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These are my notes on the seminar “Infinite Ramsey Theory”, taught by Prof.
Dr. Aleksandra Kwiatkowska in the summer term 2024 at the University
Münster.

Warning 0.1. This is not an official script. The official notes can be found
here.

If you find errors or want to improve something, please send me a message:
lecturenotes@jrpie.de.

1 A Couple of Proofs of the van der Waerden
Theorem

1st talk, A. Kwiatkowska, 2024-04-08 TODO: Copy
from official
notes

2 The Polynomial van der Waerden Theorem

2nd talk, R. Sullivan, 2024-04-15

Definition 2.1. We say that p P Zrxs is iNtEgRaL Find a better
name

a iff pp0q “ 0.

ain the paper, they were called integral, but this is clearly bad name.

Theorem 2.2 (Polynomial van-der-Waerden). Let p1pxq, . . . , pmpxq be iN-
tEgRaL polynomials. Let k ě 1. Then there exists N ě 1 such that for any
k-colouring of rN s, there exist a, d ‰ 0, such that a, a`p1pdq, . . . , a`pmpdq

have the same color.

The classical van-der-Waerden can be recovered by setting pjpxq :“ j ¨ x. Clas-
sical van-der-Waerden is also called linear van-der-Waerden.

Remark 2.2.1. This is not true for ppxq with pp0q ‰ 0 : Let ppxq “ 2x`1
and colour N` by parity.

Originally, Theorem 2.2 was proved using ergodic theory. We will use similar
techniques of the proof of classical van-der-Waerden. Recall: Color-focussing,
double induction.

Definition 2.3. Let P “ tp1pxq, . . . , pmpxqu be a set of iNtEgRaL poly-
nomials. We say that b P Zm has focus a P Z if Dd ‰ 0. @1 ď j ď m. bj “

a ` pjpdq.

Remark 2.3.2. Note that this is the other way round to last week’s proof.
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For sets of polynomials P , it is not clear what “next” means.

Definition 2.4. Let P “ tp1pxq, . . . , pmpxqu. Fix a k-coloring of rN s. Let
b1, . . . , br P rN sm. We say b1, . . . , br are color-focussed at a P Z if

• a is a focus of each bi and

• each bi is monochromatic and the bi are of different colours.

Proof of Theorem 2.2 (Walters (98?)) We will first do the case of ppxq “ x2.
For classical van-der-Waerden the strategy was to do

(i) an outer induction on the length of the arithmetic progression and

(ii) an inner induction using colour-focussing and blocks.

Since we only consider one polynomial, it suffices to do (ii).

We show, by induction on r :

@0 ď r ď k. DN. @k´colourings of rN s (1)

D monochromatic ta, a ` d2u or r colour-focused ta ` d2i u0ďiďr together with focus a.(2)

The cases r “ 0, 1 are trivial.

Let r “ 2. Let N witness Equation 2 for n “ 1. We apply the same idea as
in the linear van-der-Wareden. Use the induction hypothesis to get identically
coloured blocks of size N and find blocks correctly located so that we can do
“jumps”. Missing pic-

ture, f focus
We want f, λ, µ, qpxq such that

f ` ppλq “ a,

f ` ppµq “ a ` ppdq ` Nqptq.

So qptq “ 1
N pppµq ´ ppλqq. If this is iNtEgRaL and linear, we can use linear

van-der-Waerden for this. So take µ “ Nt ` d, λ “ Nt,

qptq “
1

N
pppNt ` dq ´ ppNtqq “ 2dt.

Problem: d depends on the particular colouring of the block B and can’t be
fixed in advance. However, we know that d is bounded (d ď N). So use linear
van-der-Waerden with the last term of the arithmetic progression ď s ` 2Nt.
Once we look in Bs and know d, we can fix qptq “ 2dt and then find Bs`qptq

coloured identically to Bs.

So we are now basically done: Given N take N 1 large enough using linear van-
der-Waerden to guarantee that Bs, Bs`t, . . . , Bs`2Nt coloured identically where
each block is of size N .
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There is one small issue: maybe f “ 0. But there is an easy fix:

Everything we did was translation invariant. f “ a ´ ppNtq, t ď N 1. So take
N 1 ` ppN ¨ N 1q. Missing pic-

ture
For general r, for each a ` d2i use qdi

ptq “ 2dit.

The only place where we used ppxq “ x2, was when applying linear van-der-
Waerden.

In the general case we need to set up some induction.

Definition 2.5. Let W be the set of sequences in NN` having only finitely
many non-zero entries. Let P be a finite set of iNtEgRaL polynomials.
The weight-vector wpP q P W is the sequence where wpP qi is the number
of distinct leading coefficients of polynomials in P of degree i.

We put a linear order on W , the colex order1, as follows: w ă w1 if Di. wi ă

w1
i ^ @j ą i. wj “ w1

j . This is a well-order.

Lemma 2.6. Let P be a non-empty set of iNtEgRaL polynomials. Let
p1pxq P P be of minimal degree.

Let P 1 :“ tppxq ´ p1pxq : p P P u. Then wpP 1q ă wpP q.

Proof. If deg p ą deg p1, then p ´ p1 has the same degree and the same leading
coefficient.

If deg p “ deg p1 and they have distinct leading coefficients, then deg p ´ p1 “

deg p and the number of distinct leading coefficients stays the same.

If deg p “ deg pi and the leading coefficients agree, then the number of distinct
leading coefficients decreases.

Continuation of proof of Theorem 2.2 (Walters (98?)) We do outer induction
on the weight vector and inner induction using color focussing.

Outer induction (on w unsing colex):

@w P W. @P finite set of iNtEgRaL polynomials p1pxq, . . . , pmpxq

with wpP q “ w.

@k ě 1. DN ě 1. @k-coloring of rN s. Da, d ‰ 0.

ta, a ` p1pdq, . . . , a ` pmpdqu is monochromatic.

Let P have weight vector w. Let k ě 1. We can assume pj ‰ 0.

1co-lexicographic
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Inner induction (on r):

@0 ď r ď k. DN. @k-coloring of rN s.

• there exist a, d ‰ 0 such that a, ta ` pjpdquiďjăm lies in rN s and is
monochromatic or

• Dr color-focused tuples b1, . . . , br all in rN s and focus a.

The case r “ 0 is trivial. Let N satisfy the inner induction hypothesis for r ´ 1.
We’ll find N 1 for r.

Let dmax be the maximal d such that there exists a P rN s with @j. a`pjpdq P rN s

Such a dmax exists as for any polynomials ppxq, lim
xÑ8

ppxq “ ˘8.

Wlog. p has minimal degree in P . For 1 ď j ď m, 0 ď d ď dmax, let qj,dpxq :“
1
N ppjpNx ` dq ´ p1pNxq ´ pjpdqq. Then each qj,d is an iNtEgRaL polynomial
and the set tqj,dpxquj,d has a strictly smaller weight vector than P .

So using the outer induction hypothesis for N 1 large enough, we divide rN 1s into
blocks of size N and we are guaranteed identically colored blocks Bs, Bs`qj,dptq,
where 1 ď j ď m and 0 ď d ď dmax. By the inner induction assumption, Bs

contains r ´ 1 colour-focused tuples b1, . . . , br´1 and their focus a, where a is of
different color to b1, . . . , br´1.

Write bi “ pa ` pjpdiqq1ďjďm.

Claim 2.2.1. pa ` Nqj,0ptqq1ďjďm,

tpbi,j ` Nqj,di
ptqqjui

are colour-focused at a ´ p1pNtq.

Subproof. Check the algebra. Copy details
from official
notes

■

3 Galvin-Glazer

3rd talk, S. Kawamoto, 2024-04-22

Theorem 3.1. For every finite coloring of N, there exists an infinite se-
quence such the finite sum of elements of the sequence are monochromatic.

For the proof we will construct a semigroup of ultrafilters pγN, ˚q from pN,`q

such that this is compact, Hausdorff, ˚ is associative and U ÞÑ U ˚V continuous.
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3.1 Semigroups, idempotents and ideals

Definition 3.2. A nonempty semigroup S with a compact and Hausdorff
topology, such that x ÞÑ xs is continuous for all s P S is called a (right)
compact semigroup.

Definition 3.3. An idempotent is an element x P S such that x2 “ x.

Lemma 3.4 (Ellis). Every compact semigroup contains an idempotent.

Proof. By Zorn’s lemma, there exists a Ď-minimal compact sub-semigroup R.

Take a P R. Then Ra is a compact semigroup and Ra Ď R, hence Ra “ R.
Define P :“ tx P R : xa “ au. Since Ra “ R, P is non-empty. Then P is a
compact right semigroup, hence P “ R by the minimality of R. In particular
a P P , so a2 “ a.

Definition 3.5. A nonempty I Ď S is called

• a left-ideal in S iff SI Ď I,

• a right-ideal in S iff IS Ď I,

• a two-sided ideal in S iff it is a left- and a right-ideal.

Observe. 1. For all x P S, Sx is a closed left-ideal.

2. A minimal left-ideal is closed.

Definition 3.6. For x, y P S, we let x ď y : ðñ x “ xy “ yx.

ď is transitive and symmetric. Also x ď x iff x is an idempotent. So ď defines
a partial ordering on the set of idempotents in S.

Lemma 3.7. For an idempotent y and a closed left-ideal I, there exists
x P Iy idempotent, such that x ď y.

Proof. Iy is compact left-ideal. In particular, it is a right compact semigroup.
So by Ellis’ Lemma (3.4), there exists an idempotent v “ wy P Iy. Put x :“
yv “ ywy. Then x2 “ ywpyyqwy “ ypwyqpwyq “ ywy, xy “ ywyy “ ywy “ x
and yx “ yywy “ ywy “ x.

Lemma 3.8. An idempotent is ď-minimal iff it belongs to a minimal left-
ideal.
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Proof. “ ðù ” Let I be a minimal left-ideal and y be an idempotent. Given an
idempotent x with x ď y, we need to show x “ y. Since x ď y, x “ xy P Iy “ I.
Hence y P Ix “ I. Choose z P I such that y “ zx. Then x “ yx “ zxx “ zx “

y.

“ ùñ ” Let y be a minimal idempotent. Take an arbitrary minimal left-ideal
I. By Lemma 3.7, there exists an idempotent x P Iy such that x ď y. But then
x “ y by minimality of y and Iy is a minimal left-ideal.

Corollary 3.9. Any two-sided ideal contains all minimal left-ideals.

Proof. Let J be a two-sides ideal and y a minimal idempotent. Then by the
lemma, there exists a minimal left-ideal containing y. We have H ‰ JI Ď

I X J Ď I, so by minimality of I, J X I “ I, i.e. I Ď J .

Corollary 3.10. Let a be a minimal idempotent.

1. Sa is a minimal left-ideal.

2. aSa is a group.

Proof. 1. omitted.

2. a P aSa, since a is an idempotent. Clearly a is an identity.

Left-inverse: Let x “ asa P aSa. We have x P aS, so Sx Ď Sa. By 1. it
follows that Sa “ Sx. In particular, it follows that a P Sx. Let a “ tx. Put
y :“ ata. We have yx “ atax “ ataasa “ atasa “ atx “ aa “ a.

The left-inverse is also a right-inverse.

3.2 Ultrafilters

Definition 3.11. A nonempty set S with a partial map ‹ : S2 áS with
associativity is called a partial semigroup, i.e. whenever one side of the
equation is defined, then both are defined.

An adequate partial semigroup (somtimes also direct partial semi-
group) S satisfies

@n P N. @x0, . . . , xn P S. Dy P S. y ‰ xiand xi ‹ y are all defined.

Definition 3.12. Let pS, ‹q be an adequate partial semigroup. We define

γS :“ tUultrafilter on S : @x. pUyqx ‹ y is definedu.
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Consider the topology on γS generated by basic open sets of the form
A :“ tU P γS : A P Uu, A Ď S.

This turns γS into a compact Hausdorf-space.

Extend ‹ to γS, by letting

U ‹ V :“ tA Ď S : pUxqpVyqx ‹ y P Au.

Fact 3.12.3. γS is closed under ‹, pγS, ‹q is associative and U ÞÑ U ‹ V is
continuous, i.e. pγS, ‹q is a compact semigroup.

Corollary 3.13. If S is a compact right semigroup that has no idempotent
or is left-cancellative, then pγS, ‹q has a non-principal idempotent U P

γSzS.

Definition 3.14. A (finite or infinite) sequence xxny Ď S of pairwise dis-
tinct xi is called basic if for n0 ă n1 ă . . . ă nk, xn0 ‹ .. ‹ xnk

is defined.

Given a basic sequence xxny, we define rXs :“ txn0
‹ . . . ‹ xnk

u.

Theorem 3.15 (Galvin-Glazer). Given an adequate partial semigroup S
such what S has no idempotents or is left cancellative, for any finite coloring
of S, we can find a basic sequence xxny, such that rXs is monochromatic.

Proof. We want to find S Ě P0 Ě P1 Ě . . . and xn P Pn.

By Corollary 3.13, there is U P γSzS idempotent.

Let S “
Ůk

i“1 Si be the finite coloring. Choose i such that Si P U and
set P0 :“ Si. Since P0 P U “ U ‹ U , we have pUyqpUxqx ‹ y P P0, so
ty P S : pUxqx ‹ y P P0u
loooooooooooooomoooooooooooooon

A

XP0 P U . Pick x0 P A X P0.

Let P1 :“ P0 X ty P S : x0 ‹ y P P0u. Again P1 P U “ U ‹ U and we continue in
a similar way.

We claim that xn0 ‹ . . . ‹ xnk
P Pn0 . For k “ 0, this is trivial. Assume now

that the assertion holds up to k ´ 1. Then x :“ xn1 ‹ . . . ‹ xnk
P Pn1 . By the

definition of Pn1
Ď Pn0`1, we get xn0

‹ x P Pn0
.
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4 Gowers’ Theorem

4th talk, J. Pietsch, 2024-04-29

Gowers’ Theorem is a variant of the Galvin-Glazer Theorem (3.15) for the fol-
lowing partial semigroups, which have some additional structure:

Definition 4.1. For k ě 1 let

FINk :“ tf : N Ñ t0, . . . , ku|| supppfq| ă 8, k P f rNsu,

where
supppfq :“ tn P N|fpnq ‰ 0u.

Let ` : FINk ˆFINk áFINk denote the pointwise addition of disjointly
supported elements. This turns pFINk,`q into a directed partial semi-
group.

The map

T : FINk ÝÑ FINk´1

pf : N Ñ t0, . . . , kuq ÞÝÑ

ˆ

N ÝÑ t0, . . . , k ´ 1u

n ÞÝÑ maxpfpnq ´ 1, 0q

˙

is called the tetris operation.

Instead of basic sequences (cf. Definition 3.14) we consider so-called block se-
quences:

Definition 4.2. A block sequence is a (finite or infinite) sequence tbnu

with bn P FINk such that maxpsupppbnqq ď minpsuppbn`1
q for all i.

Given a block sequence B “ tbnu, the partial subsemigroup generated
by B is defined to be

xBy :“ t

k
ÿ

i“1

Tmipbniq|n0 ă n1 ă . . . nk, Di. mi “ 0u.

Now we can state the main theorem:

Theorem 4.3 (Gowers, 1992). For every finite coloring of FINk, there
exists an infinite block sequence B, such that xBy is monochromatic.

For the proof we again use ultrafilters. As in the previous talk, we consider the
semigroup pγ FINk,`q, where

γ FINk :“ tU P β FINk : @x P FINk . pUyq. x ` y is definedu
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and ` is extended to γ FINk by letting

U ` V :“ tA Ď FINk : pUxqpVyq. x ` y P Au.

Note that in this setting, γ FINk can be more explicitly described as

γ FINk “ tU P β FINk : @n P N. pUxq supppxq X t0, . . . , nu “ Hu.

Thus γ FINk is also called the set of cofinite ultrafilters.

We extend the tetris operation to T : γ FINk Ñ γ FINk´1, by

T pUq :“ tA Ď FINk´1 : pUxqT pxq P Au.

Lemma 4.4. T : γ FINk Ñ γ FINk´1 is a continuous, surjective homomor-
phism of semigroups.

Proof. Clearly T is surjective. Let A Ď FINk´1 and let A “ tU P γ FINk´1 |A P

Uu be the corresponding open subset. Then

T´1rAs “ tV P γ FINk |pVxqT pxq P Au

“ tx P FINk |T pxq P Au.

Furthermore

T pU ` Vq “ tA Ď FINk´1 : pU ` Vxq. T pxq P Au

“ tA Ď FINk´1 : pUxqpVyq. T px ` yq P Au

“ tA Ď FINk´1 : pUxqpVyq. T pxq ` T pyq P Au

“ tA Ď FINk´1 : pT pUqpqpT pVqqq. p ` q P Au

“ T pUq ` T pVq.

As in the proof of the Galvin-Glazer Theorem (3.15) we want to use an idempo-
tent ultrafilter. However in order to take care of the tetris operation, we need
to construct a sequence of compatible idempotent ultrafilters as follows:

Lemma 4.5. There idempotent ultrafilters Uk P γ FINk, k P N such that
for all j ą i:

• Uj ď Ui
a and

• T j´ipUjq “ Ui.

arecall that U ď V : ðñ U ` V “ V ` U “ U

4 GOWERS’ THEOREM 11



Proof. We construct the sequence recursively. We find U1 be applying Ellis’
Lemma (3.4) to γ FIN1. Suppose that U1, . . . ,Uk´1 have been chosen. We need
to find a suitable Uk. Let

Sk :“ tX P FINk |T pX q “ Uk´1u.

Claim 1. Sk ` Uk´1 is a compact subsemigroup of γ FINk.

Subproof. For X ,Y P Sk we have

T pX ` Uk´1 ` Yq
X ,YPSk

“ Uk ` Uk´1 ` Uk

UkďUk´1
“ Uk,

hence pX `Uk´1q`pY`Uk´1q P Sk `Uk´1. Sk is compact, since T is continuous
and Sk ` Uk´1 is compact, since ` is right-continuous. ■

By Ellis’ Lemma (3.4) we find an idempotent V ` Uk´1 P Sk ` Uk´1. Set
Uk :“ Uk´1 ` V ` Uk´1. Then

T pUkq “ T pUk´1q ` T pVq ` T pUk´2q

“ Uk´2 ` Uk´1 ` Uk´2

Uk´1ďUk´2
“ Uk´1,

Uk is idempotent since

Uk “ Uk´1 ` V ` Uk´1

V`Uk´1 idempotent
“ Uk´1 ` V ` Uk´1 ` V ` Uk´1

Uk´1 idempotent
“ Uk´1 ` V ` Uk´1 ` Uk´1 ` V ` Uk´1

“ Uk ` Uk

and for l ă k we have

Uk ` Ul “ Uk´1 ` V ` Uk´1 ` Ul

Uk´1ďUl
“ Uk´1 ` V ` Uk´1 “ Uk,

hence Uk ď Ul.

Proof of Theorem 4.3. Fix Un, n ď k as in Lemma 4.5.

Let A0 be the piece of the partition such that A0 P Uk. We define a sequence
A0 Ě A1 Ě A2 Ě . . . with Ai P Uk and a block sequence txiu such that

(i) @i. xi P Ai and
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(ii) @1 ď i, j ď n. pUkxqrT k´ipxnq ` T k´jpxq P A
maxpi,jq
n s,

where Al
n :“ T k´lrAns.

We do this inductively: A suitable x0 exists, since for all i ď j ď k

pUkxq. x P A0

ùñ pT k´jpUkqxq. x P Aj
0

ùñ pUjxqx P Aj
0

ùñ ppUj ` Uiqxqx P Aj
0

ùñ pUjxqpUiyqx ` y P Aj
0

ùñ pUkxqpUkyqT k´jpxq ` T k´ipyq P Aj
0

and similarly for j ď i, i.e. U-almost all x P A0 work.

Suppose that A0, . . . , An and x0, . . . , xn have been chosen. Let

Ci,j
n :“ tx P FINk |T k´ipxnq ` T k´jpxq P Amaxpi,jq

n u.

We have Ci,j
n P Uk by (ii), so An`1 :“ An X

Ş

i,j C
i,j
n P Uk.

Note that

pUkxq.
´

px P An`1q ^ pUkyq. @1 ď i, j ď k. T k´jpxq ` T k´ipyq P A
maxpi,jq

0

¯

,

so Uk-almost all x can be chosen as xn`1.

Claim 4.3.1. xtxnuy is monochromatic.

Subproof. We show by induction on p, that

T k´l0pxn0
q ` . . . ` T k´lp´1pxnp´1

q ` y P Amaxi li
n0

for all l0, . . . , lp ď k, n0 ă n2 ă np´1, y P A
lp
np .

The case of p “ 0 follows from the condition (ii).

Suppose we have shown the statement for p ´ 1. Write

T k´l0pxn0
q ` T k´l1pxn1

q ` . . . ` T k´lp´1pxnp´1
q ` y

looooooooooooooooooooooooomooooooooooooooooooooooooon

:“y1

.

By the induction assumption, we know that y1 P Al
n1
, where l :“ maxią0 li.

Hence there exists y˚ P An1
such that y1 “ T k´lpy˚q. Since y˚ P Cl0l

n0
,

T k´l0pxn0
q ` T k´lpy˚q P Amax li

n0
.

■
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Corollary 4.6 (Hindman). For every finite coloring of FIN1, the set of
finite subsets of N, there exists an infinite block sequence B, such that
xBy, i.e. the set of unions of a finite, positive number of elements of B, is
monochromatic.

Recall that c0 is the Banach space of real sequences pxnqnPN with lim
nÑ8

xn “ 0

and }pxnqnPN} :“ supnPN |xn|. Let S`
c0

:“ tx P Sc0 |}x} “ 1 ^ @n. xn ě 0u denote
the positive part of the sphere of c0.

We can view FINk as a δ-net in S`
c0 in the following way:

Let δ be such that δ “ 1
p1`δqk´1 . Define

Φk : FINr0,ks ÝÑ S`
c0

f ÞÝÑ

¨

˚

˝

N ÝÑ R

n ÞÝÑ

#

1
p1`δqk´fpnq if fpnq ą 0,

0 otherwise,

˛

‹

‚

where FINr0,ks :“
Ťk

i“0 FINk. Let ∆ :“ ΦkrFINks. Note that the tetris opera-
tion corresponds to scalar multiplication in the sense that if λ P R and x P FINk

are such that λΦkpxq P ΦkrFINls for some l ă k, then λΦkpxq “ ΦkpT k´lpxqq.

We obtain:

Corollary 4.7. For every 0 ă δ ă 1, there exists a δ-net ∆ in S`
c0 such

that for every finite coloring of ∆, there exists an infinite dimensional block
subspace X of c0, such that X X ∆ is monochromatic.
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