
Stable Groups

Lecturer
Prof. Dr. Dr. Katrin Tent

Assistant
Marco Sthefano Amelio

Notes
Josia Pietsch

Version

git: 1889c84
compiled: April 28, 2024 23:27

1



Contents

1 Introduction 4

2 ω-categorical groups 13

A Tutorial 16
A.1 Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.1.1 Group actions . . . . . . . . . . . . . . . . . . . . . . . . . 16
A.1.2 Nilpotent and solvable groups . . . . . . . . . . . . . . . . 16
A.1.3 The Compactness Theorem . . . . . . . . . . . . . . . . . 17

Index 19

CONTENTS 2



These are my notes on the lecture “Stable Groups”, taught by Prof. Dr. Dr. Ka-
trin Tent in the summer term 2024 at the University Münster.
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[Lecture 01, 2024-04-15]

A background in model theory is helpful but not necessary. Some group theory
is required (usually covered in linear algebra and a first algebra course).

The lecture starts at 08:25.

The book by Prof. Tent is available on learnweb.

There will be an oral exam. For a type II course, one needs to do nothing.

The main point is to see, how model theoretic properties influence algebraic
properties.

1 Introduction

Definition 1.1. An infinite L-structure M is minimal, iff for every for-
mula φpxq P LpMq, the set defined by φ, φpMq :“ ta P M |M |ù φpaqu is
finite or cofinite.

Example 1.2. pQ,`, ¨q is not minimal, consider or example the formula
φpxq :“ Dy. x “ y2

pC,`, ¨q is minimal.

Recall the orbit equation: If GñX is transitive, then there is a natural
bijection

G
Gx

ÝÑ X

hGx ÞÝÑ h ¨ x

where for x P X, Gx :“ tg P G : gx “ xu ď G is the stabilizer of x in G and
G ¨ x :“ tgx : g P Gu Ď X is the orbit of x under G.

Theorem 1.3 (Reineke). Minimal groups are abelian.

Proof. Let G be a minimal group.

Since G is minimal, all proper definable1 subgroups are finite by minimality: If
H ň G is a proper definable subgroup, then for a R H, the coset a ¨ H is also
definable and disjoint from H.

Suppose that G is not abelian. Then the center2 ZpGq is finite. Furthermore,
every element of the group must have finite order, since xay ď ZpCenpaqq.3

(Note that xay is not definable in general).

1A definable subgroup is a subgroup, that can be defined by a formula.
2The center is defined as ZpGq :“ tx P G : @y. xy “ yxu.
3The centralizer of a is the set of all elements commuting with a.
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Consider the conjugacy class aG :“ tag : g P Gu, where ag :“ g´1ag. Then

for a P ZpGq,4 we have |aG| “ |G Gx
|, where Ga “ Cenpaq. In particular, for

a R ZpGq, the conjugacy class aG is infinite. Since by minimality there can
not be two disjoint infinite conjugacy classes, we get G “ aG Y ZpGq for all
a R ZpGq. Thus any a, b P GzZpGq are conjugate, so a, b have the same finite
order and |Cenpaq| “ |Cenpbq|.

If all elements have order 2, the group is abelian, since a´1b´1ab “ abab “ 1 in
this case.

If all a P GzZpGq have order 2, then again G is abelian: Let c P ZpGq, then
ca R ZpGq, so 1 “ pacq2 “ acac “ a2c2 “ c2, i.e. the elements in ZpGq also have
order 2.

Now let a P GzZpGq. Then a2 ‰ 1 and a, a´1 R ZpGq are conjugate under some
g P G, i.e. b´1ab “ a´1, hence b´2ab2 “ a, b2 P Cenpaq. So a P Cenpb2qzCenpbq.
Clearly Cenpbq ď Cenpb2q and a witnesses that this is a proper subgroup.

So |Cenpbq| ‰ |Cenpb2q|, hence b2 P ZpGq. It follows that H “ G
ZpGq is

an elementary abelian 2-group in which all non-trivial elements are conjugate,
i.e. |H| “ 25 and so G is finite.

We want to generalize this.

Definition 1.4. An L-structure M is stable iff there are no M ĺ M̃ ,a

LpM̃q-formula φpx, yq and tuples ai, bj P M̃ such that M̃ |ù φpai, bjq iff
i ă j.

aelementary extension

Example 1.5. LetM “ pZ,`, ¨, 0, 1q, ai “ i “ bi and φpx, yq àã xDz1, . . . , z4. x`
z21 ` . . .` z

2
4 “ yy. Then M |ù φpa,bjq iff i ď j. So M is not stable.

Algebraically closed fields are stable.

Lemma 1.6. IfM is a stable and non-empty semigroupa with right- and
left-cancellationb (alternatively: left-cancellation and a right neutral
elementc), then M is abelian.

aassociative operation
bax “ ay ùñ x “ y
c@a. ae “ a.

Proof. The formula φpx, yq àã xDz. x ¨ z “ yy, is satisfied by pan, amq if n ă m.
By stability, this can not be an if and only if. So there must be some m ą n,

4Note that for a P ZpGq, we have aG “ tau.
5Conjugation is not too interesting in abelian groups.

1 INTRODUCTION 5



such thatM |ù φpan, amq. I.e. there is some b PM such that an “ an`pb, where
m “ n ` p. Put e “ apb. This is a left-neutral element: For c P M we have
anc “ anec, hence c “ ec by left-cancellation.

By symmetry (or assumption), there exists a right-neutral element f , and since
e “ ef “ f , e is neutral.

Furthermore
e “ apb

pą0
“ apap´1bq,

so a has an inverse.

Remark 1.6.1. The assumptions are necessary since a semigroup with
xy “ y is not a group.

Corollary 1.7. IfG is stable, then every non-empty definable subset closed
under multiplication is a subgroup.

Similarly, every definable non-empty subring of a stable field is a subfield.

Remark 1.7.2. A stable group is a group whose theory is stable, (not nec-
essarily in the language of groups). The group may be a (or interpretable)
structure inside another structure, e.g. pK,`, ¨, 0, 1q field, G “ GLnpKq or
any other Chevalley group.

Definition 1.8. A definable group action (in some L-structureM) is given
by a definable group G, a definable setX and a definable action GˆX Ñ X
(i.e. the graph of the action is a definable subset of pGˆXq ˆX.

Example 1.9. Let pK,`, ¨, 0, 1q be a field. Then GLnpKq,K
n and GLnpKqñKn

are definable.

Example 1.10. Consider pQ,`, ¨, 0, 1q. Then A :“ r0, 1s is definablea and
1
nA Ĺ A. Hence it is not stable by the following lemma.

athis is non-trivial

Lemma 1.11. Let G be a stable group acting definably on a set X. If
A Ď X is definable and g P G, then gpAq Ď A iff gpAq “ A.

Proof. If gpAq Ĺ A, we get a proper descending sequence A Ľ gpAq Ľ g2pAq Ľ
g3pAq Ľ . . . and the sequence gi, i ă ω is ordered by xxA Ĺ yAy.

[Lecture 02, 2024-04-18]
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Recall:

Corollary 1.12 (of Lemma 1.11). If G is stable, A Ď G is definable and
g P G, then Ag ď A ðñ Ag “ A.

Remark 1.12.3. This does not hold in general. Consider

H “

"ˆ

1 m
0 1

˙

| m P Z
*

ă GL2pQq

and

g :“

ˆ

2 0
0 1

˙

, hm :“

ˆ

1 m
1

˙

.

Then ghmg
´1 “ h2m, so gHg´1 ň H.

Definition 1.13. For a group G, a family tHiuiPI of subsets tHiuiPI of
Mk is called uniformly definable if there is a formula φpx, yq and ai P
Mi, i P I such that φpMk, aiq “ Hi.

For example, the centralizers of elements are uniformly definable.

Remark 1.13.4. If G is stable, the Trivial Chain Condition holds for
uniformly definable subsets and subgroups, i.e. descending chains are finite:

For every uniformly definable family Hi, i P I, there is some n ă ω such
that every properly descending (resp. ascending) chain Hi1 ň Hi2 ň Hi3 ň

. . . has length at most n. This n depends only on the formula, not on the
parameters of the form of the definable family.

Definition 1.14. A formula φpx, yq has the independence property
(IP) iff there are ai, i ă ω, such that for all A Ď ω, the set tφpx, aiq|i P
Au Y t␣φpx, aiq|i R Au is consistent. relate to

wikipedia def-
inition (use
compactness),
see proof of
Lemma 1.17

A theory is called NIP iff no consistent formula has IP.

Example 1.15. The random graph (Radograph) has IP. pC,`, ¨, 0, 1q is
NIP.

Lemma 1.16. If T is stable, then T is NIP.

Proof. If φpx, yq has IP, ai P M, i ă ω, M |ù T , then there are M̃ ľ M , and
bi P M̃ such that M̃ |ù φpbi, ajq iff i ă j, which is a contradiction to stability.

The reverse direction does not hold, since for example the real numbers have
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NIP, but are not stable.

Lemma 1.17. Let G be a NIP group. Then finite intersections of uni-
formly definable subgroups are uniformly bounded, i.e. for every formula
φpx, yq there is n ă ω such that if Hi “ φpG, aiq, i “ 1, . . . ,m are sub-
groups, then

č

iďm

Hi “

n
č

j“1

Hij .

Proof. Suppose not. Then for all n ă ω there is a uniformly definable family of
subgroups H1, . . . ,Hn such that

Ş

Hi ň
Şn

i“1
i‰j

Hi for any 1 ď j ď n.

So there is some bj P
´

Ş

i‰j Hi

¯

zHj , j ď n.

For I Ď t1, . . . , nu put bI :“
ś

iPI bi. Then G |ù φpbj , aiq iff i R J . Since n
was arbitrary, this shows that φpx, yq has IP: Let A Ď ω be any subset. By the
compactness theorem it suffices to show that every finite subset of tφpx, aiq|i P

Au Y t␣φpx, aiq|i R Au is consistent. This holds, since for every I
finite
Ď ω,

G |ù tφpbIzA, aiq|i P AX Iu Y t␣φpbIzA, aiq|i P IzAu.

Proposition 1.18 (Baldwin-Saxl). If G is stable, then for every formula
φpx, yq, there is n ă ω (depending only on φ) such that for subgroups
Hi “ φpG, aiqiPI , we have

č

iPI

Hi “

n
č

j“1

Hij

for some ij P I, i.e. arbitrary intersections of uniformly definable subgroups
are definable.

Proof. By Lemma 1.17 intersections of finitely many Hi are uniformly definable.
By the Trivial Chain Condition (1.13.4) applied to these uniformly definable
intersections, there is a minimal group H is this family, i.e. H “

Ş

Hi “
Şn

j“1Hij with n ă ω from Lemma 1.17.

Corollary 1.19. If G is stable and A ď G arbitrary, then CenpAq “
Ş

aPA Cenpaq “ tg P G|@a P A. rg, as “ 1u is definable.
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Example 1.20. By Sela’s Theorem the free groups Fn are stable. For
w P Fk, Cenpwq is cyclic, so n “ 2. Copy from

oficial notes

Remark 1.20.5. Since the formula xxa “ axy is quantifier-free, Corollary
of Baldwin-Saxl (1.19) holds in all subgroups of stable groups.

For example Symfinpωq, the group of permutations of ω with finite support
(i.e. moving only finitely many elements) can never be a subgroup of a
stable group, since centralizers can become arbitrarily small.

Definition 1.21. Let T be arbitrary and φspxq, s P 2
ăω consistent formu-

lae.a

Then

(i) the φspxq form a binary tree of consistent formulae iff

T $ @xpφ
s⌢ 0

pxq _ φ
s⌢ 1

pxq Ñ φspxqq

and
T $ @x␣pφ

s⌢ 0
pxq ^ φ

s⌢ 1
pxqq.

(ii) T is called totally transcendental (or ω-stable iff L is countable)
iff there is no binary tree of consistent formulae.

aHere “consistent” means that the family is consistent along every path, i.e. for every
s P 2ω , tφs|n

: n P ωu is consistent. The entire family may be inconsistent.

Example 1.22. Let G be a group, and Hi, i ă ω an infinite descending
chain of subgroups Hi ŋ Hi`1, then we get a binary tree (subset vs. coset).
So totally transcendental is much stronger than stable.

Proposition 1.23. If G is totally transcendental, there is no infinite prop-
erly descending chain of definable subgroups.

Proof. Otherwise we get a binary tree.

[Lecture 03, 2024-04-22]

Corollary 1.24.

(i) In a totally transcendental group G every intersection of definable
subgroups is definable. In particular, there is a minimal definable
subgroup G0 of finite index in G, the connected component of G.
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(ii) If G is totally transcendental, every injective definable endomorphism
of G is surjective, i.e. an automorphism of G.

(iii) If G is ω-stable, abelian and torsion free, then G is divisiblea.

aAn abelian group A is divisible iff @a P A. @n P N. Db P A. n ¨ b “ a, i.e. iff
G – biPIQ.

Proof. (i) Clear.

(ii) Suppose that s : G ãÑ G is definable but not surjective. Then sipGq is a
proper descending sequence of definable subgroups  .

(iii) Note that the map g ÞÑ n ¨ g is definable and injective.6

Remark 1.24.6. If G is stable, then for any formula φpx, yq the group

G0pφq “
č

tφpG, aq|φpG, aq ď G, rG : φpG, aqs ă 8u

is a definable subgroup of finite index by Baldwin-Saxl (1.18), the φ-
connected component of G.

In particular, we’ll be interested in the case

φpx, yq àã xxy “ yxy.

Definition 1.25. A group G is called centralizer connected iff G “

G0pxy “ yxq, i.e. iff for all a P GzZpGq the index rG : Cenpaqs is infinite.

Lemma 1.26. If G is centralizer connected, A Ď G finite and A normalized
bya G, then A Ď ZpGq.

aForA,B ď G we say thatA is normalized byB iff @b P B. Ab “ A, i.e.B ď NGpAq.

Proof. If aG is finite, then a P ZpGq, since |G : Cenpaq| “ |aG|.

Remark 1.26.7. This does not depend on stability.

Proposition 1.27. If G is stablea and trg, hs|g, h P Gu finite, then G is
virtually abelian.b

aThe assumption of G being stable can be removed.

6Warning: g ÞÑ n ¨ g is not uniformly definable.
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bA group is called virtually abelian or abelian-by-finite iff ZpGq has finite index
in G.

Proof. For every g P G, the set trg, hs : h P Gu is finite. Hence gG is finite,
so |G : Cenpgq| is finite. By the Corollary of Baldwin-Saxl (1.19), we have
ZpGq “

Ş

iďn Cenpgiq for some n P N, and this has finite index.

Proposition 1.28. If G is centralizer connected with finite center, b then
ZpGq “ ζ2pGq, i.e. ZpG{ZpGqq “ t1u.

Corollary 1.29. If G is centralizer connected, infinite and nilpotent, then
ZpGq is infinite.

Proof of Proposition 1.28. Recall that ζ2pGq “ tg P G|gZpGq P ZpG{ZpGqqu.
So for all g P ζ2pGq, h P G we have rg, hs P ZpGq.

Since ZpGq is finite, we get for g P ζ2pGq that the orbit gG is finite, so rG :
Cenpgqs is finite. Hence g P ZpGq, since G is centralizer connected.

Remark 1.29.8. If G is nilpotent, 1 ‰ N Ĳ G, then N X ZpGq ‰ t1u:

Suppose n P pN X ζi pGqqzt1u with i minimal. If i ą 1, then there exists
g P G such that 1 ‰ rg, ns P ζi´1pGq XN .

Lemma 1.30. If G is nilpotent, centralizer connected and N Ĳ G infinitea,
then N X ZpGq is infinite.

anot necessarily definable

Proof. If N ď ZpGq this is trivial. Otherwise N X ZpGq ‰ t1u. If 1 ‰ n P
N X ζ2pGqzZpGq, then nG is infinite and n´1 ¨ nG “ rn,Gs Ď ZpGq X N is
infinite.

Remark 1.30.9. If G is nilpotent, then for any subgroup H ň G we have
H ň NGpHq (cf. ??).

Theorem 1.31. If G is stable, nilpotent, and H ă G definable of infinite
index, then H has infinite index in NGpHq.

Proof. Let Z :“ ZpGq. If rZH : Hs is infinite, the claim is clear.

Now we use induction on the length of the central series: If rZH : Hs is finite,

then rG : ZHs “ rG{Z : ZH{Zs is infinite. By the inductive assumption ZH Z
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has infinite index in NG{ZpZH{Zq, hence ZH has infinite index in NGpZHq.
We have

H ď ZH ď NGpHq ď NGpZHq :“N.

By Baldwin-Saxl (1.18) it is

č

nPN
Hn “ Hn1 X . . .XHn2 :“H0

for some l P N.

Since rZH : Hs is finite, H0 has finite index in H and NGpZHq ď NGpH
0q. We

obtain
H0 ď H ď ZH,

where each step is of finite index. Hence

´

H
H0

¯N

Ď ZH
H0

is finite. Therefore NN pHq has finite index in N . Since NN pHq ď NGpHq ď N ,
the claim follows.

[Lecture 04, 2024-04-25]

Remark 1.31.10. Note that when taking a quotient by a H-definable
subgroup, e.g. G{ZpGq in the proof of Theorem 1.31, the elements of the
quotient are not elements of our structure. However the quotient is in-
terpretable in G, i.e. equality up ZpGq can be written as a formula in
our language. We call elements of such an interpretable structure virtual
elements.

More generally if E is aH-definable equivalence relation onMn for some L-
structureM , n P N, we can extend the structure by a new sort of elements,
whose elements are the equivalence classes modulo E. We extend the
language L to a language Leq by adding for each such equivalence relation

E a new sort and a new n-ary function symbol πE : Mn ÑMn

E.

Lemma 1.32. For every Leq-formula φpx1, . . . , xnq, where x1 is of the sort
Nni{Ei, there is an L-formula ψpy1, . . . , ynq which in T eq is equivalent to
φpπE1

py1q, . . . , πEn
pynqq.

Corollary 1.33. In M eq there are no new definable relations on M . In
particular, if M is stable / totally transcendental / NIP / ω-categorical
then so is M eq.
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Example 1.34. If H ă G is 0-definable subgroup, then the cosets in G{H
are the elements of the sort corresponding to aEHb ðñ ab´1 P H.

Furthermore if H Ĳ G is a normal subgroup then G{H is an interpretable
group in G and is stable etc. if G is.

2 ω-categorical groups

Definition 2.1. A countable L-structure M is called ω-categorical iff
AutpMq has only finitely many orbits on Mn for each n.

Example 2.2. • pQ,ăq is ω-categorical:

Take a1 ă . . . ă an, and b1 ă . . . ă bn, ai, bi P Q. Put φpaiq :“ bi.
Since Q is dense, φ can be extended to an automorphism of Q.

• The random graph is ω-categorical.

• Vector spaces over a finite field K viewed as pV,`, 0, λk : k P Kq,
where λk denotes scalar multiplication by k.

Note that for an infinite field two elements can be linearly dependent
in infinitely many ways. Hence vector spaces of an infinite field are
not ω-categorical.

Remark 2.2.11. (i) M is ω-categorical iff there is a unique countable
structure elementarily equivalenta to M (up to isomorphism).

(ii) M is ω-categorical iff for any finite set A Ď M , AutApMq
b has only

finitely many orbits. Exercise

aL-structures M , N are elementarily equivalent, M ” N , iff they satisfy exactly
the same sentences, i.e. tφ|M |ù φu “ tφ|N |ù φu.

bAutApMq denotes the pointwise stabilizer of A.

(iii) If M is ω-categorical and A Ď Mn is invariant under AutBpMq for

some finite set B
finite
Ď M , then A is B-definable. Exercise

In particular if G is ω-categorical, then all characteristic subgroups
are H-definable.

Definition 2.3. A group G is called locally finite iff every finite subset
generates a finite subgroup.

It is called uniformly locally finite iff for all n P N, there is a bound
k P N, such that for all a1, . . . , an P G, we have |xa1, . . . , any| ď k.

In particular, a (uniformly) locally finite group is torsion (of bounded exponent).
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Lemma 2.4. If G is an ω-categorical group, then G is uniformly locally
finite.

Proof. Any automorphism of G fixing a1, . . . , an fixes xa1, . . . , any pointwise,
hence xa1, . . . , any is finite, as otherwise Auta1,...,anpGq has infinitely many orbits
on M , one for each x P xa1, . . . , any (cf. Remark 2.2.11).

Since there are only finitely many orbits on n-tuples, and n-tuples in the same
orbit generate isomorphic subgroups, the maximal bound works for all n-tuples.

So far we have not used stability; now we’ll add this assumption.

Theorem 2.5. If G is ω-categorical and stable, then the connected com-
ponent

G0 :“
č

tH ă G|H definable (with parameters) of finite indexu

is H-definable and of finite index.

Proof. If H ă G is definable (with parameters) and of finite index, then H0 :“
Ş

φPAutpGq φpHq is a finite intersection (by Baldwin-Saxl (1.18)) and hence of
finite index in G.

Since H0 is a characteristic subgroup, it is H-definable. There are only finitely
many such subgroups (cf. Remark 2.5.12 (i)), hence G0 is H-definable and of
finite index.

Remark 2.5.12. (i) An ω-categorical group has only finitely many char-
acteristic subgroups:

If HŸcharG, G̃ :“ AutpGq, then xG̃ P H or xGXH “ H for all x P G.
Since there are only finitely many 1-orbits, the claim follows.

(ii) An ω-categorical stable group G contains minimal normal subgroups
and any normal subgroup contains a minimal one:

There are only finitely many AutpGq-orbits on G ˆ G. Hence there
is some k P N such that for x P xyyG we have x “ yg1 ¨ ygi for some
i ď k. Hence all normal subgroups of the form xaGy are uniformly
definable,

xaGy “ tag1 ¨ . . . ¨ agi |gi P G, i ď ku.

By the Trivial Chain Condition (1.13.4), there is a minimal one.

(iii) A stable group does not contain subgroups which are unbounded
direct products of non-abelian groups.
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If H1 ˆ . . . ˆHk ď G, hi P HizZpHiq, then
Ş

j‰i Cenphjq ě Hi and
Hi ę

Ş

jďk Cenphjq.
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A Tutorial
[Tutorial 01, 2024-04-16]

A.1 Recap

A.1.1 Group actions

Definition A.1. Let G be a group and X a set. A group action GñX
is a group homomorphism π : GÑ SympXq. For g P G, x P X we will write
g.x :“ πpgqpxq.

• The action is transitive iff @x, x1 P X. Dg P G. gx “ x1.

• The action is faithful iff π is surjective.

• The action is free iff no non-trivial element has a fixpoint, i.e. @g P
Gzt1u, x P X. g.x ‰ x.

• The action is regular iff it is transitive and free.

• The stabilizer of x P X is the subgroup Gx :“ tg P G : g.x “ xu.

• The orbit of x P X is G.x :“ tg.x|g P Gu.

Definition A.2. For a subgroup H ď G the index of H in G, |G : H| is
defined as |tgH{g P Gu|.

Theorem A.3 (Orbit stabilizer theorem). Let GñX, x P X. Then
|G.x| “ |G : Gx|.

Proof. The map

φ : G.x ÝÑ G{Gx

g.x ÞÝÑ gGx

is bijective.

A.1.2 Nilpotent and solvable groups

Definition A.4. Let G be a group. The commutator or derived sub-
group of G, denoted rG,Gs or G1, is defined as trg, g1s : g, g1 P Gu. rG,Gs
is the smallest subgroup of G such that G{G1 is abelian.

We recursively define Gp0q :“ G and Gpn`1q :“ rGpiq, Gpiqs.

We say that G is solvable if Gpnq “ 1 for some n P N.
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Proposition A.5. G is solvable iff we have a sequence 1 Ĳ H1 Ĳ . . . Ĳ
Hm “ G such that Hi`1{Hi is abelian.

Example A.6. Let K be a field, AGL1pKq :“ tx ÞÑ ax`b|a ‰ 0, b P Ku –
K ¸K the group of affine transformations.

We have AGL1pKq{K
` – K`, so 1 Ĳ K` Ĳ AGL1pKq.

Definition A.7. A linear algebraic group of a field k is a subgroup of
GL1pKq, e.g. SL1pKq. For such a group, a Borel subgroup is a maximal
closed connected solvable group.

Example A.8. • A Borel subgroup for GLnpKq is the group of upper
triangular matrices.

• A Borel subgroup for SLnpKq is the group of upper unitriangular
matrices (i.e. upper triangular matrices with only 1 on the diagonal).

Definition A.9. Let G be a group. We define Grns inductively be Gr0s :“
G, Grns :“ rG,Grn´1ss.

We say that G is (n-step) nilpotent iff there exists n P N (minimal) such
that Grns “ 1.

Nilpotent groups are solvable.

Proposition A.10. The following are equivalent

• G is nilpotent.

• There exists a finite ascending central series, ζ0pGq “ 1 Ĳ ζ1pGq “
ZpGq Ĳ . . . Ĳ ζnpGq “ G with ζi`1pGq “ tg P G : gζipGq P
ZpG{ζipGqqu, that is ζi`1pGq is the subgroup such that ζi`1pGq{ζipGq “
ZpG{ζipGqq.

Example A.11. • For a field K, the group of upper unitriangular ma-
trices is nilpotent.

• The quaternion group Q8 “ xa, b|a4 “ e, a2 “ b2, ba “ a´1by is
nilpotent.

If a group is nilpotent / solvable, then its subgroups have the same property.

A.1.3 The Compactness Theorem
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Definition A.12. Let L be a first order languages and Σ a set of sentences
in the language L. We say that Σ is satisfiable iff there exists an L-
structure M such that M |ù σ for all σ P Σ (or short M |ù Σ).

We say that Σ is finitely satisfiable iff every finite subset Σ1 Ď Σ is
satisfiable.

Theorem A.13 (Compactness Theorem). Σ is satisfiable iff it is finitely
satisfiable.
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