXs.

Example 3.19 (Martingale property of the simple random walk). Suppose
X1, X2, . . . are i.i.d. with PrXi “ 1s “ PrXi “ ´1s “ 1

2 . Let Sn :“
řn

i“1 Xi

be the simple random walk. Let F denote the σ-algebra on the product
space. Define Fn :“ σpX1, . . .q. Intuitively, Fn contains all the information
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gathered until time n. We have F1 Ď F2 Ď F3 Ď . . .

For ErSn`1|Fns we obtain

ErSn`1|Fns
Linearity

“ ErSn|Fns ` ErXn`1|Fns
a.s.
“ Sn ` ErXn`1|Fns

Independence
“ Sn ` ErXns

“ Sn.

[Lecture 16, 2023-06-13]

Proof of Theorem 3.18. Let H be independent of σpσpXq,Gq. Then for all H P

H, we have that 1H and any random variable measurable with respect to either
σpXq or G must be independent.

It suffices to consider the case of X ě 0. Let G P G and H P H. By assumption,
X1G and 1H are independent. Let Z :“ ErX|Gs. Then

ErX;G X Hs
loooooomoooooon

:“
´
GXH

X dP

“ ErpX1Gq1H s

“ ErX1GsEr1H s

“ ErZ1GsPpHq

“ ErZ;G X Hs

The identity above means, that the measures A ÞÑ ErX;As and A ÞÑ ErZ;As

agree on the σ-algebra σpG,Hq for events of the form G X H. Since sets of this
form generate σpG,Hq, these two measures must agree on σpG,Hq. The claim
of the theorem follows by the uniqueness of conditional expectation.

To deduce the second statement, choose G “ tH,Ωu.

3.4 The Radon Nikodym Theorem

First, let us recall some basic facts:

Fact 3.19.42. Let pΩ,F , µq be a σ-finite measure space, i.e. Ω can be
decomposed into countably many subsets of finite measure. Let f : Ω Ñ

r0,8q be measurable. Define νpAq :“
´
A
f dµ. Then ν is also a σ-finite

measure on pΩ,Fq. Application
of mct

Moreover, ν is finite iff f is integrable.

Note that in this setting, if µpAq “ 0 it follows that νpAq “ 0.

The Radon Nikodym theorem is the converse of that:

Theorem 3.20 (Radon-Nikodym). Let µ and ν be two σ-finite measures
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on pΩ,Fq. Suppose

@A P F . µpAq “ 0 ùñ νpAq “ 0.

Then

(1) there exists Z : Ω Ñ r0,8q measurable, such that

@A P F . νpAq “

ˆ
A

Z dµ.

(2) Such a Z is unique up to equality a.e. (w.r.t. µ).

(3) Z is integrable w.r.t. µ iff ν is a finite measure.

Such a Z is called the Radon-Nikodym derivative.

Definition 3.21. Whenever the property @A P F , µpAq “ 0 ùñ νpAq “

0 holds for two measures µ and ν, we say that ν is absolutely continuous
w.r.t. µ. This is written as ν ! µ.

Definition: 3.21.43. Two measures µ and ν on a measure space pΩ,Fq

are called singular, denoted µKν, iff there exists A P F such that

µpAq “ νpAcq “ 0.

With the Radon-Nikodym Theorem (3.20) we get a very short proof of the
existence of conditional expectation:

Proof (Second proof of Theorem 3.2). Let pΩ,F ,Pq as always, X P L1pPq and
G Ď F . It suffices to consider the case of X ě 0. For all G P G, define
νpGq :“

´
G
X dP. Obviously, ν ! P on G. Then apply the Radon-Nikodym

Theorem (3.20).

Proof of Theorem 3.20. We will only sketch the proof. A full proof can be found
in the official notes.

Step 1: Uniqueness TODO: copy
from official
notesStep 2: Reduction to the finite measure case TODO: copy
from official
notesStep 3: Getting hold of Z Assume now that µ and ν are two finite measures.

Let

C :“

"

f : Ω Ñ r0,8s

ˇ

ˇ

ˇ

ˇ

@A P F .

ˆ
A

f dµ ď νpAq

*

.
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We have C ‰ H since 0 P C. The goal is to find a maximal function Z in C.
Obviously its integral will also be maximal.

(a) If f, g P C, than f _ g (the pointwise maximum) s also in C.

(b) Suppose tfnuně1 is an increasing sequence in C. Let f be the pointwise
limit. Then f P C.

(c) For all f P C, we have ˆ
Ω

f dµ ď νpΩq ă 8.

Define α :“ supt
´
f dµ : f P Cu ď νpΩq ă 8. Let fn P C, n P N be a sequence

with
´
fn dµ Ñ α. Define gn :“ maxtf1, . . . , fnu P C. Applying (b), we get that

the pointwise limit, Z, is an element of C.

Step 4: Showing that our choice of Z works Define λpAq :“ νpAq ´´
A
Z dµ ě 0. λ is a measure.

Claim 3.20.1. λ “ 0.

Subproof. Call G P F good if the following hold:

(i) λpGq ´ 1
kµpGq ą 0.

(ii) @B Ď G,B P F . λpBq ´ 1
kµpBq ě 0.

Suppose we know that for all A P F , k P N we have λpAq ď 1
kµpAq. Then

λpAq “ 0 since µ is finite.

Assume the claim does not hold. Then there must be some k P N, A P F such
that λpAq ´ 1

kµpAq ą 0. Fix this A and k. Then A satisfies condition (i) of
being good, but it need not satisfy (ii).

The tricky part is to make A smaller such that it also satisfies (ii). TODO: copy
from official
notes

■

4 Martingales

4.1 Definition

We have already worked with martingales, but we will define them rigorously
now.

Definition 4.1 (Filtration). A filtration is a sequence pFnq of σ-algebras
such that Fn Ď Fn`1 for all n ě 1.

Intuitively, we can think of a Fn as the set of information we have gathered up
to time n. Typically Fn “ σpX1, . . . , Xnq for a sequence of random variables.
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Definition 4.2. Let pFnq be a filtration and X1, . . . , Xn be random vari-
ables such that Xi P L1pPq. Then we say that pXnqně1 is an pFnqn-
martingale if the following hold:

• Xn is Fn-measurable for all n.

(Xn is adapted to the filtration Fn ).

• ErXn`1|Fns
a.s.
“ Xn for all n.

pXnqn is called a submartingale, if it is adapted to Fn but

ErXn`1|Fns
a.s.
ě Xn.

It is called a supermartingale if it is adapted but ErXn`1|Fns
a.s.
ď Xn.

Corollary 4.3. Suppose that f : R Ñ R is a convex function such that
fpXnq P L1pPq. Suppose that pXnqn is a martingalea. Then pfpXnqqn is a
submartingale. Likewise, if f is concave, then ppfpXnqqn is a supermartin-
gale.

aIn this form it means, that there is some filtration, that we don’t explicitly specify

Proof. Apply Jensen’s Inequality (3.13).

Corollary 4.4. If pXnqn is a martingale, then ErXns “ ErX0s.

Example 4.5. The simple random walk:

Let ξ1, ξ2, .. iid, Prξi “ 1s “ Prξi “ ´1s “ 1
2 , Xn :“ ξ1 ` . . .` ξn and Fn :“

σpξ1, . . . , ξnq “ σpX1, . . . , Xnq. Then Xn is Fn-measurable. Showing that
pXnqn is a martingale is left as an exercise.

Example 4.6. See exercise sheet 9. Copy

[Lecture 17, 2023-06-15]

4.2 Doob’s Martingale Convergence Theorem

Definition 4.7 (Stochastic process). A stochastic process is a collection
of random variables pXtqtPT for some index set T . In this lecture we will
consider the case T “ N.

Definition 4.8 (Previsible process). Consider a filtration pFnqně0. A
stochastic process pCnqně1 is called previsible, iff Cn is Fn´1-measurable.
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Goal. What about a “gambling strategy”?

Consider a stochastic process pXnqnPN.

Note that the increments Xn`1 ´ Xn can be thought of as the win or loss per
round of a game. Suppose that there is another stochastic process pCnqně1 such
that Cn is determined by the information gathered up until time n, i.e. Cn is
previsible. Think of Cn as our strategy of playing the game. Then CnpXn ´

Xn´1q defines the win in the n-th game, while

Yn :“
n

ÿ

j“1

CjpXj ´ Xj´1q (7)

defines the cumulative win process.

Lemma 4.9. If pCnqně1 is previsible and pXnqně0 is a martingale and
there exists a constant Kn such that |Cnpωq| ď Kn. Then pYnqně1 defined
in (7) is also a martingale.

Remark 4.9.44. The assumption of Kn being constant can be weakened
to Cn P LppPq, Xn P LqpPq with 1

p ` 1
q “ 1.

If Cn ě 0 the assumption of pXnqně0 being a martingale can be weakened
to it being a sub-/supermartingale. Then pYnqně1 is a sub-/supermartingale
as well.

Proof of Lemma 4.9. It is clear that Yn is Fn-measurable. Suppose that Cn P

LppPq and Xn P LqpPq for all n. We have

}Yn}L1 ď

n
ÿ

i“1

}CipXi ´ Xi´1q}L1

Hölder
ď

n
ÿ

i“1

}Ci}Lp}pXi ´ Xi´1q}Lq

ă 8

and

ErYn`1 ´ Yn|Fns “ ErCn`1pXn`1 ´ Xnq|Fns

“ Cn`1pErXn`1|Fns ´ Xnq

“ 0.

Suppose we have pXnq adapted, Xn P L1pPq, pCnqně1 previsible. We play
according to the following principle: Pick two real numbers a ă b. Wait until
Xn ď a, then start playing. Stop playing when Xn ě b. I.e. define

4 MARTINGALES 62



C1 :“ 0,

Cn :“ 1tCn´1“1u ¨ 1tXn´1ďbu ` 1tCn´1“0u1tXn´1ăau.
(8)

Definition 4.10. Fix N P N and let

UX
N pra, bsq :“ #tUpcrossings of ra, bs made by n ÞÑ Xnpωq by time Nu,

i.e. UN pra, bsqpωq is the largest k P N0 such that we can find a sequence
0 ď s1 ă t1 ă s2 ă t2 ă . . . ă sk ă tk ď N such that Xsj pωq ă a and
Xtj pωq ą b for all 1 ď j ď k.

Clearly UX
N pra, bsq Ò as N increases. It follows that the monotonic limit

U8pra, bsq :“ lim
NÑ8

UN pra, bsq

exists pointwise.

Lemma 4.11.

tω| lim inf
NÑ8

ZN pωq ă a ă b ă lim sup
NÑ8

ZN pωqu Ď tω : UZ
8pra, bsqpωq “ 8u

for every sequence of measurable functions pZnqně1.

Lemma 4.12. Let Ynpωq :“
řn

j“1 CjpXj ´ Xj´1q, where Cn is defined as
in (8) Then

YN ě pb ´ aqUN pra, bsq ´ pXN ´ aq´.

Proof. Every upcrossing of ra, bs increases the value of Y by pb ´ aq, while the
last interval of play pXn ´ aq´ overemphasizes the loss.

Lemma 4.13. Suppose pXnqn is a supermartingale. Then in the above
setup

pb ´ aqErUN pra, bsqs ď ErpXN ´ aq´s.

Proof. Since Cn ě 0, by Lemma 4.9 we have that Yn is a supermartingale.
Hence ErYN s ď ErY1s “ 0. From Lemma 4.12 it follows that

pb ´ aqErUN pra, bsqs ď ErYns ` ErpXN ´ aq´s ď ErpXN ´ aq´s.
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Corollary 4.14. Let pXnqn be a supermartingale bounded in L1pPq,
i.e. supn Er|Xn|s ă 8. Then pb´ aqEpU8q ď |a| ` supn Ep|Xn|q. In partic-
ular, PrU8 “ 8s “ 0.

Proof. By Lemma 4.13 we have that

pb ´ aqErUN pra, bsqs ď Er|XN |s ` |a| ď sup
n

Er|Xn|s ` |a|.

Since UN p¨q ě 0 and UN p¨q Ò U8p¨q, by the monotone convergence theorem

EpUN pra, bsqs Ò ErU8pra, bsqs.

Let us now consider the case that our process pXnqně1 is a supermartingale
bounded in L1pPq.

Theorem 4.15 (Doob’s martingale convergence theorem). Any super-
martingale bounded in L1 converges almost surely to a random variable,
which is almost surely finite. In particular, any non-negative supermartin-
gale converges a.s. to a finite random variable.

Proof of Theorem 4.15. Let

Λ :“ tω|Xnpωq does not converge to anything in r´8,8su.

We have

Λ “ tω| lim inf
N

XN pωq ă lim sup
N

XN pωqu

“ tω| lim inf
N

XN pωq ă a ă b ă lim sup
N

XN pωqu

“
ď

a,bPQ
tω| lim inf

N
XN pωq ă a ă b ă lim sup

N
XN pωqu

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

Λa,b

We have Λa,b Ď tω : U8pra, bsqpωq “ 8u by Lemma 4.11. By Lemma 4.13 we
have PpΛa,bq “ 0, hence PpΛq “ 0. Thus there exists a random variable X8

such that Xn
a.s.

ÝÝÑ X8.

Claim 4.15.1. PrX8 P t˘8us “ 0.
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Subproof. It suffices to show that Er|X8|s ă 8. We have.

Er|X8|s “ Erlim inf
nÑ8

|Xn|s

Fatou
ď lim inf

n
Er|Xn|s

ď sup
n

Er|Xn|s

ă 8.

■

The second part follows from

Claim 4.15.2. Any non-negative supermartingale is bounded in L1.

Subproof. We need to show supn Ep|Xn|q ă 8. Since the supermartingale
is non-negative, we have Er|Xn|s “ ErXns and since it is a supermartingale
ErXns ď ErX0s. ■

[Lecture 18, 2023-06-20]

Recall our key lemma 4.13 for supermartingales from last time:

pb ´ aqErUN pra, bsqs ď ErpXn ´ aq´s.

What happens for submartingales? If pXnqnPN is a submartingale, then p´XnqnPN
is a supermartingale. Hence the same holds for submartingales, i.e.

Lemma 4.16. A (sub-/super-) martingale bounded in L1 converges a.s. to
a finite limit, which is a.s. finite.

4.3 Doob’s Lp Inequality

Question 4.16.45. What about Lp convergence of martingales?

Example 4.17 (A martingale not converging in L1 ). Fix u ą 1 and let
p “ 1

1`u . Let pZnqně1 be i.i.d. ˘1 with PrZn “ 1s “ p.

Let X0 “ x ą 0 and define Xn`1 :“ uZn`1Xn.
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Then pXnqn is a martingale, since

ErXn`1|Fns “ XnEruZn`1s

“ Xn

ˆ

p ¨ u ` p1 ´ pq ¨
1

u

˙

“ Xn

ˆ

ppu2 ´ 1q ` 1

u

˙

“ Xn.

By Doob’s Martingale Convergence Theorem (4.15), there exists an a.s. limit
X8. By the SLLN, we have almost surely

1

n

n
ÿ

k“1

Zk
a.s.

ÝÝÑ ErZ1s “ 2p ´ 1.

Hence
ˆ

Xn

x

˙
1
n

“ u
1
n

řn
k“1 Zk a.s.

ÝÝÑ u2p´1.

Since pXnqně0 is a martingale, we have EruZ1s “ 1. Hence 2p ´ 1 ă 0,
because u ą 1. Choose ε ą 0 small enough such that u2p´1p1 ` εq ă 1.
Then there exists N0pεq (possibly random) such that for all n ą N0pεq

almost

ˆ

Xn

x

˙
1
n a.s.

ď u2p´1p1 ` εq ùñ xru2p´1p1 ` εq
loooooomoooooon

ă1

sn
P

ÝÝÝÑ
nÑ8

0.

However, Xn cannot converge to 0 in L1, as ErXns “ ErX0s “ x ą 0.

L2 is nice, since it is a Hilbert space. So we will first consider L2.

Fact 4.17.46 (Martingale increments are orthogonal in L2 ). Let pXnqn

be a martingale with Xn P L2 for all n and let Yn :“ Xn ´ Xn´1 denote
the martingale increments. Then for all m ‰ n we have that

xYm|YnyL2 “ ErYnYms “ 0.

Proof. As ErY 2
n s “ ErX2

ns ´ 2ErXnXn´1s ` ErX2
n´1s ă 8, we have Yn P L2.

Since ErXn|Fn´1s “ Xn´1 a.s., by induction ErXn|Fks “ Xk a.s. for all k ď n.
In particular ErYn|Fks “ 0 for k ă n. Suppose that m ă n. Then

ErYnYms “ ErErYnYm|Fmss

“ ErYmErYn|Fmss

“ 0
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Fact 4.17.47 (Parallelogram identity). Let X,Y P L2. Then

2ErX2s ` 2ErY 2s “ ErpX ` Y q2s ` ErpX ´ Y q2s.

Theorem 4.18. Suppose that pXnqn is a martingale bounded in L2,
i.e. supn ErX2

ns ă 8. Then there is a random variable X8 such that

Xn
L2

ÝÝÑ X8.

Proof. Let Yn :“ Xn ´ Xn´1 and write

Xn “

n
ÿ

j“1

Yj .

We have

ErX2
ns “ ErX2

0 s `

n
ÿ

j“1

ErY 2
j s

by Fact 4.17.46. In particular,

sup
n

ErX2
ns ă 8 ðñ

8
ÿ

j“1

ErY 2
j s ă 8.

Since pXnqn is bounded in L2, there exists X8 such that Xn
a.s.

ÝÝÑ X8 by Doob’s
Martingale Convergence Theorem (4.15).

It remains to show Xn
L2

ÝÝÑ X8. For any r P N, consider

ErpXn`r ´ Xnq2s “

n`r
ÿ

j“n`1

ErY 2
j s

nÑ8
ÝÝÝÑ 0

as a tail of a convergent series.

Hence pXnqn is Cauchy, thus it converges in L2. Since ErpX8 ´Xnq2s converges
to the increasing limit

ÿ

jěn`1

ErY 2
j s

nÑ8
ÝÝÝÑ 0

we get ErpX8 ´ Xnq2s
nÑ8

ÝÝÝÑ 0.

Now let p ě 1 be not necessarily 2. First, we need a very important inequal-
ity:
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Theorem 4.19 (Doob’s Lp inequality). Suppose that pXnqn is a martin-
gale or a non-negative submartingale. Let X˚

n :“ maxt|X1|, |X2|, . . . , |Xn|u

denote the running maximum.

(1) Then

@ℓ ą 0. PrX˚
n ě ℓs ď

1

ℓ

ˆ
tX˚

n ěℓu

|Xn|dP ď
1

ℓ
Er|Xn|s.

(Doob’s L1 inequality).

(2) Fix p ą 1. Then

ErpX˚
n qps ď

ˆ

p

p ´ 1

˙p

Er|Xn|ps.

(Doob’s Lp inequality).

In order to prove Doob’s Martingale Inequalities (4.19), we first need

Lemma 4.20. Let p ą 1 and X,Y non-negative random variables such
that

@ℓ ą 0. PrY ě ℓs ď
1

ℓ

ˆ
tY ěℓu

X dP

Then

ErY ps ď

ˆ

p

p ´ 1

˙p

ErXps.

Proof. First, assume Y P Lp.

Then

}Y }
p
Lp “ ErY ps (9)

“

ˆ
Y pωqp dPpωq (10)

“

ˆ
Ω

˜ˆ Y pωq

0

pℓp´1 dℓ

¸

dPpωq (11)

Fubini
“

ˆ 8

0

pℓp´1

ˆ
Ω

1Y ěℓ dP
looooomooooon

PrY ěℓs

dℓ. (12)
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By the assumption it follows that

(12) ď

ˆ 8

0

pℓp´2

ˆ
tY pωqěℓu

XpωqPpdωqdℓ

Fubini
“

ˆ
Ω

Xpωq

ˆ Y pωq

0

pℓp´2 dℓPpdωq

“
p

p ´ 1

ˆ
ω

XpωqY pωqp´1Ppdωq

Hölder
ď

p

p ´ 1
}X}Lp}Y }p´1

p ,

where the assumption was used to apply Hölder.

Suppose now Y R Lp. Then look at YM “ Y ^M . Apply the above to YM P Lp

and use the monotone convergence theorem.

Proof of Theorem 4.19. Let E :“ tX˚
n ě ℓu “ E1 \ . . . \ En where

Ej “ t|X1| ď ℓ, |X2| ď ℓ, . . . , |Xj´1| ď ℓ, |Xj | ě ℓu.

Then

PrEjs
Markov

ď
1

ℓ

ˆ
Ej

|Xj |dP (13)

We have that p|Xn|qn is a submartingale, by Corollary 4.3 in the case of Xn

being a martingale and trivially if Xn is non-negative. Hence

Er1Ej
p|Xn| ´ |Xj |q|Fjs “ 1Ej

Erp|Xn| ´ |Xj |q|Fjs

a.s.
ě 0.

By the Law of Total Expectation (3.5), it follows that

Er1Ej
p|Xn| ´ |Xj |qs ě 0. (14)

Now

PpEq “

n
ÿ

j“1

PpEjq

(13),(14)
ď

1

ℓ

ˆˆ
E1

|Xn|dP ` . . . `

ˆ
En

|Xn| dP
˙

“
1

ℓ

ˆ
E

|Xn|dP

This proves the first part.

For the second part, we apply the first part and Lemma 4.20 (choose Y :“
X˚

n ).
Branching
process[Lecture 19, 2023-06-22]
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4.4 Uniform Integrability

Example 4.21. Let Ω “ r0, 1s, F “ B and P “ λ|r0,1s. Consider Xn :“

n1p0, 1
n qq. We know that Xn

nÑ8
ÝÝÝÑ 0 a.s., however ErXns “ Er|Xn|s “ 1,

hence Xn does not converge in L1pPq.

Let µnp¨q “ PrXn P ¨s.

Intuitively, for a series that converges in probability, for L1-convergence to
hold we somehow need to make sure that probability measures don’t assign
mass far away from 0. This will be made precise in the notion of uniform
integrability.

Goal. We want to show that uniform integrability and convergence in probability
is equivalent to convergence in L1.

Definition 4.22. A sequence of random variables pXnqn is called uni-
formly integrable (UI), if

@ε ą 0. DK ą 0. @n. Er|Xn|1t|Xn|ąKus ă ε.

Similarly, we define uniformly integrable for sets of random variables.

Example 4.23. Xn :“ n1p0, 1
n q is not uniformly integrable.

There is no nice description of uniform integrability. However, some subsets can
be easily described, e.g.

Fact 4.23.48. If pXnqně1 is a sequence bounded in L1`δpPq for some δ ą 0
(i.e. supn Er|Xn|1`δs ă 8), then pXnqn is uniformly integrable.

Proof. Let ε ą 0. Let p :“ 1 ` δ ą 1. Choose q such that 1
p ` 1

q “ 1. Then

Er|Xn|1|Xn|ąKs ď Er|Xn|ps
1
pPr|Xn| ą ks

1
q ,

i.e.

sup
n

Er|Xn|1|Xn|ąks ď sup
n

Er|Xn|ps
1
p

looooooomooooooon

ă8

sup
n

Pr|Xn| ą Ks
1
q

looooooomooooooon

ďK
´ 1

q Er|Xn|s
1
q

where we have applied Markov’s Inequality (0.8).

Since supn Er|Xn|1`δs ă 8, we have that supn Er|Xn|s ă 8 by Jensen’s In-
equality (3.12.39). Hence for K large enough the relevant term is less than
ε.
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Fact 4.23.49. If pXnqn is uniformly integrable, then pXnqn is bounded in
L1.

Proof. Take some ε ą 0 and K such that supn Er|Xn|1|Xn|ąKs ă ε. Then
supn }Xn}L1 ď K ` ε.

Fact 4.23.50. Suppose Y P L1pPq and supn |Xnp¨q| ď Y p¨q. Then pXnqn

is uniformly integrable.

Fact 4.23.51. Let X P L1pPq.

(a) @ε ą 0. Dδ ą 0. @F P F . PpF q ă δ ùñ
´
F

|X|dP ă ε.

(b) @ε ą 0. Dk P p0,8q.
´

|X|ąk
|X|dP ă ε.

Proof. (a) Suppose not. Then for δ “ 1, 1
2 ,

1
22 , . . . there exists Fn such that

PpFnq ă 1
2n but

´
Fn

|X|dP ě ε.

Since
ř

n PpFnq ă 8, by Borel-Cantelli (0.10),

Prlim sup
n

Fn
loooomoooon

:“F

s “ 0.

We have ˆ
F

|X|dP “

ˆ
|X|1F dP

“

ˆ
lim sup

n
p|X|1Fn

qdP

Reverse Fatou
ě lim sup

n

ˆ
|X|1Fn dP

ě ε

where the assumption that X is in L1 was used to apply the reverse of
Fatou’s lemma.

This yields a contradiction since PpF q “ 0.

(b) We want to apply part (a) to F “ t|X| ą ku. By Markov’s Inequality (0.8),
PpF q ď 1

kEr|X|s. Since Er|X|s ă 8, we can choose k large enough to get
PpF q ď δ.

Proof of Fact 4.23.50. Fix ε ą 0. We have

Er|Xn|1|Xn|ąks ď Er|Y |1|Y |ąks ă ε
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for k large enough by Fact 4.23.51 (b).

Fact 4.23.52. Let X P L1pPq. Then F :“ tErX|Gs : G Ď F sub-σ-algebrau

is uniformly integrable.

Proof. Fix ε ą 0. Choose δ ą 0 such that

@F P F . PpF q ă δ ùñ Er|X|1F s ă ε. (15)

Let Y “ ErX|Gs for some sub-σ-algebra G. Then, by Jensen’s Inequality (3.13),
|Y | ď Er|X||Gs. Hence Er|Y |s ď Er|X|s. By Markov’s Inequality (0.8), it follows

that Pr|Y | ą ks ă δ for k ą
Er|X|s

δ . Note that t|Y | ą ku P G. We have

Er|Y |1t|Y |ąkus ă ε

by (15), since Pr|Y | ą ks ă δ.

Theorem 4.24. Assume that Xn P L1 for all n and X P L1. Then the
following are equivalent:

(1) Xn Ñ X in L1.

(2) pXnqn is uniformly integrable and Xn Ñ X in probability.

Proof. (2) ùñ (1)

Define

φpxq :“

$

’

&

’

%

´k, x ď ´k

x, x P p´k, kq

k, x ě k.

φ is 1-Lipschitz.

We haveˆ
|Xn ´ X|dP ď

ˆ
|Xn ´ φpXnq| dP `

ˆ
|φpXq ´ X|dP `

ˆ
|φpXnq ´ φpXq| dP

We have
´

|Xn|ąk
|Xn ´ φpXnq|
looooooomooooooon

ď|Xn|`|φpXnq|ď2|Xn|

dP ď ε by uniform integrability and Fact 4.23.51

part (b). Similarly
´

|X|ąk
|X ´ φpXq| dP ă ε.

Since φ is Lipschitz, Xn
P

ÝÑ X ùñ φpXnq
P

ÝÑ φpXq. By the Bounded Conver-
gence Theorem (0.7) |φpXnq| ď k ùñ

´
|φpXnq ´ φpXq| dP Ñ 0.

(1) ùñ (2)
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Xn
L1

ÝÝÑ X ùñ Xn
P

ÝÑ X by Markov’s Inequality (0.8) (see Claim 0.6.4.3).

Fix ε ą 0. We have

Er|Xn|s “ Er|Xn ´ X ` X|s

ď ε ` Er|X|s

ă δk

for all δ ą 0 and suitable k.

Hence Pr|Xn| ą ks ă δ by Markov’s Inequality (0.8). Then by Fact 4.23.51 part
(a) it follows that

ˆ
|Xn|ąk

|Xn|dP ď

ˆ
|X ´ Xn|dP

loooooooomoooooooon

ăε

`

ˆ
|Xn|ąk

|X|dP ď 2ε.

4.5 Martingale Convergence Theorems in Lp, p ě 1

Let pΩ,F ,Pq as always and let pFnqn always be a filtration.

Fact 4.24.53. Suppose that X P Lp for some p ě 1.

Then pErX|Fnsqn is an Fn-martingale.

Proof. It is clear that pErX|Fnsqn is adapted to pFnqn.

Let Xn :“ ErX|Fns. Consider

ErXn ´ Xn´1|Fn´1s “ ErErX|Fns ´ ErX|Fn´1s|Fn´1s

“ ErX|Fn´1s ´ ErX|Fn´1s

“ 0.

Theorem 4.25. Let X P Lp for some p ě 1 and
Ť

n Fn Ñ F Ě σpXq.
Then Xn :“ ErX|Fns defines a martingale which converges to X in Lp.

Theorem 4.26. Let p ą 1. Let pXnqn be a martingale bounded in Lp.
Then there exists a random variable X P Lp, such that Xn “ ErX|Fns for

all n. In particular, Xn
Lp

ÝÝÑ X.

[Lecture 20, 2023-06-27]
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Proof of Theorem 4.25. By the Tower Property (3.15) it is clear that pErX|Fnsqn

is a martingale.

First step: Assume that X is bounded. Then, by Jensen’s Inequality (3.13),
|Xn| ď Er|X||Fns, hence supnPN

ωPΩ
|Xnpωq| ă 8. Thus pXnqn is a martingale in

L8 Ď L2. By the convergence theorem for martingales in L2 (Theorem 4.18)

there exists a random variable Y , such that Xn
L2

ÝÝÑ Y .

Fix m P N and A P Fm. Thenˆ
A

Y dP “ lim
nÑ8

ˆ
A

Xn dP

“ lim
nÑ8

ErXn1As

“ lim
nÑ8

ErErX|Fns1As

APFn
“ lim

nÑ8
něm

ErX1As

Hence
´
A
Y dP “

´
A
X dP for all m P N, A P Fm. Since σpXq “

Ť

Fn this holds

for all A P σpXq. Hence X “ Y a.s., so Xn
L2

ÝÝÑ X. Since pXnqn is uniformly

bounded, this also means Xn
Lp

ÝÝÑ X.

Second step: Now let X P Lp be general and define

X 1pωq :“

#

Xpωq if |Xpωq| ď M,

0 otherwise

for some M ą 0. Then X 1 P L8 andˆ
|X ´ X 1|p dP “

ˆ
t|X|ąMu

|X|p dP MÑ8
ÝÝÝÝÑ 0

as P is regular, i.e. @ε ą 0. Dk. Pr|X|p P r´k, kss ě 1 ´ ε.

Take some ε ą 0 and M large enough such thatˆ
|X ´ X 1|dP ă ε.

Let pX 1
nqn be the martingale given by pErX 1|Fnsqn. Then X 1

n
Lp

ÝÝÑ X 1 by the
first step.

It is

}Xn ´ X 1
n}

p
Lp “ ErErX ´ X 1|Fnsps

Jensen
ď ErErpX ´ X 1qp|Fnss

“ }X ´ X 1}
p
Lp

ă ε.

4 MARTINGALES 74



Hence

}Xn ´ X}Lp ď }Xn ´ X 1
n}Lp ` }X 1

n ´ X 1}Lp ` }X ´ X 1}Lp ď 3ε.

Thus Xn
Lp

ÝÝÑ X.

For the proof of Theorem 4.26, we need the following theorem, which we won’t
prove here:

Theorem 4.27 (Banach Alaoglu). LetX be a normed vector space andX˚

its continuous dual. Then the closed unit ball in X˚ is compact w.r.t. the
weak˚ topology.

Fact 4.27.54. We have Lp – pLqq˚ for 1
p ` 1

q “ 1 via

Lp ÝÑ pLqq˚

f ÞÝÑ pg ÞÑ

ˆ
gf dPq

We also have pL1q˚ – L8, however pL8q˚ fl L1.

Proof of Theorem 4.26. Since pXnqn is bounded in Lp, by Banach Alaoglu (4.27),
there exists X P Lp and a subsequence pXnk

qk such that for all Y P Lq, where
as always 1

p ` 1
q “ 1, ˆ

Xnk
Y dP Ñ

ˆ
XY dP

(Note that this argument does not work for p “ 1, because pL8q˚ fl L1).

Let A P Fm for some fixed m and choose Y “ 1A. Thenˆ
A

X dP “ lim
kÑ8

ˆ
A

Xnk
dP

“ lim
kÑ8

ErXnk
1As

for nkěm
“ ErXm1As.

Hence Xn “ ErX|Fms by the uniqueness of conditional expectation and by
Theorem 4.25, we get the convergence.

Example: 4.27.55 (Branching Process; Exercise 10.1, 12.4). Let pYn,kqnPN0,kPN
be i.i.d. with values in N0 such that 0 ă ErYn,ks “ m ă 8. Define

S0 :“ 1, Sn :“

Sn´1
ÿ

k“1

Yn´1,k
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and let Mn :“ Sn

mn . Sn models the size of a population.

Claim 3. Mn is a martingale.

Subproof. We have

ErMn`1 ´ Mn|Fns “
1

mn

˜

1

m

Sn
ÿ

k“1

ErXn,ks ´ Sn

¸

“
1

mn
pSn ´ Snq.

■

Claim 4. pMnqnPN is bounded in L2 iff m ą 1. TODO

Claim 5. If m ą 1 and Mn Ñ M8, then

VarpM8q “ σ2pmpm ´ 1qq´1.
TODO

4.6 Stopping Times

Definition 4.28 (Stopping time). A random variable T : Ω Ñ N0 Y t8u

on a filtered probability space pΩ,F , tFnun,Pq is called a stopping time,
if

tT ď nu P Fn

for all n P N. Equivalently, tT “ nu P Fn for all n P N.

Example 4.29. A constant random variable T “ c is a stopping time.

Example 4.30 (Hitting times). For an adapted process pXnqn with values
in R and A P BpRq, the hitting time

T :“ inftn P N : Xn P Au

is a stopping time, as

tT ď nu “

n
ď

k“1

tXk P Au P Fn.

However, the last exit time

T :“ suptn P N : Xn P Au

is not a stopping time.
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Example 4.31. Consider the simple random walk, i.e. Xn i.i.d. with
PrXn “ 1s “ PrXn “ ´1s “ 1

2 . Set Sn :“
řn

i“1 Xn. Then

T :“ inftn P N : Sn ě A _ Sn ď Bu

is a stopping time.

Fact 4.31.56. If T1, T2 are stopping times with respect to the same filtra-
tion, then

• T1 ` T2,

• mintT1, T2u and

• maxtT1, T2u

are stopping times.

Warning 4.32. Note that T1 ´ T2 is not a stopping time.

Remark 4.32.57. There are two ways to look at the interaction between
a stopping time T and a stochastic process pXnqn:

• The behaviour of Xn until T , i.e.

XT :“ pXT^nqnPN

is called the stopped process.

• The value of pXnqnq at time T , i.e. looking at XT .

Example 4.33. If we look at a process

Sn “

n
ÿ

i“1

Xi

for some pXnqn, then

ST “ p

T^n
ÿ

i“1

Xiqn

and

ST “

T
ÿ

i“1

Xi.
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Theorem 4.34. If pXnqn is a supermartingale and T is a stopping time,
then XT is also a supermartingale, and we have ErXT^ns ď ErX0s for all
n. If pXnqn is a martingale, then so is XT and ErXT^ns “ ErX0s.

Proof. First, we need to show that XT is adapted. This is clear since

XT
n “ XT1Tăn ` Xn1Těn

“

n´1
ÿ

k“1

Xk1T“k ` Xn1Těn.

It is also clear that XT
n is integrable since

Er|XT
n |s ď

n
ÿ

k“1

Er|Xk|s ă 8.

We have

ErXT
n ´ XT

n´1|Fn´1s

“ E

«

Xn1tTěnu `

n´1
ÿ

k“1

Xk1tT“ku ´ Xn´1p1Těn ` 1tT“n´1uq

`

n´2
ÿ

k“1

Xk1tT“ku

ˇ

ˇ

ˇ

ˇ

ˇ

Fn´1

ff

“ ErpXn ´ Xn´1q1tTěnu|Fn´1s

“ 1tTěnupErXn|Fn´1s ´ Xn´1q

#

ď 0

“ 0 if pXnqn is a martingale.

Remark 4.34.58. We now want a similar statement for XT . In the case
that T ď M is bounded, we get from the above that

ErXT s
něM

“ ErXT
n s

#

ď ErX0s supermartingale,

“ ErX0s martingale.

However if T is not bounded, this does not hold in general.

Example 4.35. Let pSnqn be the simple random walk and take T :“ inftn :
Sn “ 1u. Then PrT ă 8s “ 1, but

1 “ ErST s ‰ ErS0s “ 0.
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Theorem 4.36 (Optional Stopping). Let pXnqn be a supermartingale and
let T be a stopping time taking values in N.

If one of the following holds

(i) T ď M is bounded,

(ii) pXnqn is uniformly bounded and T ă 8 a.s.,

(iii) ErT s ă 8 and |Xnpωq ´Xn´1pωq| ď K for all n P N, ω P Ω and some
K ą 0,

then ErXT s ď ErX0s.

If pXnqn even is a martingale, then under the same conditions ErXT s “

ErX0s.

Proof. (i) was already done in Remark 4.34.58.

(ii): Since pXnqn is bounded, we get that

Er|XT ´ X0|s
dominated convergence

“ lim
nÑ8

Er|XT^n ´ X0|s

part (i)
ď 0.

(iii): It is

|XT^n ´ X0| ď |

T^n
ÿ

k“1

Xk ´ Xk´1|

ď pT ^ nq ¨ K

ď T ¨ K ă 8.

Hence, we can apply dominated convergence and obtain

ErXT ´ X0s “ lim
nÑ8

ErXT^n ´ X0s.

Thus, we can apply (ii).

The statement about martingales follows from applying this to pXnqn and
p´Xnqn, which are both supermartingales.

Remark: 4.36.59. Let pXnqn be a supermartingale and T a stopping
time. If pXnqn itself is not bounded, but T ensures boundedness, i.e.
T ă 8 a.s. and pXT^nqn is uniformly bounded, the Optional Stopping
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Theorem (4.36) can still be applied, as

ErXT s “ ErXT^T s
Optional Stopping

ď ErXT^0s “ ErX0s.

[Lecture 21, 2023-06-29]

4.7 An Application of the Optional Stopping Theorem

This is the last lecture relevant for the exam. (Apart from lecture 22 which will
be a repetion).

Goal. We want to see an application of the 4.36.

Notation 4.36.60. Let E be a complete, separable metric space (e.g. E “

R). Suppose that for all x P E we have a probability measure Ppx, dyq

on E. Such a probability measure is a called a transition probability
measure.

Example 4.37. E “ R,

Ppx, dyq “
1

?
2π

e´
px´yq2

2 dy

is a transition probability measure.

Example 4.38 (Simple random walk as a transition probability measure).
E “ Z, Ppx, dyq assigns mass 1

2 to y “ x ` 1 and y “ x ´ 1.

Definition 4.39. For every bounded, measurable function f : E Ñ R,
x P E define

pPfqpxq :“

ˆ
E

fpyqPpx, dyq.

This P is called a transition operator.

Fact 4.39.61. If f ě 0, then pPfqp¨q ě 0.

If f ” 1, we have pPfq ” 1.

Notation 4.39.62. Let I denote the identity operator, i.e.

pIfqpxq “ fpxq

for all f . Then for a transition operator P we write

L :“ I ´ P.

4 MARTINGALES 80



Goal. Take E “ R. Suppose that Ac Ď R is a bounded domain. Given a
bounded function f on R, we want a function u which is bounded, such that
Lu “ 0 on Ac and u “ f on A.

We will show that upxq “ ExrfpXTA
qs is the unique solution to this problem.

Definition 4.40. Let pΩ,F , tFnun,Pxq be a filtered probability space,
where for every x P R, Px is a probability measure. Let Ex denote expec-
tation with respect to Ppx, ¨q. Then pXnqně0 is a Markov chain starting
at x P R with transition probability Ppx, ¨q if

(i) PxrX0 “ xs “ 1,

(ii) for all bounded, measurable f : R Ñ R,

ExrfpXn`1q|Fns
a.s.
“ ExrfpXn`1q|Xns “

ˆ
fpyqPpXn,dyq.

(Recall Fn “ σpX1, . . . , Xnq.)

Example 4.41. Suppose B P BpRq and f “ 1B . Then the first equality
of (ii) simplifies to

PxrXn`1 P B|Fns “ PxrXn`1 P B|σpXnqs.

Example 4.42. Let ξi be i.i.d. withPrξi “ 1s “ Prξi “ ´1s “ 1
2 and define

Xn :“
řn

i“1 ξi.

Intuitively, conditioned onXn,Xn`1 should be independent of σpX1, . . . , Xn´1q.

Claim. For a set B, we have

Er1Xn`1PB |σpX1, . . . , Xnqs “ Er1Xn`1PB |σpXnqs.

Subproof. TODO■

New information after this point is not relevant for the exam.
Stopping times and optional stopping are very relevant for the exam, the Markov
property is not. No notes will be allowed in the exam. Theorems from the lecture
as well as homework exercises might be part of the exam.
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[Lecture 22, 2023-07-04]

5 Markov Chains
Merge this
with the end
of lecture 21

Goal. We want to start with the basics of the theory of Markov chains.

Example 5.1 (Markov chains with two states). Suppose there are two
states of a phone line, 0,“free”, or 1, “busy”. We assume that the state
only changes at discrete units of time and model this as a sequence of
random variables. Assume

PrXn`1 “ 0|Xn “ 0s “ p

PrXn`1 “ 0|Xn “ 1s “ p1 ´ pq

PrXn`1 “ 1|Xn “ 0s “ q

PrXn`1 “ 1|Xn “ 1s “ p1 ´ qq

for some p, q P p0, 1q. We can write this as a matrix

P “

ˆ

p p1 ´ pq

q p1 ´ qq

˙

Note that the rows of this matrix sum up to 1.

Additionally, we make the following assmption: Given that at some time
n, the phone is in state i P t0, 1u, the behavior of the phone after time n
does not depend on the way, the phone reached state i.

Question 5.1.63. Suppose X0 “ 0. What is the probability, that
the phone will be free at times 1&2 and will become busy at time 3,
i.e. what is PrX1 “ 0, X2 “ 0, X3 “ 1s?

We have

PrX1 “ 0, X2 “ 0, X3 “ 1s

“ PrX3 “ 0|X2 “ 0, X1 “ 0sPrX2 “ 0, X1 “ 0s

“ PrX3 “ 0|X2 “ 0sPrX2 “ 0, X1 “ 0s

“ PrX3 “ 0|X2 “ 0sPrX2 “ 0|X1 “ 0sPrX1 “ 0s

“ P0,1P0,0P0,0

Question 5.1.64. Assume X0 “ 0. What is PrX3 “ 1s?
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For tX3 “ 1u to happen, we need to look at the following disjoint events:

PptX3 “ 1, X2 “ 0, X1 “ 0uq “ P0,1P
2
0,0,

PptX3 “ 1, X2 “ 0, X1 “ 1uq “ P 2
0,1P1,0,

PptX3 “ 1, X2 “ 1, X1 “ 0uq “ P0,0P0,1P1,1,

PptX3 “ 1, X2 “ 1, X1 “ 1uq “ P0,1P
2
1,1.

More generally, consider a Matrix P P p0, 1qnˆn whose rows sum up to 1.
Then we get a Markov Chain with n states by defining

PrXn`1 “ i|Xn “ js “ Pi,j .

Definition 5.2. Let E denote a discrete state space, usually E “

t1, . . . , Nu or E “ N or E “ Z.

Let α be a probability measure on E. We say that ppi,jqiPE,jPE is a tran-
sition probability matrix, if

@i, j P E. pi,j ě 0 ^ @i P E
ÿ

jPE

pi,j “ 1.

Given a triplet pE,α, P q, we say that a stochastic process pXnqně0, i.e.Xn :
Ω Ñ E, is a Markov chain taking values on the state space E with
initial distribution α and transition probability matrix P , if the
following conditions hold:

(i) PrX0 “ is “ αpiq for all i P E,

(ii)

PrXn`1 “ in`1|X0 “ i0, X1 “ i1, . . . , Xn “ ins

“ PrXn`1 “ in`1|Xn “ ins

for all n “ 0, . . ., i0, . . . , in`1 P E (provided PrX0 “ i0, X1 “ i1, . . . , Xn “

ins ‰ 0 ).

Fact 5.2.65. For all n P N0 and i0, . . . , in P E, we have

PrX0 “ i0, X1 “ i1, . . . , Xn “ ins “ αpi0q ¨ pi0,i1 ¨ pi1,i2 ¨ . . . ¨ pin´1,in .

Fact 5.2.66. For all n P N, in P E, we have

PrXn “ ins “
ÿ

i0,...,in´1PE

αi0pi0,i1 ¨ . . . ¨ pin´1,in .
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Example 5.3 (Simple random walk on Z). Let E :“ Z, pξnqn i.i.d. with
Prξi “ 1s “ Prξi “ ´1s “ 1

2 . Let X0 “ 0, Xn “ ξ1 ` . . . ` ξn.

Let α “ δ0 P M1pZq. Consider

P “

¨

˚

˚

˚

˚

˚

˚

˝

. . .
. . .

. . . 0
. . . 0 1

2 0 1
2 0 . . .

. . . 0 1
2 0 1

2 0 . . .
. . . 0 1

2 0 1
2 0 . . .

0
. . .

. . .
. . .

˛

‹

‹

‹

‹

‹

‹

‚

Definition 5.4. Let E be a complete, separable metric space, α P M1pEq.
For every x P E, let Ppx, ¨q be a probability measure on E.a

Given the triples pE,α, tPpx, ¨quxPEq, we say that a stochastic process
pXnqně0 is a Markov chain taking values on E with starting distri-
bution α and transition probability tPpx, ¨quxPE if

(i) PrX0 P ¨s “ αp¨q,

(ii) For all bounded, measurable f : E Ñ R,

ErfpXn`1q|Fns “ ErfpXn`1q|Xns “

ˆ
E

fpyqPpXn,dyq a.s.

aPpx, ¨q corresponds to a row of our matrix in the discrete case

Remark 5.4.67. This agrees with the definition in the discrete case, as all
bounded, measurable f : E Ñ R can be approximated by simple functions,
i.e. (ii) from the discrete case implies (ii) from the general definition.

Notation 5.4.68. If tPpx, ¨quxPE is a transition probability, then for all
f : E Ñ R bounded and measurable, define P : BbddpEq Ñ Bbdd by

pPfqpxq :“

ˆ
E

fpyqPpx, dyq.

We get the following fundamental link between martingales and Markov chains:

Theorem 5.5. Suppose pE,α, tPpx, ¨quxPEq is given. Then a stochastic
process pXnqně0 is a Markov chain iff for every f : E Ñ R bounded,
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measurable,

Mnpfq :“ fpXnq ´ fpX0q ´

n´1
ÿ

j“1

pI ´ PqfpXjq

is a martingale with respect to the canonical filtration of pXnq.

Proof. ùñ Fix some bounded, measurable f : E Ñ R. Then, for all n, Mnpfq

is bounded and hence Mnpfq P L1. Mnpfq is Fn-measurable for all n P N.

In order to prove ErMn`1pfq|Fns “ Mnpfq, it suffices to show ErMn`1pfq ´

Mnpfq|Fns “ 0 a.s.

We have

ErMn`1pfq ´ Mnpfq|Fns “ ErfpXn`1|Fns ´ pPfqpXnq

Markov property
“ pPfqpXnq ´ pPfqpXnq

“ 0

ðù Suppose pMnpfqqn is a martingale for all bounded, measurable f . By the
martingale property, we have

ErfpXn`1q|Xns “ pPfqpXnq

“

ˆ
fpyqPpXn,dyq

This proves (ii).

Definition 5.6. Given tPpx, ¨quxPE , we say that f : E Ñ R is harmonic,
iff fpxq “ pPfqpxq for all x P E. We call f super-harmonic, if pI´Pqf ě

0 and sub-harmonic, if pI ´ Pqf ď 0.

Corollary 5.7. If f is (sub/super) harmonic, then for every pE, tPpx, ¨quxPE , αq

and every Markov chain pXnqně0, we have that fpXnq is a (sub/super)
martingale.

Question 5.7.69. Given a set A and a function f on a superset of A. Find
a function u, such that u is harmonic, and u “ f on A.

Let upxq :“ ExrfpXTA
s, where Ex is the expectation with respect to the Markov

chain starting in x, and TA is the stopping time defined by the Markov chain
hitting A.
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6 Appendix

6.1 List of Distributions

Symbol Mass (PMF) Distribution (CDF) E Var φXptq “ EreitX s MXptq “ EretX s

Deterministic δa 1x“a 1ra,8q a 0 eita eta

Bernoulli Binp1, pq

Binomial Binpn, pq
`

n
k

˘

pkp1 ´ pqn´k
řtxu

j“0

`

n
j

˘

pjp1 ´ pqn´j np npp1 ´ pq pp1 ´ pq ` peitqn pp1 ´ pq ` petqn

Geometric Geoppq p1 ´ pqk´1p 1 ´ p1 ´ pqtxu 1
p

1´p
p2

peit

1´p1´pqeit
pet

1´p1´pqet

Poisson Poipλq λke´λ

k! e´λ
řtxu

j“0
λj

j! λ λ eλpeit´1q eλpet´1q

Symbol Density (PDF) Distribution (CDF) E Var φXptq “ EreitX s MXptq “ EretX s

Uniform Unifpra, bsq 1
b´a1ra,bs

x´a
b´a1ra,bs ` 1pb,8q

a`b
2

pb´aq
2

12
eitb´eita

itpb´aq
4 etb´eta

tpb´aq
5

Exponential Exppλq 1xě0λe
´λx

1xě0p1 ´ e´λxq 1
λ

1
λ2

λ
λ´it

λ
λ´t , t ă λ

Cauchy Cauchypx0, γq 1

πγ
´

1`p
x´x0

γ q
2

¯

1
π arctan

´

x´x0

γ

¯

` 1
2 n/a n/a ex0it´γ|t| n/a

Normal N pµ, σq 1
σ

?
2π

e´
pµ´xq2

2σ2 Φ
`

x´µ
σ

˘

µ σ2 eiµt´
σ2t2

2 eµt`
σ2t2

2

4φXp0q “ 1
5MXp0q “ 1

6
A
P
P
E
N
D
IX
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6.2 Notions of boundedness

The following is just a short overview of all the notions of boundedness we used
in the lecture.

Definition: 6.0.70 (Boundedness). Let X be a set of random variables.
We say that X is

• uniformly bounded iff

sup
XPX

sup
ωPΩ

|Xpωq| ă 8,

• dominated by f P Lp for p ě 1 iff

@X P X . |X| ď f,

• bounded in Lp for p ě 1 iff

sup
XPX

}X}Lp ă 8,

• uniformly integrable iff

@ε ą 0. DK. @X P X . Er|X|1|X|ąKs ă ε.

Fact: 6.0.71. Let X be a set of random variables. Let 1 ă p ď q ă 8

Then the following implications hold:

X is uniformly bounded

X is dominated by f P Lq

X is dominated by f P Lp

X is bounded in Lq

X is bounded in Lp

X is dominated by f P L1

X is uniformly integrable

X is bounded in L1

6.3 Laplace Transforms Write some-
thing about
Laplace
Transforms

[Lecture 23, 2023-07-06]
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6.4 Recap

6.4.1 Construction of iid random variables.

• Definition of a consistent family (Definition 1.5)

• Important construction:

Consider a distribution function F and define

n
ź

i“1

pF pbiq ´ F paiqq :“µn ppa1, b1s ˆ x . . . ˆ xpan, bnsq .

• Examples of consistent and inconsistent families Exercises

• Kolmogorov’s consistency theorem (Theorem 1.6)

6.4.2 Limit theorems

• Work with iid. random variables.

• Notions of convergence (Definition: 0.6.3)

• Implications between different notions of convergence (very important)
and counter examples. (Theorem: 0.6.4)

• Laws of large numbers: (Theorem 1.11)

– WLLN: convergence in probability

– SLLN: weak convergence

• Theorem 1.12 (building block for SLLN): Let pXnq be independent with
mean 0 and

ř

σ2
n ă 8, then

ř

Xn converges a.s.

– Counter examples showing that ðù does not hold in general are
important

– ðù holds for iid. uniformly bounded random variables

– Application:
ř8

i“1
p˘1q

n
1
2

`ε
converges a.s. for all ε ą 0.

ř

˘1

n
1
2

´ε
does not converge a.s. for any ε ą 0.

• Kolmogorov’s Inequality (1.14)

• Kolmogorov’s 0-1 Law (1.22)

In particular, a series of independent random variables converges with
probability 0 or 1.

• Kolmogorov’s Three-Series Theorem (1.16)
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– What are those 3 series?

– Applications

6.4.2.1 Fourier transform / characteristic functions / weak convegence

• Definition of Fourier transform (Definition 2.1)

• The Fourier transform uniquely determines the probability distribution.
It is bounded, so many theorems are easily applicable.

• Uniqueness Theorem (2.3), Inversion Formula (2.2), ...

• Levy’s Continuity Theorem (2.14), Theorem 2.27

• Bochner’s Theorem for Positive Definite Functions (2.8)

• Bochner’s Formula for the Mass at a Point (2.6)

• Related notions TODO

– Laplace transforms Ere´λX s for some λ ą 0 (not done in the lecture,
but still useful).

– Moments ErXks (not done in the lecture, but still useful) All mo-
ments together uniquely determine the distribution.

Weak convergence

• Definition of weak convergence (Definition 2.9)

• Examples:

– pδ 1
n

qn,

– p 1
2δ´ 1

n
` 1

2δ 1
n

qn,

– pN p0, 1
n qqn,

– p 1
nδn ` p1 ´ 1

n qδ 1
n

qn.

• Non-examples: pδnqn

• How does one prove weak convergence? How does one write this down in
a clear way?

– Theorem 2.13,

– Levy’s Continuity Theorem (2.14),

– Generalization of Levy’s continuity theorem 2.27
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Convolution

• Definition of convolution. Copy from
exercise sheet
and write a
subsection
about this

• Xi „ µi iid. ùñ X1 ` . . . ` Xn „ µ1 ˚ . . . ˚ µn.

6.4.2.2 CLT

• Statement of the Central Limit Theorem (2.17)

• Several versions:

– iid,

– Lindeberg’s CLT (2.24),

– Lyapunov’s CLT (2.25)

• How to apply this? Exercises!

6.4.3 Conditional expectation

• Definition and existence of conditional expectation for X P L1pΩ,F ,Pq

(Theorem 3.2)

• If H “ L2pΩ,F ,Pq, then Er¨|Gs is the (unique) projection on the closed
subspace L2pΩ,G,Pq. Why is this a closed subspace? Why is the projec-
tion orthogonal?

• Radon-Nikodym Theorem (3.20) (Proof not relevant for the exam)

• (Non-)examples of mutually absolutely continuous measures Singularity
in this context?

6.4.4 Martingales

• Definition of Martingales (Definition 4.2)

• Doob’s convergence theorem (Doob’s Martingale Convergence Theorem
(4.15)), Upcrossing inequality (Lemma 4.11, Lemma 4.12, Lemma 4.13)
(downcrossings for submartingales)

• Examples of Martingales converging a.s. but not in L1 (Example 4.17)

• Bounded in L2 ùñ convergence in L2 (Theorem 4.18).

• Martingale increments are orthogonal in L2! (Fact 4.17.46)

• Doob’s (sub-)martingale inequalities (Doob’s Martingale Inequalities (4.19)),

• Prsupkďn Mk ě xs ; Look at martingale inequalities! Estimates might
come from Doob’s inequalities if pMkqk is a (sub-)martingale.

• Doob’s Lp convergence theorem (Theorem 4.25, Theorem 4.26).
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– Why is p ą 1 important? Role of Banach Alaoglu (4.27)

– This is an important proof.

• Uniform integrability (Definition 4.22)

• What are stopping times? (Definition 4.28)

• (Non-)examples of stopping times

• Optional Stopping Theorem (4.36) - be really comfortable with this.

6.4.5 Markov Chains

• What are Markov chains?

• State space, initial distribution

• Important examples

• What is the relation between Martingales and Markov chains?
u harmonic ðñ Lu “ 0. (sub-/super-) harmonic u ðñ for a Markov
chain pXnq, upXnq is a (sub-/super-)martingale

• Dirichlet problem (Not done in the lecture)

• ... (more in Probability Theory II)
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Index

P-Trivial, 28
σ-algebra

independent, 57

Absolutely continuous, 59

Bounded in Lp, 87
Branching Process, 75

Cauchy distribution, 48
Characteristic function, 31
CLT, 40
Conditional expectation, 52
Conditional probability, 51, 53
Consistent, 13, 14
Convergence

almost surely, 7
in distribution, 7, 38
in mean, 7
in probability, 7
weak, 37

Convergence along a subset, 16
Convolution, 31

Discrete state space, 83
Distribution, 13

tight, 47
Distribution function, 5
Dominated by f P Lp, 87

Event, 4
Exponential distribution, 6

Filtration, 60

Gaussian distribution, 6

Harmonic, 85, 91
Hilbert space, 53
Hitting time, 76

Identity operator, 80
Infinite path, 30

Joint distribution, 13

Lindeberg condition, 46
Lyapunov condition, 46

Marginal distribution, 13
Markov chain, 81, 84

discrete, 83
Transition probability, 81

Martingale, 61
Martingale increments, 66
Measure, 11
Measure space

σ-finite, 58
Moment, 5
Mutually independent, 13

Parallelogram identity, 67
Percolation, 29

Edge
closed, 29
open, 29

Positive definite function, 36
Probability measure, 4
Probability space, 4

Radon-Nikodym derivative, 59
Random variable, 5
Running maximum, 68

Sequence
adapted to a filtration, 61

Simple random walk, 57
Singular, 59
Stochastic process, 61

previsible, 61
Stopped process, 77
Stopping time, 76
Strong law of large numbers, 19
Sub-harmonic, 85
Submartingale, 61
Super-harmonic, 85
Supermartingale, 61

bounded in L1, 64

Tail event, 27
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Tail-σ-algebra, 27
Transition operator, 80
Transition probability matrix, 83
Transition probability measure, 80
Truncated mean, 24
Truncated variance, 24

Uniform distribution, 5
Uniformly bounded, 24, 87
Uniformly integrable, 70, 87

Weak convergence, 31
Weak law of large numbers, 19
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