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These are my notes on the lecture “Stable Groups”, taught by PROF. DR. DR. KA-
TRIN TENT in the summer term 2024 at the University Miinster.

Warning 0.1. This is not an official script. In particular, Prof. Tent is
not responsible for any errors in this document. The official lecture notes
can be found in the learnweb course [Ten24].

If you find errors or want to improve something, please send me a message:
lecturenotes@jrpie.de.
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https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=77554

[Lecture 01, 2024-04-15]

A background in model theory is helpful but not necessary. Some group theory
is required (usually covered in linear algebra and a first algebra course).

The lecture starts at 08:25.
The book by Prof. Tent is available on learnweb.
There will be an oral exam. For a type II course, one needs to do nothing.

The main point is to see, how model theoretic properties influence algebraic
properties.

1 Introduction

Definition 1.1. An infinite £-structure M is minimal iff for every formula
p(x) € L(M), the set defined by ¢, o(M) = {a € M|M = ¢(a)} is finite
or cofinite.

Example 1.2. e (Q,+,") is not minimal, consider for example the for-
mula p(x) = Jy. x = y?

e (C,+,-) is minimal.
Recall the orbit equation: If G-~ X is transitive, then there is a natural

bijection

G/Gm_,X
hGy+— h-zx

where for z € X, G, = {g € G : gr = z} < G is the stabilizer of z in G and
G-z :={gr:ge G} < X is the orbit of z under G.

Theorem 1.3 (Reineke). Minimal groups are abelian.

Proof. Let G be a minimal group.

Since G is minimal, all proper definable! subgroups are finite by minimality: If
H < G is a proper definable subgroup, then for a ¢ H, the coset a - H is also
definable and disjoint from H.

Suppose that G is not abelian. Then the center? Z(G) is finite. Furthermore,
every element of the group must have finite order, since (a) < Z(Cen(a)).?
(Note that {a) is not definable in general).

LA definable subgroup is a subgroup, that can be defined by a formula.
2The center is defined as Z(G) = {x € G : Vy. zy = yz}.
3The centralizer of a is the set of all elements commuting with a.
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Consider the conjugacy class a® = {a? : g € G}, where a9 := g~'ag. Then

for a € Z(G),* we have |a%| = |G/Ga|, where G, = Cen(a). In particular, for
a ¢ Z(G), the conjugacy class a® is infinite. Since by minimality there can
not be two disjoint infinite conjugacy classes, we get G = a® U Z(G) for all
a ¢ Z(G). Thus any a,b € G\Z(G) are conjugate, so a,b have the same finite
order and | Cen(a)| = | Cen(b)|.

If all elements have order 2, the group is abelian, since a~'b~'ab = abab = 1 in
this case.

If all a € G\Z(G) have order 2, then again G is abelian: Let ¢ € Z(G), then
ca ¢ Z(G), so 1 = (ac)? = acac = a®c? = ¢?, i.e. the elements in Z(G) also have
order 2.

Now let a € G\Z(G) be not of order two. Then a? # 1 and a,a™! ¢ Z(G) are
conjugate under some g € G, i.e. b"tab = a~!, hence b—2ab? = a, b € Cen(a).
So a € Cen(b?)\ Cen(b). Clearly Cen(b) < Cen(b?) and a witnesses that this is
a proper subgroup. So |Cen(b)| # | Cen(b?)], hence b € Z(G). It follows that

H= G/ Z(G) is an elementary abelian 2-group in which all non-trivial elements

are conjugate, i.e. |H| = 2° and so G is finite. O

We want to generalize this.

Definition 1.4. An L-structure M is stable iff there are no M §7]\~4 L0
L(M)-formula ¢(Z,7) and tuples @;,b; € M such that M E o(a;,b;) iff
<.

%elementary extension

Example 1.5. Let M = (Z,+,-,0,1), a; =i = b; and
o, y) — 21, za. s+ 2B+ 2=y

Then M |= p(ab;) iff i < j. So M is not stable.

Algebraically closed fields are stable.

Lemma 1.6. If M is a stable and non-empty semigroup® with right- and
left-cancellation® (alternatively: left-cancellation and a right neutral
element®), then M is a group.

%associative operation
bax =ay =— =1y
Va. ae = a.

4Note that for a € Z(G), we have a® = {a}.
5Conjugation is not too interesting in abelian groups.
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Proof. The formula ¢(z,y) — "3z. x -z = y', is satisfied by (a™,a™) if n < m.
By stability, this can not be an if and only if. So there must be some m > n,
such that M = p(a”, a™). Le. there is some b € M such that a” = a"™*Pb, where
m = n + p. Put e = a?b. This is a left-neutral element: For ¢ € M we have
a™c = a"ec, hence ¢ = ec by left-cancellation.

By symmetry (or assumption), there exists a right-neutral element f, and since
e =ef = f, e is neutral.

Furthermore

e = arh "=’ a(a?~1b),

so a has an inverse. O

Remark 1.6.1. The assumptions are necessary since a semigroup with
Ty =y is not a group.

Corollary 1.7. If G is stable, then every non-empty definable subset closed
under multiplication is a subgroup.

Similarly, every definable non-empty subring of a stable field is a subfield.

Remark 1.7.2. A stable group is a group whose theory is stable (not
necessarily in the language of groups). The group may be a definable (or
interpretable) structure inside another structure, e.g. (K, +,-,0,1) field,
G = GL,(K) or any other Chevalley group.

Definition 1.8. A definable group action (in some L-structure M)
is given by a definable group G, a definable set X and a definable action
GxX — X (i.e. the graph of the action is a definable subset of (Gx X ) x X.

Example 1.9. Let (K, +,-,0,1) be a field. Then GL,(K), K™ and the
action GL,, (K) —~ K™ are definable.

Example 1.10. Consider (Q, +,-,0,1). Then A := [0, 1] is definable® and
%A < A. Hence it is not stable by the following lemma.

%this is non-trivial

Lemma 1.11. Let G be a stable group acting definably on a set X. If
A € X is definable and g € G, then g(A) € A iff g(A) = A.

Proof. If g(A) < A, we get a proper descending sequence A 2 g(A4) 2 g?(A) 2
g%(A) 2 ... and the sequence g', i < w is ordered by "rA < yA". O
1 INTRODUCTION 7



[Lecture 02, 2024-04-18]

Recall:

Corollary 1.12 (of Lemma 1.11). If G is stable, A € G is definable and
g€ G, then A9 < A < A9 = A.

Remark 1.12.3. This does not hold in general. Consider

H={<(1) ”f) |meZ}<GL2(Q)

- 5)

L= hyp,s0 gHg™! < H.

and

Then ghpg~

Definition 1.13. For a group G, a family of subsets {H;}icr of M* is
called uniformly definable if there is a formula ¢(Z,7) and @; € M;,i € I
such that o(M* @) = H;.

For example, the centralizers of elements are uniformly definable.

Remark 1.13.4. If G is stable, the Trivial Chain Condition holds for
uniformly definable subsets and subgroups, i.e. descending chains are finite:

For every uniformly definable family H;,7 € I, there is some n < w such
that every properly descending (resp. ascending) chain H;, < H;, < H;, <
... has length at most n. This n depends only on the formula, not on the
parameters of the form of the definable family.

Definition 1.14. A formula ¢(Z,y) has the independence property
(IP) iff there are a@;,i < w, such that for all A € w, the set {p(Z,a;)|i €
At U {—p(T,a;)|i ¢ A} is consistent.

A theory is called NIP iff no consistent formula has IP.

Example 1.15.

e The random graph (Radograph) has IP.
e (C,+,-,0,1) is NIP.

Lemma 1.16. If T is stable, then T is NIP.

1 INTRODUCTION 8



Proof. 1f ¢(7,7) has IP, @; € M,i < w, M |= T, then there are M > M, and
b; € M such that M = ¢(b;,a;) iff i < j, which is a contradiction to stability. O

The reverse direction does not hold, since for example the real numbers have
NIP, but are not stable.

Lemma 1.17. Let G be a NIP group. Then finite intersections of uni-
formly definable subgroups are uniformly bounded, i.e. for every formula
o(z,7) there is n < w such that if H; = ¢(G,a;), i = 1,...,m are sub-

groups, then
n
(5 = ()&,
j=1

i<m

Proof. Suppose not. Then for all n < w there is a uniformly definable family of
subgroups Hy, ..., H, such that (| H; < (i1 H; for any 1 < j < n.
i#]

So there is some b; € (ﬂ#j Hi) \Hj, j <n.

For I < {1,...,n} put by := [[,c;b;. Then G = ¢(b;,a;) iff i ¢ J. Since n
was arbitrary, this shows that ¢(x,y) has IP: Let A € w be any subset. By
the Compactness Theorem (A.14) it suffices to show that every finite subset of
{o(x,a)|i € A} U {—p(x,a;)|i ¢ A} is consistent. This holds, since for every

finite
W,

G E{pbpa,ai)lie An Iy u{=p(bpa,a)li e I\A}.

Proposition 1.18 (Baldwin-Saxl). If G is stable, then for every formula
©(Z,7), there is n < w (depending only on ) such that for subgroups
H; = ¢(G,@;)er, we have

ﬂHi = ﬂ Hi,
iel j=1

for some i; € I, i.e. arbitrary intersections of uniformly definable subgroups
are definable.

Proof. By Lemma 1.17 intersections of finitely many H; are uniformly definable.
By the Trivial Chain Condition (1.13.4) applied to these uniformly definable
intersections, there is a minimal group H is this family, ie. H = (H; =
M=, Hi, with n < w from Lemma 1.17, O

1 INTRODUCTION 9



Corollary 1.19.1If G is stable and A < G arbitrary, then Cen(A) =
(Nuea Cen(a) = {g € G|Va € A. [g,a] = 1} is definable.

Example 1.20. By Sela’s Theorem the free groups F,, are stable. For

w € Fy, Cen(w) is cyclic, so n = 2. Copy from
oficial notes

Remark 1.20.5. Since the formula "za = az’ is quantifier-free, Corollary
of Baldwin-Saxl (1.19) holds in all subgroups of stable groups.

For example Symyg, (w), the group of permutations of w with finite support
(i.e. moving only finitely many elements) can never be a subgroup of a
stable group, since centralizers can become arbitrarily small.

Definition 1.21. Let T be arbitrary and ¢4(T), s € 2<“ consistent formu-
lae.®

Then

(i) the ps(T) form a binary tree of consistent formulae iff

T V(0 ~o(T) v o, ~1(T) = 9s(T))

and
T ¥T(0,~ (@) A 9~ (D).

(ii) T is called totally transcendental (or w-stable iff £ is countable)
iff there is no binary tree of consistent formulae.

9

®Here “consistent” means that the family is consistent along every path, i.e. for every
s€e2¥, {g05|n :n € w} is consistent. The entire family may be inconsistent.

Example 1.22. Let G be a group, and H;,7 < w an infinite descending
chain of subgroups H; > H;.1, then we get a binary tree (subset vs. coset).
So totally transcendental is much stronger than stable.

Proposition 1.23. If G is totally transcendental, there is no infinite prop-
erly descending chain of definable subgroups.

Proof. Otherwise we get a binary tree. O

[Lecture 03, 2024-04-22]

Corollary 1.24.
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(i) In a totally transcendental group G every intersection of definable
subgroups is definable. In particular, there is a minimal definable
subgroup G° of finite index in G, the connected component of G.

(ii) If G is totally transcendental, every injective definable endomorphism
of G is surjective, i.e. an automorphism of G.

(iii) If G is w-stable, abelian and torsion free, then G is divisible®.

%An abelian group A is divisible iff Va € A. Vn € N. 3b e A. n-b = a, ie. iff
G = ®ierQ.

Proof. (i) Clear.

(ii) Suppose that s: G — G is definable but not surjective. Then s*(G) is a
proper descending sequence of definable subgroups 4.

(iii) Note that the map g — n - g is definable and injective.5

Remark 1.24.6. If G is stable, then for any formula ¢(z,7) the group

G (p) = [{e(G.@)|9(G,a) < G,[G : p(G,a)] < w}

is a definable subgroup of finite index by Baldwin-Saxl (1.18), the -
connected component of G.

In particular, we’ll be interested in the case

o(z,y) — vy = ya'.

Definition 1.25. A group G is called centralizer connected iff G =
G°(xy = yx), i.e. iff for all a € G\Z(G) the index [G : Cen(a)] is infinite.

Lemma 1.26. If G is centralizer connected, A € G finite and A normalized
by® G, then A € Z(G).

%For A, B < G we say that A is normalized by B iffVbe B. A? = A i.e. B < Ng(A).
Proof. 1If a% is finite, then a € Z(G), since |G : Cen(a)| = |a“|. O

Remark 1.26.7. This does not depend on stability.

SWarning: g — n - ¢ is not uniformly definable.
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Proposition 1.27. If G is stable® and {[g, h]|g, h € G} finite, then G is
virtually abelian.®

%The assumption of G being stable can be removed.
YA group is called virtually abelian or abelian-by-finite iff Z(G) has finite index
in G.

Proof. For every g € G, the set {[g,h] : h € G} is finite. Hence g“ is finite,
so |G : Cen(g)| is finite. By the Corollary of Baldwin-Saxl (1.19), we have
Z(G) = (V;<, Cen(g;) for some n € N, and this has finite index. O

Proposition 1.28. If G is centralizer connected with finite center, then

Z(G) = G(G), ie. Z(G/Z(G)) = {1}.

Corollary 1.29. If G is centralizer connected, infinite and nilpotent, then
Z(@G) is infinite.

Proof of Proposition 1.28. Recall that (2(G) = {g € G|9Z(G) € Z(G/Z(Q))}.
So for all g € (2(G), h € G we have [g,h] € Z(G).

Since Z(G) is finite, we get for g € (2(G) that the orbit g¢ is finite, so [G :
Cen(g)] is finite. Hence g € Z(G), since G is centralizer connected. O

Remark 1.29.8. If G is nilpotent, 1 # N < G, then N n Z(G) # {1}:

Suppose n € (N n ¢; (G))\{1} with ¢ minimal. If ¢ > 1, then there exists
g € G such that 1 # [g,n] € (;_1(G) n N.

Lemma 1.30. If G is nilpotent, centralizer connected and N < G infinite®,
then N n Z(@G) is infinite.

%not necessarily definable

Proof. If N < Z(G) this is trivial. Otherwise N n Z(G) # {1}. If 1 #n €
N n G(G\Z(G), then n@ is infinite and n=! - n% = [n,G] < Z(G) n N is
infinite. O

Remark 1.30.9. If GG is nilpotent, then for any subgroup H < G we have
H < Ng(H) (cf. Sheet 1, Exercise 1 (B.1.1)).

Theorem 1.31. If G is stable, nilpotent, and H < G definable of infinite
index, then H has infinite index in Ng(H).

1 INTRODUCTION 12



Proof. Let Z = Z(G). If [ZH : H] is infinite, the claim is clear.

Now we use induction on the length of the central series: If [ZH : H] is finite,
then [G : ZH]| = [G/Z : ZH/Z] is infinite. By the inductive assumption ZH/Z
has infinite index in Ng/z(ZH/Z), hence ZH has infinite index in Ng(ZH).
We have

H<ZHK Ng(H) < N(;(ZH) =: N.

By Baldwin-Saxl (1.18) it is
(H =H" n...nH™ =H"
neN

for some [ € N.

Since [ZH : H] is finite, H® has finite index in H and Ng(ZH) < Ng(H°). We
obtain
H° < H < ZH,

where each step is of finite index. Hence
H, \"cZH
( /HO) c /HO

is finite. Therefore Ny (H) has finite index in N. Since Ny(H) < Ng(H) < N,
the claim follows. O

[Lecture 04, 2024-04-25]

Remark 1.31.10. Note that when taking a quotient by a (J-definable
subgroup, e.g. G/Z(G) in the proof of Theorem 1.31, the elements of the
quotient are not elements of our structure. However the quotient is in-
terpretable in G, i.e. equality up Z(G) can be written as a formula in
our language. We call elements of such an interpretable structure virtual
elements.

More generally if E is a (J-definable equivalence relation on M™ for some L-
structure M, n € N, we can extend the structure by a new sort of elements,
whose elements are the equivalence classes modulo E. We extend the
language £ to a language £°1 by adding for each such equivalence relation
E a new sort and a new n-ary function symbol 7g: M"™ — M n/ -

Lemma 1.32. For every L°-formula (21, ..., 2, ), where 27 is of the sort
N™ /E;, there is an L-formula (71, .. .,¥,) which in T° is equivalent to
(5, (Y1), - - 7B, (Yn))-

Corollary 1.33. In M there are no new definable relations on M. In

1 INTRODUCTION 13



particular, if M is stable / totally transcendental / NIP / w-categorical
then so is M.

Example 1.34. If H < G is 0-definable subgroup, then the cosets in G/H
are the elements of the sort corresponding to aEgb <= ab~! e H.

Furthermore if H <€ G is a normal subgroup then G/H is an interpretable
group in G and is stable etc. if G is.

2 w-categorical groups

Definition 2.1. A countable L-structure M is called w-categorical iff
Aut(M) has only finitely many orbits on M™ for each n.

Example 2.2. o (Q, <) is w-categorical:

Take a1 < ... < ap, and by < ... < by, a;,b; € Q. Put p(a;) = b;.
Since Q is dense, ¢ can be extended to an automorphism of Q.

e The random graph is w-categorical.

e Vector spaces over a finite field K viewed as (V,+,0,; : k € K),
where Aj denotes scalar multiplication by k.

Note that for an infinite field two elements can be linearly dependent
in infinitely many ways. Hence vector spaces of an infinite field are
not w-categorical.

Remark 2.2.11. (i) M is w-categorical iff there is a unique countable
structure elementarily equivalent® to M (up to isomorphism).

(ii) M is w-categorical iff for any finite set A € M, Aut4(M)® has only
finitely many orbits.,

M, N are elen

es, i.e. {p|M =
notes the point

(iii) If M is w-categorical and A € M™ is invariant under Autp(M) for

finite
some finite set B < M, then A is B-definable,

In particular if G is w-categorical, then all characteristic subgroups
are J-definable.

Definition 2.3. A group G is called locally finite iff every finite subset
generates a finite subgroup.

It is called uniformly locally finite iff for all n € N, there is a bound
k € N, such that for all ay,...,a, € G, we have [{ay,...,a,)| < k.

In particular, a (uniformly) locally finite group is torsion (of bounded exponent).

2 w-CATEGORICAL GROUPS 14



Lemma 2.4. If G is an w-categorical group, then G is uniformly locally
finite.

Proof. Any automorphism of G fixing a1, ...,a, fixes {ai,...,a,) pointwise,
hence {ay, ..., a,) is finite, as otherwise Auty,, .. 4, (G) has infinitely many orbits
on M, one for each x € {a,...,a,) (cf. Remark 2.2.11).

Since there are only finitely many orbits on n-tuples, and n-tuples in the same
orbit generate isomorphic subgroups, the maximal bound works for all n-tuples.
O

So far we have not used stability; now we’ll add this assumption.

Theorem 2.5. If G is w-categorical and stable, then the connected com-
ponent

G® = ﬂ{H < G|H definable (with parameters) of finite index}

is J-definable and of finite index.

Proof. If H < G is definable (with parameters) and of finite index, then H® :=
Npeaut(c) P(H) is a finite intersection (by Baldwin-Saxl (1.18)) and hence of
finite index in G.

Since H' is a characteristic subgroup, it is J-definable. There are only finitely
many such subgroups (cf. Remark 2.5.12 (i)), hence G° is J-definable and of
finite index. O

Remark 2.5.12.

(i) An w-categorical group has only finitely many characteristic sub-
groups:

If H <o G, G = Aut(G), then 2% < H or 2% n H = & for all
x € G. Since there are only finitely many 1-orbits, the claim follows.

(ii) An w-categorical stable group G contains minimal normal subgroups
and any normal subgroup contains a minimal one:

There are only finitely many Aut(G)-orbits on G x G. Hence there
is some k € N such that for = € (y)¢ we have x = y9 - y9% for some
i < k. Hence all normal subgroups of the form (a%) are uniformly
definable,

a®y ={a% - ... a%|g; € G,i < k}.

By the Trivial Chain Condition (1.13.4), there is a minimal one.

2 w-CATEGORICAL GROUPS 15



(iii) A stable group does not contain subgroups which are unbounded
direct products of non-abelian groups.
If H1 X ... X Hk < G, hl € HZ\Z(HZ), then ﬂ
H; < mjgk Cen(h;).
By the Corollary of Baldwin-Saxl (1.19), there is a bound on k de-
pending only on Th(G).

I Cen(hj) > H; and

(iv) Every finite simple group is 2-generated.

[Lecture 05, 2024-04-29]

Theorem 2.6 (Baw-Cherlin-Macintyre, Felgner). An w-categorical stable
group G is virtually nilpotent.

. [Lecture 06, 2024-05-02]

3 Morley Rank

The Morley rank is a notion of dimension on definable sets, similarly to the
algebraic dimension of an algebraic variety (and agrees with it in this context).

In this section let T always denote a complete theory with infinite models.

Definition 3.1. Let ¢(Z) be an £L(M)-formula, M = T very saturated.
(i) MR(p) = 0 if ¢ is consistent (i.e. p(M) # ).

(ii) MR(p) = B+ 1 if there is an infinite family of formulae ¢;, 7 < w such
that ©; — ¢, @;(M) n@;(M) = & for i # j and MR(yp;) =  for all
1< w.

(iii) MR(¢) = A for limit ordinals A if MR(¢) > « for all o < A.

If ¢ is inconsistent, put MR(p) = —o0. If MR(p) > « for all « € Ord, put
MR(p) = o0. If MR(¢) = o, MR(¢) * a + 1 put MR(yp) = a.

[Lecture 07, 2024-05-06]

Remark 3.1.13. (i) It is MR(p) = 0 iff (M) is finite (in any model of
T).

(ii) If for all M =T we have (M) < (M) (equivalently T+ ¢ — ),
then MR(¢) < MR(¥).

(iif) If MR(¢) = a and 8 < « then there exists some ¢ with T ¢ — ¢
and MR(¢) = .

Lemma 3.2. MR(p A 9) = max{MR(¢), MR(¢)}.
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Proof. By Remark 3.1.13 (ii). MR(¢ A ¥) = max{MR(¢), MR(¢))}. We show
by induction on «, that if MR(¢ A 9) = «, then max{MR(¢), MR(¢))} = a + 1.
If MR(p A ¥) = a + 1, then there exists (;)i<w, such that T - @; — (¢ A V)
and MR(p;) = « for all i < w. By inductive assumption, MR(p; A ¢) = a or
MR(p; A ) = « for each i < w. Hence for ¢ or ¢ there exists infinitely many
i, such that MR(¢; A ¢) = a or MR(p; A ¥) = a, so max{MR(¢), MR(¢))} >
a+1. O

Remark 3.2.14. .
e ¢, are called disjoint (over all models) if T'U {p, ¢} is inconsistent.

e If MR(p) = «, then there exist only finitely many disjoint formulae
©1,..., 04 with T - ¢; — ¢ and MR(p;) = a.

The Morley degree, Mdeg(y), is defined to be the maximum of all
such d.

Theorem 3.3. A theory T is totally transcendental iff every formula has
a Morley rank.®

%.e. MR(p) # ©

Proof. “ =" Any formula without a Morley rank can be decomposed into an

infinite binary tree.
“ <=7 TIf (ps)se<w2 is a binary tree of consistent formulae, such that ¢s is of
minimal Morley rank and Morley degree, then ¢ ., and ¢_., have smaller

Morley rank or Morley degree. O

Definition 3.4. For types p we put

MR(p) := min{MR(¢)|¢ € p},
Mdeg(p) := min{Mdeg(p)| MR(¢) = MR(p), ¢ € p}.
Thus MR(¢) = max{MR(p)|¢ € p}.

If G is a totally transcendental group, a formula ¢(z) and type p(x) are
called generic iff MR(p) = MR(p) = MR(G) :== MR("z = z").

We will need that in stable theories all types p € S(B), B< M, M = T are
definable. First we do this for p-types: We set p € S,(B) iff p is consistent
and for every b € B we have ¢(Z,b) € p or —p(ZT, b) € p.

Definition 3.5.
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A type p € S, (B) is definable over C iff for each £-formula (7, 7),
there is an £(C)-formula v (y) such that for all b € B we have ¢(7,b) €
p = M ().

o ¢(Z,7) is called stable iff for some infinite cardinal A we have |.S,,(B)| <
A for all |B] < A.

©(Z,y) has the order property (OP) iff there are tuples a;, b;, i < w
such that M = p(a;, b;) <= i <j.

©(z,y) has the binary tree property iff there is a binary tree
(bs)se<wo of parameters such that for all o € “2 the set

{(pa(n) (Ea bo’|n |TL < LU}

is consistent, where ¢° := =y and ¢! := .

Theorem 3.6. The following are equivalent:
(i) ¢ is stable.
(ii) |S,(B)| < |B| for all infinite B.
(iii) ¢ doesn’t have (OP).
(iv) ¢ doesn’t have the binary tree property.
)

(v) Every o-type p € S,(B) is definable over B.

For the proof we need some preparation:

Lemma 3.7. If ¢(Z,7) has (OP) and (I, <) is a linear order, then there
are a;, b;, i € I such that = ¢(a;,b;) iff ¢ < j.

Proof. Cf. Sheet 5, Exercise 3 (B.5.3). O

Corollary 3.8. If ¢(Z,7) has (OP), then three are a;, b;, i < w such that

We also need

Theorem 3.9 (Ramsey). Let A be infinite, n < w, Cy L ... 1 Cy = [A]”
a colouring of the n-element subsets of A. Then there exists some infinite
Ap € A, i < k such that [4p]™ < C;.

Proof. We use induction on n. The statement is trivial for n = 1. Assume
that we have shown the theorem for some n. Consider a coloring ¢ on [A]"*!.
Fix some ag € A. We obtain a coloring on [A\{ap}]" as follows: For [ag] U
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X € [A]"! put cq,(X) = ¢(X U {ap}). By the induction hypothesis, there
is a monochromatic set By < A\{ag}. Take a3 € By. Color [Bi\{a1}]" by
Cay (X) == ¢(X U {ap}). Tterating this construction we obtain a chain

A=By2B12B12...

and a; € B;\Bj;+1 such that C({ai,,ai,,...,a;,}) depends only on iy for all
19 <11 < ...<1ip. By induction hypothesis for n = 1, there are infinitely many
1o yielding the same coloring. Let A be the set of such . O

Theorem 3.10 (Erdds-Makkai). If B is infinite and S € P(B) such that
|B| < |S], then there is {b;|i < w), b; € B, {S;|i < w), S; € S such that
either

(1) biESj — j<i0r

Proof. We say that X separates A from B if A < X and X n B = . Construct
S’ € 8, |S'| = |B| such that any pair of finite subsets of B that can be separated
in S are separated in §’: For any two finite subsets of B put a corresponding
By € B into §'.

Since |Pgn(B)| = | B|, we have |S’| = |B|. Since |S’| < |S| there is S* € § which
is not a boolean combination of sets in S’. We now construct sequences

bi < wy in S*,
(blli < wy in B\S*,
(Sili <w)in &,
such that
o {by,..., 0} €Sy, {bf,...,b0'} < B\S, and
el eSS, — b €S forali<n.
Assume we have defined those for ¢ < n. Since S* is not a boolean combination
of S;,i < n, there exist b, € S*, b’ € B\S* such that for all i < n, b, € S; <

b’ € S;. Let S, € 8 separate {b),...,b,} from {b),...,b"} (this exists, since
S* € S separates them).

We may assume b, € S; or b, ¢ S; for all i < n < w: Set ¢({n,m}) =
[max(n,m) € Smin(n,m)]- Ramsey’s Theorem (3.9) yields N € w infinite such
that [IV]? is monochromatic.

In the first case put b; := b] (¢ S*, ~ (i)). Otherwise put b; := b, ; (~ (ii)).
By construction we have i < n = b, € S,, b/ ¢ S,. If b, € S; for i < n,
then also b € S;. Hence i < n iff b, € S; by choice of S,,. The other case is
similar. O
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Proof of Theorem 3.6. Clearly (ii)) = (i), (v) = (ii).

(i) = (iv) Suppose that ¢ is A-stable and p minimal such that 2# > X. The
tree T' = <2 has cardinality < A. If ¢(Z, %) has the binary tree property, then
by the Compactness Theorem (A.14) we find (bs)ser such that for o € #2 the

type

4o = {(po(w)(f7 bo\a)|a < M}
is consistent. Hence the ¢, extend to a family of pairwise distinct p-types over
B = {bs|]seT},s0|B| <A<2!<|S,(B)|. 4

(iv) == (iii) Choose a linear ordering on I = S*2 such that ¢ < 0|, <
on) =1for all 0 € “2,n < w. If p(z,y) has (OP), by Lemma 3.7 we find
(@i, b;)ier such that = ¢(a;,b;) <= i <j.

Thus the tree ¢(x,bs), s € <“2 has the binary tree property.

(iii) = (ii) Let |B| = |T|, |S,(B)| > |B|. The ¢-type of a over B is determined
by
S, ={b< B| E ¢(a,b)} < B".

Since |B™| = |B| we may assume n = 1. Applying Theorem 3.10 to B and
S = {Su]la € M} we obtain (b;)i<y ,(ai)i<w, bi € B,a; € M such that either

e bieS,, = j<iforalli,j<wor
e bieS,, = i<jforallij<w.
Thus ¢ has (OP).

(v) = (iv) Suppose p(z,y) doesn’t have the binary tree property. For a
formula 6(x) let d,(f) be the maximal n such that there is a binary three
(bs)se<n2 such that

{0(z)} U {(p”(i) (7,05, |1 < n}

is consistent for all ¢ € 2. Let p € S,(B) and let 6 be a conjunction of formulae
in p such that n := d,(#) is minimal. Then

o(z,b)ep <= dy(0(x) A ¢(x,b)) = n.

Note that the right hand side is definable. O

7
[Lecture 08, 2024-05-13]

Corollary 3.11 (Separation of Variables). Let T be stable, M = T and
A = p(M) a @-definable subset. Then every L£(M)-definable subset of A
is A-definable.

In other words, for every formula ¢ and ¢ & M such that ¥(M,¢) S (M),

"The proof of Theorem 3.6 was finished in this lecture.
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there exist ¢’ and @ € A such that

7//(/\/1,5) = w(Maé)

Proof. The type p(y) = tp(¢/¢(M)) is definable over A by Theorem 3.6, i.e.

Y(M, ) = {a € Alp(a,y) € p}
is A-definable. O

Example 3.12. This does not hold without stability: Let I" be the random
graph Consider (I',a) for some ¢ € I'. Then A = I'1(a) = {b e T :
dist(a,b) = 1} is F-definable. However for b € T\ A the set 'y (a) n T'1(b)
is not definable over A. (Note that (T',a) has QE.)

[Lecture 09, 2024-05-16] If P is a type with Morley rank, then by definition there
exists ¢ € p such that MR(¢) = MR(p), Mdeg(¢) = Mdeg(p). We call such a
¢ the characterising formula® for p. Then for a formula v we have 9 € p iff
MR( A —¢) < MR(»),

Corollary 3.13 (MR is definable). For ¢(x,y) the set
By,p = {b|MR(p(z) A —p(x,0)) < MR()}
is definable.

If p € S(B), the set By, is defined by an £(B)-formula and we can evaluate
this formula on arbitrary elements. If C' 2 B, this defines a ¢-type g € S(C),
q 2 p such that

P(z,c) € ¢ <= |= defy(¥)(c)
where def, (1) is the formula defining By, ,. By construction MR(q) = MR(p).?

Definition 3.14. Let A < B, p € S(A) with MR(p) = o. Then g € S(B)
with ¢ 2 p and MR(p) = MR(q) is called a non-forking extension of p.

Remark 3.14.15 (Heir property). All formulae in a non-forking extension
q are (possibly with different parameters) already in p.

Lemma 3.15. Every type p € S(A) with MR(p) = « has a non-forking
extension to any set B 2 A. There are at most Mdeg(p) many non-forking

8This is not official notation.
91In a sense, ¢ adds no additional information.
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extensions to B and
Mdeg(p) = Z{Mdeg(qﬂq € S(B) non-forking extension of p}.
Proof. If ¢ is a characterising formula for p, the non-forking extensions of p to

B are give exactly by those ¢ € £(B) that preserve the Morley rank (but maybe
have smaller degree). O

Definition 3.16. A type with Morley rank is stationary iff Mdeg(p) = 1,
i.e. iff it has a unique non-forking extension to any superset of its domain.

Corollary 3.17.If p € S(A) is stationary, B 2 A and ¢ € S(B) a non-
forking extension, then ¢ is definable over A.

Proof. The characterising formula for p is also characterising for q. O

Remark 3.17.16. If T is totally transcendental and M = T is w-saturated,
then MR and Mdeg for ¢ € £(M) can be computed in M. Le. “very satu-
rated” as in Definition 3.1 is just w-saturated if T is totally transcendental.
In particular, all types in S(M) are stationary.

[Lecture 10, 2024-05-27]

Notation 3.17.17. Let T be totally transcendental, M = T, a@,b, A € M.
We write
MR(a/A) = MR(tp(a/A))

and @ | b (“@ and b are independent over A”) iff
A

MR (a/Ab) = MR(a/A),

i.e. iff tp(@/Ab) is definable over A. Similarly we define @ | B.
A

@ | bis abbreviated as @ | b.
%)

Example 3.18. Let T;,c. be the theory of cycle-free graphs such that every
vertex has infinite valency. Tiee is a complete theory with QE in the
language d,,(z,y) := “dist(x,y) = n”. Furthermore it is w-stable (follows
from QE).

Let b be a vertex. We claim that p(z,b) = {di(x,b)} is a complete type.
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For A # & we have a | b iff the shortest path from a to b passes through
A
conv(A), the convex closure of A.

For A= itisa | biff a and b belong to different connected components.
A

Note that MR (a/A) = MR(a| conv(A)).

Theorem 3.19. If T is totally transcendental, then a | b < b | a.
A A

Proof. Let M |= T be an w-saturated model (a submodel of the monster-model)
and A € M. Wlog.

(i) a | M and
A
(ii) b | M
Aa
by Lemma 3.15.
‘ atb
Suppose that a}b. Then by (i) a 1 bas MR(a/M) 2 MR(a/4) > MR(a/Ab) >
A M
MR(a/M).
We need to show that b 1 a.

A

Claim 1. b t a.
M

Subproof. Let o := MR(a/M), B = MR(b/M), and ¢(z) € tp(a/M), ¥(y) €
tp(b/M) the characteristic formulas.
Since a 1 b, there is an £(M) formula x(z,y), such that |= x(a,b) (i.e. x(x,b) €

tp(a/bM)) and MR(x(2,5)) < a. Wlog. = g(z,) — o(x) A 1(y).

If b | a, then by (ii), b | M, hence b | a 4.
A A M

By Corollary 3.13 the set {¢| MR(x(z, ¢)) < a} is M-definable. Hence wlog. MR (x(z, ¢)) <
a for all ¢ e M. Since MR(a/M) = «, x(a,y) € tp(b/aM) is not realized in M.
Hence MR(x(a,y)) < MR(4(y)) = 6. O

Remark 3.19.18. Prof. Tent sometimes uses RM (french) instead of MR.
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Definition 3.20. If G is a totally transcendental group, a formula ¢ €
L(G) and a type p € S1(G) are generic if

MR(y) = MR(p) = MR(G) = MR("z = z").

Note that G acts by left-multiplication on the compact space S1(G) : If p €
S1(G) then p = tp(z/G) for some x in G > G, then for a € G, we let ap =
tp(azx/G).

Since multiplication is a definable bijection on G, it preserves MR and Mdeg.
Furthermore, the action of G on S1(G) is definable: If p(x,b) € p is the charac-
teristic formula, then p(a~'x,b) is the characteristic formula of ap. So

Stab(p) = {a € Glap = p}
= {a e Glp(a ' x,b) € p}
= {a € G|MR(p(z,b) A ~p(a™t,b)) < MR(¢p(x,b))}
is a definable subgroup of G.

There are only finitely many generic types, so if p € S1(G) is generic, then
Stab(p) has finite index in G.

Lemma 3.21. The number of generic types in G is equal to |G/G°| =
Mdeg(G).

Proof. 1f p is generic, then Stab(p) > G® and p € S1(G) has Morley degree 1,
so it has to specify in which coset of G/GY the realization lies. O

Lemma 3.22. p is generic iff Stab(p) = G°.

)

Proof. “ =" was done in Lemma 3.21.

“ «— " Let Stab(p) = G°, p(z) = tp(a/G) for some a € G and v € G° generic

over G such that b | a.
G

Then tp(a/G) = tp(b- a/G). Furthermore

beStab(p

MR(b/G) = MR(b/Ga) = MR(ba/Ga) < MR(ba/G) ' MR(a/G).

Since MR(b/@) is maximal we have equality, i.e. a is generic over G. O

Remark 3.22.19. If g € G is generic and a | g, then a - g is also generic:

We have MR(g) = MR(g/a) = MR(a - g/a) < MR(a - g).
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Lemma 3.23. (i) Every g € G is a product of two generics.®

(ii) If A, B € G are generic such that G\A and G\ B are not generic, then
G=A-B.

%This happens for many concepts of “large such that the complement is small”.

1

Proof. (i) Let z|g such that z is generic. Then x~! and gz~! are generic and

g=(ga7") .
(ii) We have A(x), B(x) € p(x) for every generic type p(x).

Definition 3.24. A definable set A € G is called indecomposable iff for
every definable subgroup H < G

{aH|a € A}| € {1, 00},

i.e. either A is contained in a coset of H or it intersects infinitely many
cosets.

Remark 3.24.20. A definable subgroup is indecomposable iff it is con-
nected.

[Lecture 11, 2024-06-03]

Theorem 3.25. If G is totally transcendental, every definable subset is
a disjoint union of finitely many indecomposable subsets, its irreducible
components .

The decomposition is unique if the components are maximal.

Proof. If A is decomposable, there exists a definable subgroup H < G such that
l<n:=|{aH|ae H}| < w.

Write A = Ay u...ud,, A; = Ana;H. If A; is decomposable, write A; =
A;, u...u A;, and so on. We obtain a finitely branching tree of finite height
(the tree is finite since G is totally transcendental). The leaves of the tree form
a decomposition into disjoints indecomposable sets B;,7 < [.

If B € A is indecomposable let
C = U{Bi|Bi N B # &, B; indecomposable}.

C is indecomposable. Thus we an replace the B; € C' by C and get a unique
decomposition as required. O
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Definition 3.26. We call S a definable group of automorphisms of a
group G if S and the action S x G — G, (s, g) — s(g) are definable.

Remark 3.26.21. Not every definable automorphism is contained in a
definable group of automorphisms.

Theorem 3.27. Let G be stable with a definable group S € Aut(G) of
automorphisms. Let A € G be definable and S-invariant. Then A is inde-
composable iff the condition from Definition 3.24 holds for all S-invariant
subgroups.

Proof. Let H < G be definable such that |A/H|=:n > 1. For s € S, we have
|A/H?| = n,
K = ﬂ s Baldw;n—Saxl H5 ~ . .~ H™
seS

is S-invariant and n < |A/K| < n-m. O

Theorem 3.28 (Zilber’s Indecomposability Theorem). Let G be a group
of finite Morley rank and let A;,i € I be indecomposable such that 1 € A;
for all i € I.

Then H := (A;|i € I)is definable and connected and there exist Ay, ..., A,
m < MR(H) such that H = (A4; ... Ap)%

Proof. Since G has finite Morley rank, we find B = Ay - ... A,, of maximal
Morley rank, i.e. MR(B) = MR(A4;B) for all i € I.

Let p be a generic type, i.e. a type of maximal Morley rank in B, and let
H := Stab(p). Then H is definable and if H divides some A; into infinitely many
cosets, then A; B contains infinitely many translates of p, which are pairwise
disjoint. Then MR(A;B) > MR(B)4. Hence A; < H (since 1 € A;), thus
B < H, and we obtain 'z € H' € p(x). Thus p is the unique generic in H,
B c H is generic and by Lemma 3.23 H = B2. O

Theorem 3.29. Let G be a group of finite Morley rank and H < G defin-
able. Then MR(G) > MR(H) + MR(G/H).

Proof. Cf. Sheet 4, Exercise 3 (B.4.3).

The statement is clear if |G : H| is finite. Otherwise 7: G — G/H is inter-
pretable, hence for a definable A € G/H, m=*(A) is definable. By induction we
get

MR(77(A)) = MR(H) + MR(A).
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Remark 3.29.22 (Additivity of Morley rank in groups of finite Morley
rank). In fact equality holds. This is however hard to prove.

Lemma 3.30. If b € acl(aA), then

MR(b/A) < MR(a/A) = MR(ba/A).

Proof. Cf. Sheet 4, Exercise 3 (B.4.3). O

4 Fields

Goal. w-stable fields are algebraically closed. (MACINTYRE)

This also holdes for w-stable integral domains of finite MR (CHERLIN).

Theorem 4.1 (Macintyre). If (K, +, -, .. .) is an infinite w-stable field, then
K is algebraically closed.

We need two ingredients from Galois theory:

(a) (Kummer) If L/K is a cyclic Galois extension of degree n, and char K { n
and K contains all nth roots of unity, then the minimal polynomial of L/K
is of the form X" — a for some a € K.

An extension of this form is called Kummer-extension.

(b) (Artin-Schreier) Let char K = p > 0, L/K a Galois extension of degree p,
then the minimal polynomial of L/K is of the form X? — X — a for some
ae K.

An extension of this form is called Artin-Schreier-extension.
Remark 4.1.23. If F/K is a finite extension, then (F,+) =~ (K™, +) for
m = [F : K], since F is a finite dimensional K-vector space.

Choose a basis B = {b1,...,by} for F/K. Then the multiplication on
F' is definable by b; - b;. Hence (F,+,-) is interpretable in (K, +,-) using
parameters from B.

[Lecture 12, 2024-06-06]

Proof of Theorem 4.1.

Claim 4.1.1. (K, +) is connected.
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Subproof. Let K° be the connected component of (K, +).

For a € K\{0}, x — a -z is a definable group automorphism of (K, +), hence
it leaves K invariant. Hence K© is an ideal in K, hence K = KO since K is a
field. |

From Lemma 3.21 it follows that (K, +, ) has a unique generic type.
Claim 4.1.2. K* = (K*)", i.e. K contains n-th roots for all n.

Subproof. If a ¢ K is generic over K, then a and a™ are interalgebraic over K,
i.e. a™ € acl(aK) and a € acl(a"K). Hence by Lemma 3.30 we have

MR(a/K) = MR(a"/K).

Since a is generic over K, we get that a™ is generic as well.

Therefore (K*)™ < K* is a generic subgroup of (K*,-) and by connectedness
we get equality.

So every element in K has n-th roots for all n. In particular, K is perfect
(cf. Fact A.17.39).

If char(K) = p > 0, then X — X? — X is a homomorphism of the additive
group. So if a is generic, then so is a? — a. Therefore the image is all of K, so
in other words K has no Artin-Schreier extensions.

Claim 4.1.3. If K is an infinite w-stable field containing all m-th roots of unity
for all m < n, then K has no Galois extensions of degree n.

Subproof. Suppose L/K is a counter example where n is minimal.

Let ¢ be prime, ¢ | n. By Cauchy’s theorem'® and the Galois correspondence,

there exists an intermediary field K € F' ¢ L such that L/F is Galois of degree
q. By Remark 4.1.23 F is interpretable in K and hence w-stable. Since n was
minimal, we conclude n = ¢, F = K.

If char(K) # ¢, the minimal polynomial for L/K is of the form X?—a for a € K
(L/K is a Kummer extension). But since (K*)? = K*, X9 — a is reducible .

If char(K) = ¢, the minimal polynomial for L/K is of the form X? — X —a
for some a € K (L/K is an Artin-Schreier extension). Since X — X? — X is
surjective, this is again reducible. |

Claim 4.1.4. If K is an infinite w-stable field, then K contains all roots of
unity.

101f G is a group and p | |G|, then G contains an element of order p.
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Subproof. Let n be minimal such that K doesn’t contain all nth roots of unity.
Let & be a primitive nth root of unity. Then K (§) is a Galois extension of degree
< n — 1, contradicting Claim 4.1.3.

Thus K contains all nth roots of unity for all n, so by Claim 4.1.3 K has
no Galois extensions. Since K is perfect, it follows that K is algebraically
closed. 0

Corollary 4.2. A field K of finite MR has no definable infinite proper
subrings.

Proof. By Corollary 1.7 any definable subring k € K is itself a field and hence
algebraically closed. Since k has no algebraic extensions, either either k& = K
or [K : k] =o0. If k # K, then for any n < w, the k-vector space k" € K is
definable and has MR (k™) = n MR(k) by Theorem 3.29. But MR(K) is finite
by assumption. O

Corollary 4.3. If K is an infinite field of finite MR and char K = 0, then
K has no proper definable additive subgroups.

Any definable homomorphism (K™, +) — (K™, +) is K-linear. In par-
ticular, the group of definable endomorphisms of (K, +) is isomorphic to
(K*v )

Proof. Let A € K be a definable additive subgroup and H = {a € K|aA < A}.
Then H is a definable infinite subring of K, hence H = K by Corollary 4.2.
Thus A = {0} or A = K.

If s: (K™, +) — (K™, +) is a definable homomorphism, then the centralizer of
87
H ={ae K|Vz € Ks(ax) = as(z)}

is a definable infinite subring of K, hence H = K, so s is K-linear. O

Remark 4.3.24. There are fields of finite Morley rank with a definable
subgroup H < K*.

Remark 4.3.25. If K is an infinite field of finite Morley rank, char K =
p > 0 and k := [F),, then every definable automorphism s of K is determined
by its action on k:

If s, 5" are definable automorphisms of K such that s|, = /|, then Fix(s's™!)
is a definable subfield of K containing k, hence Fix(s's™1) = K, i.e. s = §'.
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Therefore the group of definable automorphisms® of K is contained in
Gal(k/Fp,) = Aut(k) = Z (cf. Fact A.18.43).

%Note that in general this group is not definable.

Lemma 4.4. If K is an infinite field of finite MR, char K = p > 0, then
every definable automorphism of K is of the form Frobg for some n. In
particular, it is ¢J-definable.

Proof. Again consider k := Fp c K. Let f be an automorphism defined by
o(z,y,a). By the Compactness Theorem (A.14) applied to Remark 4.3.25,
there is some n such that glr,. = flr,., = f=g.

Since the automorphisms of F,» are of the form Flrobg7 the claim follows. O

Corollary 4.5. Let K be an infinite field of finite MR. Then every defin-
able G < Aut(K) is trivial.

Proof. Let s € G. Then Fix(s) is definable, hence finite if s # id. Hence
char(K) = p and G < Z by Lemma 4.4. G is abelian, torsion free and has finite
MR, so it is divisible by Corollary 1.24 (iii). But Z has no divisible elements. [

[Lecture 13, 2024-06-10]

Conjecture 4.6 (Cherlin-Zilber). Any infinite simple group of finite Mor-
ley rank is an algebraic group over an algebraically closed field.

Remark 4.6.26. Conversely, any simple algebraic group over an alge-
braically closed field is definable in the field as a matrix group, hence
of finite MR. In fact, biinterpretability holds, i.e. if the conjecture is true
every infinite simple group of finite Morley rank interprets a field.

Remark 4.6.27. The conjecture is proved for MR < 3.

Problem. Using model theory, we can only talk about definably simple groups
(i.e. there is no definable normal subgroup).

However in the context of finite Morley rank, the notions of definably simple
and simple coincide:

Lemma 4.7. If G is definably simple of finite MR, such that G’ is infinite®
then G is simple and in fact boundedly simple, i.e. for all a € G\{1} and
g € G g can be written as a product of at most 2 - MR(G) may conjugates
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of a.

%The derived group, also called commutator subgroup, is G’ := [G, G].

Note that being boundedly simple can be written as a first order formula. In
particular, all models of the theory of a boundedly simple group are simple.
This does not hold for simple groups!

Proof. Let G be an infinite, definably simple group of finite MR.

By Theorem 3.27 every infinite set A € G invariant under conjugation is inde-
composable. Since G is connected (otherwise the connected component would
be a definable proper normal subgroup) and Z(G) = 1, we have |a“| = |G| for
all @ € G\{1}. Hence for all a # 1, we have that a® U {1} is indecomposable. So
by Zilber’s Indecomposability Theorem (3.28) the claim follows. O

Remark 4.7.28. A theory T is called s-categorical, if all models of T" of

cardinality x are isomorphic. For example
e (Q, <) is Ng-categorical,
e (C, +) is k-categorical for all kK = Ny,
o (V. +,(As)eer) is K-categorical for all k > |F]|.
Morley’s Theorem says that for all K, A > Ny, a theory is k-categorical iff
it is A-categorical. ®
The idea of the proof is to introduce a notion of dimension.

A set is called strongly minimal iff it has Morley rank 1 and Morley
degree 1.

Recall that acl has the following exchange property: if a € acl(bA)\ acl(A4),
then b € acl(aA). This exchange property also holds in strongly minimal
structures. We get a notion of dimension.,

The Baldwin-Lachlan Theorem says that a theory is N;i-categorical iff it is
w-stable and has not Vaughtian pair.

A theory T has a Vaughtian pair (VP) iff there are models M # N,
M < N and ¢ € L(M), such that ¢(M) is infinite and p(M) = p(N).

Not having a Vaughtian pair removes the possibility of certain subsets
growing unevenly. For example if models of a theory T have two infinite
equivalence classes, then the cardinalities of those equivalence classes might
be unrelated, and in this case T is not N;-categorical.

A theory T is called almost strongly minimal iff there is a strongly
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minimal formula ¢ and a finite set B, such that for every model M =T,

M < acl(p(M) u B).

Example 4.8. Consider P2(K), the projective plane over an alge-
braically closed field K. Everything can be defined from a line (strongly
minimal) and two additional points not belonging to this line.

If T is almost strongly minimal, then it is N;-categorical.

Proposition 4.9. Every simple group of finite MR and every field of finite
MR is Rj-categorical and in fact almost strongly minimal.

Proof. Let G be a simple group of finite MR and A € G infinite and defin-
able. Wlog. A is indecomposable (otherwise replace it by an indecomposable

component). Wlog. 1 € A, otherwise shift A. Consider (499 € G) Zilber

G = A9 .. ... A9, Since this holds in every extension of G, the defin-
able set A has to increase in an extension of G, so G has no (VP), since
VYg. 3g1,...,9n. g€ A9t - ... A9 can be written as a first order formula.

We also get almost strongly minimal: Suppose ¢ is strongly minimal, then G is
contained in acl(o(G), g1, .-, gn)-

Suppose that K is a field of finite MR (i.e. it is algebraically closed and strongly
minimal as a pure!! field). Let A := ¢(K) be an infinite, definable, indecom-
posable with respect to (K, +) set. Wlog. 0 € A. Then
Zilber
Ky={Alge K) =" g1A+ ...+ g, A
is a definable ideal, so Ky = K7, and the same argument as in the case of groups
applies. O

Goal. If the Cherlin-Zilber conjecture holds, then every simple group of finite
MR must interpret an infinite field, since this is the case in algebraic groups
over algebraically closed fields We want to find the field.

Definition 4.10. Let A be an infinite, abelar® group, G < Aut(A4). Then
A is G-minimal iff every G-invariant subgroup of A is finite.

%This notion is also used for non-abelian groups.

Remark 4.10.29. A linear representation G — K™ is called an irreducible
representation iff K™ has no G-invariant subspace (execept 0, K™). In

Hnot considering additional structure
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this case by Schur’s lemma Cen(G) is a skew field containing K.

Let s € Cen(G). Then gs(K™) = sg(K™) = s(K™) forall g € G, i.e. s(K™) €
{0, K"}.

Theorem 4.11 (Zilber). Let A be an abelian group and M < Aut(A4)
definable inside a structure of finite MR. If A is M-minimal, then there
exists a there exists a definable (algebraically closed) field K and a K-
vector space structure on A such that A ~ Kt and M < K* (and 0 is the
only M-invariant subspace).

[Lecture 14, 2024-06-13]

Proof of Theorem 4.11. By the chain condition, there exist ay,...,a,, € A such
that Fixpr({a1,...,am}) = 1, i.e. for m,m’ € M we have m = m’ iff m(a) =
m’'(@).

Since M is infinite, there exists a = a;, ¢ < n such that the orbit M -a is infinite.

Claim 4.11.1. Ma v {0} is an indecomposable subset of A (and clearly M-
invariant).

Subproof. By Theorem 3.27 it suffices to check the criterion for M-invariant
subgroups of A. But by assumption, A is M-minimal, i.e. it has only finite
M-invariant subgroups, so this is trivial. |

By Zilber’s Indecomposability Theorem (3.28) we have that (Ma) < A is defin-
able. Clearly it is M-invariant, hence

A=<Ma>=ZMoa

i<k

As in the proof of Theorem 2.5, the endomorphism ring S of A generated by M
is interpretable as a quotient of (M U {0})*. Since M and S are commutative,
for any s € S, we have that s- A is an M-invariant S-submodule of A and thus
s-A e {0,A}. Hence S is an integral domain of finite MR, hence a field by
stability, hence an algebraically closed field K with A = KT, M < K™, since
the Morley rank is finite. O

This can be generalized further:

Theorem 4.12. Let A be an abelian group, and G < Aut(A) definable in
a structure of finite Morley rank, where G is connected and

(i) there exists an infinite, definable, abelian normal subgroup M < G,

(i) there exists a definable, M-invariant and M-minimal subgroup B < A
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such that A = (¢B|g € G).

Then there exists a definable, algebraically closed field K and a finite
dimensional K-vector space on A, such that G acts K-linearly on A and
M acts as K-scalars, i.e. M < K*, M < Z(G).

Proof.
Claim 1. MY acts non-trivially on B.

Subproof. Otherwise gM%g~1 = M would act trivially on gB, hence by (ii)
trivially on A. Thus M° = {id} (since it is a subgroup of the automorphism
group), so M is finite 4. |
So M/Ann(B)12 and B satisfy the assumptions of Theorem 4.11. Thus B =~ K™
and M/ ‘Ann(B) < K* for some algebraically closed field K.

Let R be the endomorphism ring of A generated by M. The action of R on B
arises from the algebraically closed field K, so Anng(B) = I € R is a maximal

ideal, i.e. K = R/I'

Take ¢1,...,9, € G and let B; := ¢;B. Since M < G, we have Ann(B,) =
gilg; " =1;.

Claim 2. All the I; coincide.

Subproof. Suppose we can find g1,...,9, € G such that the I; are pairwise
distinct. All I; are maximal ideals, hence coprime, i.e. I; + I = R for all j # k.

Claim 1. The corresponding R-modules Bj, j < n form a direct sum.

Subproof. Let x; € Bj; be such that > ;x; = 0. By the Chinese Remainder
Theorem there exists s; € R, such that s; € 1 + I; but s € I; for all j # i. We

get
S; (ZIJ) =T; = 0,

hence x1 =29 =... =z, = 0. |

Hence MR(A) = MR(By + ...+ By) = n- MR(B). Therefore there are only
finitely many distinct ideals I;. Let {I1,..., I,} be the set of all of these with
Ij = AIlIl(Bj).

Consider the action of G on {I1,...,I,}. Since the I; are conjugate, this action
is transitive.

12Recall that the annihilator is defined as Ann(B) = {m € M|mB = 0}.
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Claim 2. The action of G on {I,...,I,} is definable.

Subproof. Pick ij), € Ij\Ij, for all 1 < j # k <n. Let g€ G. Then I] = I iff for
allk <n
(ijk)g € AHH(BZ) = Il.
—_—
definable
|

Since G is connected, we get that the action is trivial (otherwise the stabilizers
would be definable proper subgroups). So since the action is both trivial and
transitive, there can only be on ideal. |

Since A is generated by the gB, g € G and Ann(¢gB) = Ann(B) = I, we have
I < Ann(A),ie. I =0. Thus R = K.

Claim 3. The action of K on A is definable.

Subproof. By Zilber’s Indecomposability Theorem (3.28), we have A = 3, ¢;B.

The action of M =M o Ann(B) v A shows that every s € R can be written as

Ss=mi+...+my,

so K=>%._ M. |

<n
By construction, the elements of M act as scalars on A. G acts on M be
conjugation, hence it induces a definable group of automorphisms on K. By
Corollary 4.5 this induced group is trivial, i.e. M < Z(G), hence G acts K-
linearly on A. O

Corollary 4.13. Let G be a definable (in a structure of finite MR) group
of automorphisms of an abelian group A, where A is G-minimal. Then
either

e (G has an infinite center or

e G has no definable nontrivial abelian normal subgroup (i.e. G is de-
finably semi-simple).

Proof. This follows from Theorem 4.12: If M < G is an infinite definable
abelian subgroup, then using finiteness of the Morley rank we find a defin-
able M-invariant, M-minimal subgroup B < A. Since A is G-minimal and
M < G we have A = ), ¢;B. By Theorem 4.12 we get M < Z(G) and G acts
K-linearly. O
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Remark 4.13.30. We call a group G minimal’® iff it doesn’t contain
proper infinite definable subgroups.

%Confusingly, in the lecture this was called “minimal” as well. Note that in the
previous definition all definable subsets were considered.

The proof of Theorem 1.3 shows:

Theorem 4.14. Minimal’ groups are abelian.

Corollary 4.15. 77
(i) Any group of Morley rank 1 is virtually abelian.

(ii) Any w-stable infinite group contains an infinite, definable, abelian
subgroup.

Proof. (i) G° is minimal’, hence abelian.

(ii) Since G has finite MR, there exists and infinite, definable subgroup H < G
of minimal MR. Then H is minimal’, hence abelian.

O

Remark 4.15.31.

(i) If A is a minimal’ group, then it is G-minimal for every definable
G < Aut(4).

(ii) Algebraic groups of dimension 1 are abelian. Algebraic groups of
dimension 2 are solvable.
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A Recap

[Tutorial 01, 2024-04-16]

A.1 Groups
Definition’ A.0.32. Let G be a group. The center of G is

Z(G) ={ze€ GVg e G. zg = gz}.

Definition’ A.0.33. Let G be a group and S < G a subset.

The centralizer of S in G is

Ca(S) ={ge G|VseS. gs = sg}.

The normalizer of S in G is

Ng(S) = {g € G|lgS = Sg}.

Clearly C(S) < Ng(S) < G are subgroups.

Let A, B < G be two subgroups. Then A is normalized by B (B nor-
malizes A) iff for every be B, A> = A, i.e. B < Ng(A).

Similarly, A is centralized by B (B centralizes A) iff B < Cg(A).

Definition’ A.0.34. Let p be prime. A p-group is a group in which the
order of every element is a power of p.

Let G be a group. A p-Sylow subgroup of G is a maximal p-subgroup

of G. Sylow theo-
rems

Definition’ A.0.35. Let G be a group. The order of G, ord(G), is the
number of elements of G.

The order (period length / period) of g € G is the order of {g), the
subgroup generated by g¢.

G is a torsion group (periodic group) iff every element has finite order.

The exponent of a torsion group G is the least common multiple of orders
of the group elements, i.e. the least n € N such that Vg € G. ¢" = 1. (This
does not necessarily exist.)

Definition A.1. A group G is called simple iff {1} and G itself are the
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only normal subgroups of G.

A.1.1

Group actions

Definition A.2. Let G be a group and X a set. A group action G ~ X
is a group homomorphism 7: G — Sym(X). For g € G,z € X we will write

g.x = 7(g)(x).
The action is transitive iff Vz,2' € X. g€ G. g.x = 2'.
The action is n-transitive iff for all pairwise distinct 1, ...,z, € X
and all pairwise distinct 2/, ..., 2z, € X there exists g € G such that

g.x; =z for all i < n.
It is sharply n-transitive iff there exists exactly one such g.
The action is faithful iff 7 is injective.

The action is free iff no non-trivial element has a fixpoint, i.e. Vg €
G\{1},z e X. g.x # x.

The action is regular iff it is transitive and free.
The stabilizer of x € X is the subgroup G, == {g€ G : g.x = z}.
The orbit of z € X is G.z := {g.z|g € G}.

Definition A.3. For a subgroup H < G the index of H in G, |G : H| is
defined as [{gH /g € G}|.

Theorem A.4 (Orbit stabilizer theorem). Let G~ X, x € X. Then
|G.z| = |G : Gyl

Proof. The map

p: Gx — G/G,
g.x—> gGy

is bijective.

A.1.2

Nilpotent and solvable groups

Definition A.5. Let G be a group. The commutator or derived sub-
group of G, denoted [G, G] or G, is defined as {[g,d'] : 9,9’ € G}. [G,G]
is the smallest subgroup of G such that G/G’ is abelian.

We recursively define G(© := G and G™*V := [G®), G1].
We say that G is solvable if G(® = 1 for some n € N.
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Proposition A.6. G is solvable iff we have a sequence 1 < H; < ...
H,, = G such that H;,1/H; is abelian.

A

Example A.7. Let K be a field, AGL;(K) = {x — az+bla # 0,be K} =~
K x K the group of affine transformations.

We have AGLy (K)/Kt =~ KT, s0 1< K™ < AGL(K).

Definition A.8. A linear algebraic group of a field & is a subgroup of
GL1(K), e.g. SL1(K). For such a group, a Borel subgroup is a maximal
closed connected solvable group.

Example A.9. e A Borel subgroup for GL,,(K) is the group of upper
triangular matrices.

e A Borel subgroup for SL, (K) is the group of upper unitriangular
matrices (i.e. upper triangular matrices with only 1 on the diagonal).

Definition A.10. Let G be a group. We define G inductively be GO :=
G, GI" = [G, Gln11],

We say that G is (n-step) nilpotent iff there exists n € N (minimal) such
that GI"l = 1.

Nilpotent groups are solvable.

Proposition A.11. The following are equivalent

e ( is nilpotent.

e There exists a finite ascending central series, (o(G) = 1 < (1(G)
Z(G/¢:(@G))}, that is ¢;4+1(G) is the subgroup such that ¢;+1(G)/G(G) =
Z(G/G(G)).

Example A.12. e For a field K, the group of upper unitriangular ma-
trices is nilpotent.

e The quaternion group Qg = {a,bla* = e,a® = b*>,ba = a~'b) is
nilpotent.

If a group is nilpotent / solvable, then its subgroups have the same property.
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A.2 Model Theory

It was recommended to read the first two chapters of [TZ12] (Structures, Lan-
guages, Theories, Elementary Substructures, Compactness Theorem, Léwenheim-
Skolem) as an introduction to model theory.

A.2.1 The Compactness Theorem

Definition A.13. Let £ be a first order languages and X a set of sentences
in the language £. We say that X is satisfiable iff there exists an L-
structure M such that M }= o for all o € ¥ (or short M |= 3).

We say that X is finitely satisfiable iff every finite subset ¥ < ¥ is
satisfiable.

Theorem A.14 (Compactness Theorem). X is satisfiable iff it is finitely
satisfiable.

A.3 Saturated Models

Definition A.15. Let T be a complete theory with infinite models. We
say that M = T is k-saturated iff for A € M, |A| < k every p € S, (A4)
is realized in M.

We say that M is saturated iff it is | M|-saturated.

It is easy to construct k-saturated models using the Compactness Theorem
(A.14). However saturated models can not be constructed this easily, as the
model might have too many types. (So one needs to use inacessible cardinals.)

We will often consider a monster model, which is very saturated, in the sense
that it realizes all the types we care about and only consider submodels of this.

Definition A.16. A model M = T is called k-homogeneous, iff for all
A, B € M of size at most x and f: A — B is an elementary map, then for
all a € M, f can be extended to f: Au {a} - B u {b} for some b e M.

M is called homogeneous iff it is | M|-homogeneous.

Fact A.16.36. x-saturated models are k-homogeneous: Consider tp(a/A).
Since the model is k-saturated, it realizes the same type over B.

Theorem A.17.If M and N are saturated models of T" of the same
cardinality, then M and A are isomorphic.

Proof. Back-and-forth. O
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Fact A.17.37. Let M be saturated. Then tp(a/A) = tp(b/A) iff there
exists an automorphism of M fixing A pointwise and sending a to b.

A.4 Fields

Let K < L be fields. We can view L as a K-vector space. [L : K| := dimg L is
called the degree of the field extension. The field extension is called algebraic
iff every element of L is a zero of a polynomial in K[X].

Fact A.17.38. Finite field extensions are algebraic.

An extension L/K is separable iff for every [ € L, the minimal polynomial of
is separable, i.e. it has no multiple roots (equivalently its formal derivative does
not vanish). This holds trivially in characteristic 0.

A field is called perfect iff all algebraic extensions of it are separable.
Fact A.17.39.If char K = p, then K is perfect iff Frob,: z — 2P is
surjective.®

In particular, finite fields are perfect.

%Recall that morphisms of fields are always injective.

L/K is normal iff every irreducible polynomial in K[X] that has a zero in L
splits into linear factors in L.

L/K is Galois iff it is separable and normal. In this case let Gal(L/K) :=
AutK(L).

Fact A.17.40. If L/K is Galois, then | Gal(L/K)| = [L : K].

Theorem A.18 (Fundamental Theorem of Galois Theory). If L/K is
Galois, there is a bijection between intermediate fields and subgroups of
Gal(L/K), sending and intermediate field K € M < L to Aut(L/K).

Fact A.18.41.If ¢ is a primitive n-th root of unity, then the minimal
polynomial of & has degree at most n — 1. (Note that X™ — 1 factors as
(X-1)-..)

Fact A.18.42. The algebraic closure of F, is T, = |, Fpn.

Fact A.18.43. Gal(F,»/F,) is a cyclic group of order n, generated by
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(Frob,).

It is Gal(F,/F,) = Z = lim _ Ch, the profinite completion of the integers.

B Exercises

B.1 Sheet 1

[Tutorial 02, 2024-04-23]

Definition B.1. The ascending central series of a group G is the chain
Zo(G) < Z1(G) < ... of subgroups of G defined inductively by Z, := {1}
and Z;(G)/Zi—1(G) == Z(G/Z;—1(Q)) for i > 0. A group G is nilpotent
if Z,(G) = G for some n € N.

Definition B.2. A Sylow-p-subgroup of G is a p-group that is maximal
wrt. inclusion.

Usually this is only defined for finite groups, where Sylow’s theorem holds.
However, we also consider Sylow-subgroups of infinite groups. The following
version of Sylow’s theorem holds:

Theorem B.3 (Sylow’s theorem for infinite groups). Let P be a Sylow-
p-subgroup of G. If P has finitely many conjugacy classes in G, then all
Sylow-p-subgroups of G are conjugate.

Definition B.4. A characteristic subgroup is a subgroup that is fixed
by every automorphism.

This is a stronger condition than being normal (i.e. fixed under the automor-
phisms of the for h +— ghg~!.)

B.1.1 Exercise 1

B.1.2 Exercise 2
Let G be a group and P < G be a p-Sylow subgroup of G.

(a) Show that P is a characteristic subgroup of N¢g(P). Deduce that Ng(Ng(P)) =
Ng(P).

(b) Suppose that G is nilpotent.
e Show that Ng(P) = G, i.e. P is normal in G.
e Deduce that G has a unique p-Sylow subgroup for each prime p.
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e Conclude that any finite nilpotent group is the direct sum of its p-Sylow
subgroups.

B.1.3 Exercise 3

(a) Let G be a group of exponent p,'3 where p is prime. Let g € G\{1}.

Show that no two distinct elements of (g) are conjugate and deduce that G
has at least p conjugacy classes.

(b) Let G be a group. Suppose g € G\{1} has finite order and G = g% U {1}.
Show that |G| = 2.

B.1.4 Exercise 4

Definition B.5. A transitive group action G —~ X, with | X| > 1 is called
primitive iff each stabilizer G, is a maximal proper subgroup of G.

(a) Let G be a group acting transitively on a set X.
Suppose that for some x € X, the stabiliser G, is normal. Show
(i) Gy = G for every y e X.
(ii) G/G, acts regularly'* on X.
(b) Let G~ X be primitive and G nilpotent. Then |X| is prime.

B.2 Sheet 2

[Tutorial 03, 2024-04-30]

B.2.1 Exercise 1
Let G be a group considered as a structure in a language £ 2 Lgroup-

(a) Let o(x,y1,...,ys) be an L-formula such that for any g € G*, Hy := ¢(G,7)
is a finite index subgroup of G.

Then the following are equivalent:
(i) The index is uniformly bounded, i.e. 3n € N. Yge G®. |G : Hg| < n.

(ii) For every model G’ of Th(G) and every g € (G')*, Hyz = ¢(G',7) is a
finite index subgroup of G’.

(b) Suppose that for every G’ = G and g € G’, the conjugacy class g% is finite.
Then |g% | is uniformly bounded.

13We say that G is a group of exponent p iff g? = 1 for all g € G.
14 A group action is called regular iff g — gz is bijective for all x.

B EXERCISES 43



B.2.2 Exercise 2

Let G be an infinite stable group. Show that G\{1} does not form a single
conjugacy class.

B.2.3 Exercise 3

Let G be an NIP group in a language £. Let ¢(z,y1,...,ys) be an L-formula
such that Hy := ¢(G,7) is a subgroup for every g € G°. Let k € N and let

X, ={geG’°:|G: Hg| <k} < G°.
Show that ﬂge x, Hg is a finite index subgroup of G which is ¢J-definable.

B.2.4 Exercise 4

Let G be a stable group. Then any abelian subgroup of G is contained in a
definable abelian subgroup of G.

B.3 Sheet 3

[Tutorial 04, ]

B.3.1 Exercise 1

B.3.2 Exercise 2

Let p be prime and V and No-dimensional Fp-vector space. Then (V,+) is
w-categorical.

B.3.3 Exercise 3

Let M be a countable infinite w-categorical L-structure and let n € N.

(a) There are only finitely many possibilities for the type of an n-tuple from

M.

(b) For each such type, the set of n-tuples form M with that type (i.e. the
=-equivalence class) is defined by an L-formula.

(c) Two n-tuples @, b € M" have the same type iff they are in the same Aut(M)-
orbit.

(d) The Aut(M)-invariant subsets of M"™ are precisely the subsets definable by
L-sentences.

B.3.4 Exercise 4

B.4 Sheet 4

[Tutorial 05, 2024-05-14]
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B.4.1 Exercise 1

No infinite field is w-categorical.

B.4.2 Exercise 2
Let M be a structure. Let X be a definable set and Y; € X definable subsets for
i € w with MR(Y;) = a but MR(Y; nY;) < « for i # j. Then MR(X) > a + 1.
B.4.3 Exercise 3

Let M be a structure, k£ € N, X a definable set and Y; € X definable sub-
sets for ¢ € w with MR(Y;) > a. Suppose that for any I € w with |I| = k,
MR ((;c; Yi) < @. Show MR(X) > a + 1.

B.5 Sheet 5
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B.5.1 Exercise 1

Let M be a sufficiently saturated structure (as in the definition of MR). Let
X,Y be non-empty definable sets and let f: X — Y be a definable function
(i.e. the graph of f is a definable set).

(a) Suppose that f is surjective. Show that MR(X) = MR(Y).

Furthermore, show for any n € N: If MR(f~%(b)) = n for every b € Y and
MR(Y) < w, then MR(X) = MR(Y) + n.

(b) Suppose that f~1(b) is finite for every b € Y. Show that MR(X) < MR(Y).

B.5.2 Exercise 2

Let (G,+,...) be a totally transcendental connected'® abelian group, written
additively. Let n € N and suppose that the n-torsion subgroup G[n] = {z € G :
nx = 0} is finite. Show that G is n-divisible, i.e. nG = {nz : z € G} = G.

B.5.3 Exercise 3

Let T be an L-theory and let ¢(z,y) be an L-formula.

(a) Suppose that ¢ has the order property. Let (I, <) be a linear order. Show
that in some M |= T there are @; € M/®l, b; € MYl such that M = ¢(a;, b;)
iff ¢ < j.

(b) Suppose that ¢ has the binary tree property. Let u be a cardinal. Show
that in some M |= T there are a, for o € 2#* and b, for s € 2<# such that
M = p(as, bs) iff s € 0.

15j.e. it has no proper definable subgroup of finite index
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B.5.4 Exercise 4

Any boolean combination of stable formulas ¢;(z,y) is stable.

B.6 Sheet 6

[Tutorial 07, 2024-06-04]

For subsets A, B,C of a structure put A | C iff a | C for any finite a € A=Y,
B B
i.e. for any such tuple MR(a/BC) = MR(a/B)

B.6.1 Exercise 1
The following properties of independence hold for all subsets A, B,C < M and

finite tuples a € M=% in a model M of a totally transcendental theory:

(a) (Monotonicity and transitivity) a | BC' <= (a | Bnara | C’).
A A AB

finite
(b) (Local character) 3Bg < B such that a | B.
By

(c) (Finite character) A | C iff A | ¢ for every ce C<%.
B B

(d) (Symmetry) A | C < C | A.
B B

(e) (Existence) Suppose M is |[BC|*-saturated. Then there exists a’ € M
with tp(a’/B) = tp(a/B) and o’ | C.
B

(f) (Algebraicity) a % a <= MR(a/B) = 0.

B.6.2 Exercise 2

Let C be a group of finite Morley rank. Suppose Hi, H, < G are definable
normal subgroups with H; n Hy = {e}. Show that H = (Hy, Hy) is definable
and MR(H) > MR(H;) + MR(H>).

B.6.3 Exercise 3

Let G be a group of finite Morley Rank. The definable socle S of G is the
subgroup generated by the minimal definable non-trivial normal subgroups of
G. Suppose that G has no non-trivial finite normal subgroup. Show that S is
definable.
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Let Tiree be the theory of non-empty cycle-free graphs in which every vertex has
infinite valency. We consider the models in the language with binary predicates
dy,, where d, (x,y) holds iff n is the graph distance between x and y.

B.7.1 Exercise 1

(a) Any countable model M of T is homogeneous, i.e. if @,b € M have
the same quantifier-free type over a finite set A < M, then there is an
automorphism of M fixing A pointwise and taking a to b.

(b) Tiree has quantifier elimination.

(¢) A countable model of Ti,ce is saturated iff it has infinitely many connected
components.

B.7.2 Exercise 2
(not that important)

For subsets A, B, C of a model of Ti,ee, write A | B if any path from any element
c
of A to any element of B includes some element of the convex hull of C.

(a) Let Ty denote the unique shortest path from x to y.
e (Monotonicity and transitivity) a | BC' <= (a | Bnra | C’).
A A AB

o (Finite character) A | C iff A | ¢ for every c e C<¥.
B B

o (Symmetry) A | C — C | A.
B B

e (Existence) Suppose M is |BC|*t-saturated. Then there exists a’ €
Ml with tp(a’/B) = tp(a/B) and o | C.
B

finite
(b) (Local character) For any finite tuple a, 3By < conv(B) such that a | B.
By

(c) (Stationarity over arbitrary sets) If a | C and @’ | C and tp(a/B) = tp(d’/B),
B
then tp(a/BC) = tp(a’/BC).

B.7.3 Exercise 3

Let G be a group of finite Morley rank and let X be an infinite'® indecomposable
subset. Show that the normal subgroup ((X)) generated by X (the minimal
normal subgroup containing X) is definable.

16this was wrong on the sheet
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B.7.4 Exercise 4

Let K be a field of finite Morley rank, and let X < K be an infinite definable
subset. Show that there exists a finite sequence of elements a4, ..., a, € K such
that K =3, a; X = {3}, a;xi|xr, ...,z € X}

B.8 Sheet 8

[Tutorial 09, 2024-06-18]

B.8.1 Exercise 1

Let M be an w-saturated model of a totally transcendental theory. Let M* >
M be an elementary extension, a,b € (M*)<“ and suppose a | b. Let p(z,y)
M

be a formula and suppose M* &= p(a, m).
Then there exists m € Ml such that M* = p(a, m).

B.8.2 Exercise 2

Let G be a connected, w-saturated, totally transcendental group. Let ¢(x) be
a generic!” £(G)-formula in one variable, G* > G an elementary extension and
a e G*.

Then G* = ¢(g - a) for some g € G.

B.8.3 Exercise 3

Let G be an w-saturated, totally transcendental group and X < G definable.
Then the following are equivalent:

(a) MR(X) = MR(G).
(b) 3g1,...,9n € G. ;9 X =G.

B.8.4 Exercise 4
Let K be a division ring.

(a) Suppose that the center Z(K) if K is algebraically closed as a field and that

Then Z(K) = K.
(b) Conclude from this and Macintyre’s Theorem (4.1) that any division ring

of finite Morley rank with infinite centre is an algebraically closed field.
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7i.e. MR(¢) = MR(G)

B EXERCISES 48




B.9.1 Exercise 1

(a) Let H be a connected group of finite Morley rank acting definably and
transitively on a finite set S # ¢J. Then |S| = 1.

(b) Let G be a group of finite Morley rank, H a connected definable subgroup
and g € G.

(i) g is indecomposable.

(ii) The subgroup generated by [g, H] is definable.

B.9.2 Exercise 2

Let G be a group of finite Morley rank and let H and K be definable subgroups
of G. Suppose that H is infinite, K-normalized (i.e. H* = H for k € K) and
K-minimal for the conjugation action of K. Show that H is connected.

B.9.3 Exercise 3
(a) Any totally transcendental integral domain is a field.

(b) Let K be a field of finite Morley rank. Show that K does not contain a
proper, infinite, definable subring.

(c¢) Let K be a field of finite Morley rank in which a proper, infinite subgroup
T of the multiplicative group is definable.'®

(i) Suppose that T' < K* is infinite, definable and connected. Then T is
indecomposable as a definable subset of the additive group.

(ii) Show that the additive subgroup generated by T is the whole of K.

B.9.4 Exercise 4

Let G be a connected group of Morley rank n € w. Show that if G is solvable
(nilpotent), then it is n-step solvable (nilpotent).

18Quch fields are called bad fields.
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Binary tree property, 18
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Definable group of automorphisms,
26
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Definably semi-simple, 35
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Divisible, 11
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Field extension
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Fixpoint, 38
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Independent, 22

Index, 38

Interpretable, 13
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Irreducible components, 25
Irreducible representation, 32
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Left-cancellation, 6
Linear algebraic group, 39
Locally finite, 14
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Orbit equation, 5
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