
Seminar: Model Theory and Combinatorics

Lecturer
Prof. Martin Hils, Dr. Rob Sullivan

Notes
Josia Pietsch

Version

git: 7c6dff4
compiled: April 10, 2024 00:10

1



Contents

1 Introduction and Ultrahomogeneity 3

Index 11

CONTENTS 2



These are my notes on the Seminar Model Theory and Combinatorics taught
by Prof. Martin Hils and Dr. Rob Sullivan in the summer term 2024 at
the University Münster.

Warning 0.1. This is not an official script.

If you find errors or want to improve something, please send me a message:
lecturenotes@jrpie.de.

1 Introduction and Ultrahomogeneity

1st talk, Rob Sullivan, 2024-04-09

Theorem 1.1 (Erdős-Rényi). Slogan: “Any two countably infinite random
graphs are almost surely isomorphic”.

Let 0 ă p ă 1. Then there exists a countably infinite graph R such that if
we produce a graph Γ with V pΓq :“ N and for each pair of vertices we put
an edge with probability p then PrΓ – Rs “ 1.

This graph R is called the random graph.

Proof of Theorem 1.1. We say that a graph Γ has the witness property (WP)
iff for all pairs pU, V q of finite disjoint subsets of V pΓq, we have w P ΓzpU X V q,
such that w is adjacent to all elements of U and none of V .

Any graph with the witness property is infinite.

The proof is split into two steps:

Claim 1.1.1. PrΓ has WPs “ 1.

Claim 1.1.2. Any two countably infinite graphs with the witness property are
isomorphic.

Proof of Claim 1.1.1. We have

PrΓ does not have WPs “ PrDU, V with no witnesss

ď
ÿ

pU,V q

PrpU, V q has no witnesss

For a fixed node w P V pΓqzpU X V q, the probability that w is not a witness for
pU, V q is 1 ´ p|U |p1 ´ pq|V |, hence PrpU, V q have no witnesss “ 0.

1 INTRODUCTION AND ULTRAHOMOGENEITY 3



Explicit construction We give an explicit construction of a graph with the
WP:1 Let N be the set of nodes. For x, y P N, we set x „ y iff the xth digit of
the binary expansion of y is 1 or the yth digit of the binary expansion of x is
1.2

For U, V finite and disjoint, let n :“ maxpU X V q and take w ě 2n such that
the binary digits of w are set appropriately.

Proof of Claim 1.1.2. Now let Γ and Γ1 be countable graphs with the WP. We
prove by “back-and-forth”3, that they are isomorphic:

Enumerate V pΓq asm0,m1, . . . and V pΓ1q asm1
0,m

1
1, . . .We construct a sequence

of partial isomorphisms fn (i.e. isomorphisms of a finite subset of Γ to a finite
subset of Γ1) such that

(i) fn`1 Ě fn,

(ii) mt P dom f2t,

(iii) m1
t P dom f2t`1.

Given such partial isomorphisms, we can take f :“
Ť

ft.

Suppose we already have f2t´1. If mt P f2t´1 let f2t :“ f2t´1. Otherwise let U
be the neighbourhood of mt and V :“ pdom f2t´1qzU . Choose a witness w for
f2t´1pUq, f2t´1pV q and set f2tpmtq :“ w.

The proof of Claim 1.1.2 was very similar to the proof of

Theorem 1.2 (Cantor). Any two countably infinite DLOWEsa are iso-
morphic.

adense linear orders without endpoints

Dense and without endpoints is equivalent to:

For any A Ďfin M and any partition A “ U Y V , where U ă V 4 there exists
w P M with U ă w ă V .

Idea. We want to generalize this.

Let L be a countable relational language andM and L-structure.

Definition 1.3. The age of M is the class of finite structures embeddable

1This is not necessary for the proof.
20 P N and indices start at 0
3maybe it should be called “forth-and-back”
4i.e. @u P U, v P V. u ă v
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into M .

We say that M has the extension property (EP) iff

@A Ďfin M.

@embedding f : A Ñ B where B P AgepMq.

Dembedding h : B Ñ M.

@a P A. hfpaq “ a.

A M

B
Dh

f

Ď

Example 1.4. A simple induction shows that the age of R is the set of all
finite graphs. The random graph has the extension property.

The extension property was the key ingredient to the proof of Theorem 1.1.

Proposition 1.5. Let M,M 1 be countable L-structures with the same age
and the EP. Then M – M 1.

Proof. This is same as the proof of Claim 1.1.2.

Remark 1.5.1. One needs to be more careful if L contains constants and
function symbols.

Proposition 1.6. Let M and M 1 be countable L-structures with the same
age and the EP.

Then any partial isomorphism A Ñ A1 where A and A1 are finite substruc-
tures of M resp. M 1 extends to an isomorphism M Ñ M 1.

Proof. Use A Ñ A1 as a starting point for the back-and-forth in the proof of
Proposition 1.5.

Definition 1.7. An L-structure M is called ultrahomogeneousa iff any
isomorphism f : A Ñ A1 with A,A1 Ďfin M extends to an automorphism
of M .

asometimes also homogeneous, but not in this seminar
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Proposition 1.8. Let M be countable. Then M has the EP iff M is
ultrahomogeneous.

Proof. “ ùñ ” Take M “ M 1 in Proposition 1.6.

“ ðù ” Let A, B be substructures of M f : A Ñ B. Then f : A Ñ fpAq is
isomorphism, hence it extends to an isomorphism h of M and we can take

A M

B
h´1

f

Ď

missing image

Question 1.8.2. Can we detect ultrahomogeneity from the age?

Question 1.8.3. When do we have these nice universala objects, i.e. what
classes of structures are ages of an ultrahomogeneous model?

asometimes called generic

Example 1.9. Let X be the class of finite forests.a

Suppose that M is a countable ultrahomogeneous structure with age k.

A B0 B1

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚

We have A Ď M . A ãÑ B0 and A ãÑ B1. But now we get a contradiction,
since simultaneously embedding A into a copy B0 and B1, we get a circle.

aA forest is a graph without cycles. A tree is a connected forest.

Definition 1.10. A class K of finite L-structures has the amalgamation
property (AP) iff for all embeddings f : A Ñ B0, f1 : A Ñ B1 of fi-
nite structures in K, there exists C P K with embeddings h0 : B0 Ñ C,
h1 : B1 Ñ C such that @a P A. h0f0paq “ h1f1paq
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B0

A C

B1

h1

h0f0

f1

The AP is the real meat.

Definition 1.11. We say that K has JEP (joint embedding property)
iff for all A0, A1 P K, there exists B P K and embeddings f0 : A0 Ñ B,
f1 : A1 Ñ B.

A0

B

A1

f1

f0

The JEP is a property we expect from every reasonable class.

Proposition 1.12. Let M be a countable ultrahomogeneous structure.
Then AgepMq has AP.

Proof. Consider

B0

A

B1

f0

f1

We can assume B0, B1 Ď M . missing pic-
ture

The isomorphism f0paq ÞÑ f1paq can be extended
to h P AutpMq. Then

B0

A hpB0q Y B1

B1

f0

f1 id

h
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completes the diagram.

Definition 1.13. A hereditarya class K of finite L-structures with the AP,
JEP and countably many isomorphism types is called an amalgamation
class (or Fräıssé class).

aclosed under taking substructures, i.e. if B P K and A ãÑ B then A P K

Theorem 1.14 (Fräıssé’s Theorem). Let K be an amalgamation class.
Then there exists a countable ultrahomogeneous M with AgepMq “ K.

Definition 1.15. Let K be an amalgamation class. An increasing chain
F0 Ď F1 Ď . . . Ď of structures in K is called a Fräıssé sequence (or
rich sequence) iff for each Fi an for each A Ď Fi and each embedding
f : A Ñ B with B P K, there exists j ą i and an embedding h : B Ñ Fj

such that the diagram commutes.

A Fi Fj

B

Ď Ď

Dh@f

Lemma 1.16. Let K be an amalgamation class. Let pFiqi ă ω be a Fräıssé-
sequence. Then M “

Ť

iăω Fi is ultrahomogeneous and AgepMq “ K.

Proof. Let A P K. Use the JEP on A and F0 to get B. Since the Fi form a
Fräıssé-sequence, we get B ãÑ Fk for some k.

F0 Fj

B

A

M has the EP:

A Fi Fj

B

Ď Ď
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Proof of Theorem 1.14. By Lemma 1.16 it suffices to build a Fräıssé-sequence.
Let σ : N Ñ N ˆ N be a bijection such that if σpnq “ pi, jq, then n ě i. This is
called a “scheduling function”. missing im-

age: “set the-
ory”

Take F0 P K. List all embeddings f0,0, f0,1, . . . of finite substructures of F0 into
other structures of K (up to isomorphism).

At stage Fk, deal with the embedding fσpkq using AP.

A F0 F1

B

f0,0

Ď Ď

Example 1.17. Consider the class of finite graphs. This has AP: Let
A ãÑ B0, A ãÑ B1. Take the free amalgam of B0 and B1 along A.

So by Fräıssé’s Theorem (1.14) we get the random graph.

Example 1.18. Consider the class of triangle-free finite graphs. Note that
the free amalgam does not create triangles, so Fräıssé’s Theorem (1.14)
can be applied. The resulting graph is called the Henson graph H3 (or
“triangle-free random graph”a).

athis is a bad name

For the Henson graph the analogous statement to the witness property is:

@U, V finite and disjoint and U edge free, there exists w such that ...

The same thing can also be done the obtain the Kn-free random graph.

Example 1.19. Non-examples are:

• finite forests

• finite bowtie-free graphs, i.e. not containing
‚ ‚

‚

‚ ‚

as a graph-theoretic subgraph. Consider

A B0 B1

‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚
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Theorem 1.20 (Lachlan-Woodrow). Any ultrahomogeneous countably in-
finite graph is

• the random graph R,

• Hn, the Kn-free graph or

• the disjoint union of Kns (where maybe n “ 8)

or its complement.

We will not prove this in this seminar.
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