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These are my notes on the lecture “Stable Groups”, taught by Prof. Dr. Dr. Ka-
trin Tent in the summer term 2024 at the University Münster.

Warning 0.1. This is not an official script. In particular, Prof. Tent is
not responsible for any errors in this document. The official lecture notes
can be found in the learnweb course [Ten24].

If you find errors or want to improve something, please send me a message:
lecturenotes@jrpie.de.
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[Lecture 01, 2024-04-15]

A background in model theory is helpful but not necessary. Some group theory
is required (usually covered in linear algebra and a first algebra course).

The lecture starts at 08:25.

The book by Prof. Tent is available on learnweb.

There will be an oral exam. For a type II course, one needs to do nothing.

The main point is to see, how model theoretic properties influence algebraic
properties.

1 Introduction

Definition 1.1. An infinite L-structureM isminimal iff for every formula
φpxq P LpMq, the set defined by φ, φpMq :“ ta P M |M |ù φpaqu is finite
or cofinite.

Example 1.2. • pQ,`, ¨q is not minimal, consider for example the for-
mula φpxq :“ Dy. x “ y2

• pC,`, ¨q is minimal.

Recall the orbit equation: If GñX is transitive, then there is a natural
bijection

G
Gx ÝÑ X

hGx ÞÝÑ h ¨ x

where for x P X, Gx :“ tg P G : gx “ xu ď G is the stabilizer of x in G and
G ¨ x :“ tgx : g P Gu Ď X is the orbit of x under G.

Theorem 1.3 (Reineke). Minimal groups are abelian.

Proof. Let G be a minimal group.

Since G is minimal, all proper definable1 subgroups are finite by minimality: If
H ň G is a proper definable subgroup, then for a R H, the coset a ¨ H is also
definable and disjoint from H.

Suppose that G is not abelian. Then the center2 ZpGq is finite. Furthermore,
every element of the group must have finite order, since xay ď ZpCenpaqq.3

(Note that xay is not definable in general).

1A definable subgroup is a subgroup, that can be defined by a formula.
2The center is defined as ZpGq :“ tx P G : @y. xy “ yxu.
3The centralizer of a is the set of all elements commuting with a.
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Consider the conjugacy class aG :“ tag : g P Gu, where ag :“ g´1ag. Then

for a P ZpGq,4 we have |aG| “ |G Ga|, where Ga “ Cenpaq. In particular, for

a R ZpGq, the conjugacy class aG is infinite. Since by minimality there can
not be two disjoint infinite conjugacy classes, we get G “ aG Y ZpGq for all
a R ZpGq. Thus any a, b P GzZpGq are conjugate, so a, b have the same finite
order and |Cenpaq| “ |Cenpbq|.

If all elements have order 2, the group is abelian, since a´1b´1ab “ abab “ 1 in
this case.

If all a P GzZpGq have order 2, then again G is abelian: Let c P ZpGq, then
ca R ZpGq, so 1 “ pacq2 “ acac “ a2c2 “ c2, i.e. the elements in ZpGq also have
order 2.

Now let a P GzZpGq be not of order two. Then a2 ‰ 1 and a, a´1 R ZpGq are
conjugate under some g P G, i.e. b´1ab “ a´1, hence b´2ab2 “ a, b2 P Cenpaq.
So a P Cenpb2qzCenpbq. Clearly Cenpbq ď Cenpb2q and a witnesses that this is
a proper subgroup. So |Cenpbq| ‰ |Cenpb2q|, hence b2 P ZpGq. It follows that

H “ G
ZpGq is an elementary abelian 2-group in which all non-trivial elements

are conjugate, i.e. |H| “ 25 and so G is finite.

We want to generalize this.

Definition 1.4. An L-structure M is stable iff there are no M ĺ M̃ ,a

LpM̃q-formula φpx, yq and tuples ai, bj P M̃ such that M̃ |ù φpai, bjq iff
i ă j.

aelementary extension

Example 1.5. Let M “ pZ,`, ¨, 0, 1q, ai “ i “ bi and

φpx, yq àã xDz1, . . . , z4. x` z
2
1 ` . . .` z

2
4 “ yy.

Then M |ù φpa,bjq iff i ď j. So M is not stable.

Algebraically closed fields are stable.

Lemma 1.6. IfM is a stable and non-empty semigroupa with right- and
left-cancellationb (alternatively: left-cancellation and a right neutral
elementc), then M is a group.

aassociative operation
bax “ ay ùñ x “ y
c@a. ae “ a.

4Note that for a P ZpGq, we have aG “ tau.
5Conjugation is not too interesting in abelian groups.
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Proof. The formula φpx, yq àã xDz. x ¨ z “ yy, is satisfied by pan, amq if n ă m.
By stability, this can not be an if and only if. So there must be some m ą n,
such thatM |ù φpan, amq. I.e. there is some b PM such that an “ an`pb, where
m “ n ` p. Put e “ apb. This is a left-neutral element: For c P M we have
anc “ anec, hence c “ ec by left-cancellation.

By symmetry (or assumption), there exists a right-neutral element f , and since
e “ ef “ f , e is neutral.

Furthermore
e “ apb

pą0
“ apap´1bq,

so a has an inverse.

Remark 1.6.1. The assumptions are necessary since a semigroup with
xy “ y is not a group.

Corollary 1.7. IfG is stable, then every non-empty definable subset closed
under multiplication is a subgroup.

Similarly, every definable non-empty subring of a stable field is a subfield.

Remark 1.7.2. A stable group is a group whose theory is stable (not
necessarily in the language of groups). The group may be a definable (or
interpretable) structure inside another structure, e.g. pK,`, ¨, 0, 1q field,
G “ GLnpKq or any other Chevalley group.

Definition 1.8. A definable group action (in some L-structure M)
is given by a definable group G, a definable set X and a definable action
GˆX Ñ X (i.e. the graph of the action is a definable subset of pGˆXqˆX.

Example 1.9. Let pK,`, ¨, 0, 1q be a field. Then GLnpKq, K
n and the

action GLnpKqñKn are definable.

Example 1.10. Consider pQ,`, ¨, 0, 1q. Then A :“ r0, 1s is definablea and
1
nA Ĺ A. Hence it is not stable by the following lemma.

athis is non-trivial

Lemma 1.11. Let G be a stable group acting definably on a set X. If
A Ď X is definable and g P G, then gpAq Ď A iff gpAq “ A.

Proof. If gpAq Ĺ A, we get a proper descending sequence A Ľ gpAq Ľ g2pAq Ľ
g3pAq Ľ . . . and the sequence gi, i ă ω is ordered by xxA Ĺ yAy.

1 INTRODUCTION 7



[Lecture 02, 2024-04-18]

Recall:

Corollary 1.12 (of Lemma 1.11). If G is stable, A Ď G is definable and
g P G, then Ag ď A ðñ Ag “ A.

Remark 1.12.3. This does not hold in general. Consider

H “

"ˆ

1 m
0 1

˙

| m P Z
*

ă GL2pQq

and

g :“

ˆ

2 0
0 1

˙

, hm :“

ˆ

1 m
1

˙

.

Then ghmg
´1 “ h2m, so gHg´1 ň H.

Definition 1.13. For a group G, a family of subsets tHiuiPI of Mk is
called uniformly definable if there is a formula φpx, yq and ai PMi, i P I
such that φpMk, aiq “ Hi.

For example, the centralizers of elements are uniformly definable.

Remark 1.13.4. If G is stable, the Trivial Chain Condition holds for
uniformly definable subsets and subgroups, i.e. descending chains are finite:

For every uniformly definable family Hi, i P I, there is some n ă ω such
that every properly descending (resp. ascending) chain Hi1 ň Hi2 ň Hi3 ň

. . . has length at most n. This n depends only on the formula, not on the
parameters of the form of the definable family.

Definition 1.14. A formula φpx, yq has the independence property
(IP) iff there are ai, i ă ω, such that for all A Ď ω, the set tφpx, aiq|i P
Au Y t␣φpx, aiq|i R Au is consistent. relate to

wikipedia def-
inition (use
compactness),
see proof of
Lemma 1.17

A theory is called NIP iff no consistent formula has IP.

Example 1.15.

• The random graph (Radograph) has IP.

• pC,`, ¨, 0, 1q is NIP.

Lemma 1.16. If T is stable, then T is NIP.

1 INTRODUCTION 8



Proof. If φpx, yq has IP, ai P M, i ă ω, M |ù T , then there are M̃ ľ M , and
bi P M̃ such that M̃ |ù φpbi, ajq iff i ă j, which is a contradiction to stability.

The reverse direction does not hold, since for example the real numbers have
NIP, but are not stable.

Lemma 1.17. Let G be a NIP group. Then finite intersections of uni-
formly definable subgroups are uniformly bounded, i.e. for every formula
φpx, yq there is n ă ω such that if Hi “ φpG, aiq, i “ 1, . . . ,m are sub-
groups, then

č

iďm

Hi “

n
č

j“1

Hij .

Proof. Suppose not. Then for all n ă ω there is a uniformly definable family of
subgroups H1, . . . ,Hn such that

Ş

Hi ň
Şn
i“1
i‰j

Hi for any 1 ď j ď n.

So there is some bj P
´

Ş

i‰j Hi

¯

zHj , j ď n.

For I Ď t1, . . . , nu put bI :“
ś

iPI bi. Then G |ù φpbj , aiq iff i R J . Since n
was arbitrary, this shows that φpx, yq has IP: Let A Ď ω be any subset. By
the Compactness Theorem (A.14) it suffices to show that every finite subset of
tφpx, aiq|i P Au Y t␣φpx, aiq|i R Au is consistent. This holds, since for every

I
finite
Ď ω,

G |ù tφpbIzA, aiq|i P AX Iu Y t␣φpbIzA, aiq|i P IzAu.

Proposition 1.18 (Baldwin-Saxl). If G is stable, then for every formula
φpx, yq, there is n ă ω (depending only on φ) such that for subgroups
Hi “ φpG, aiqiPI , we have

č

iPI

Hi “

n
č

j“1

Hij

for some ij P I, i.e. arbitrary intersections of uniformly definable subgroups
are definable.

Proof. By Lemma 1.17 intersections of finitely many Hi are uniformly definable.
By the Trivial Chain Condition (1.13.4) applied to these uniformly definable
intersections, there is a minimal group H is this family, i.e. H “

Ş

Hi “
Şn
j“1Hij with n ă ω from Lemma 1.17.
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Corollary 1.19. If G is stable and A ď G arbitrary, then CenpAq “
Ş

aPA Cenpaq “ tg P G|@a P A. rg, as “ 1u is definable.

Example 1.20. By Sela’s Theorem the free groups Fn are stable. For
w P Fk, Cenpwq is cyclic, so n “ 2. Copy from

oficial notes

Remark 1.20.5. Since the formula xxa “ axy is quantifier-free, Corollary
of Baldwin-Saxl (1.19) holds in all subgroups of stable groups.

For example Symfinpωq, the group of permutations of ω with finite support
(i.e. moving only finitely many elements) can never be a subgroup of a
stable group, since centralizers can become arbitrarily small.

Definition 1.21. Let T be arbitrary and φspxq, s P 2
ăω consistent formu-

lae.a

Then

(i) the φspxq form a binary tree of consistent formulae iff

T $ @xpφ
s⌢ 0

pxq _ φ
s⌢ 1

pxq Ñ φspxqq

and
T $ @x␣pφ

s⌢ 0
pxq ^ φ

s⌢ 1
pxqq.

(ii) T is called totally transcendental (or ω-stable iff L is countable)
iff there is no binary tree of consistent formulae.

aHere “consistent” means that the family is consistent along every path, i.e. for every
s P 2ω , tφs|n

: n P ωu is consistent. The entire family may be inconsistent.

Example 1.22. Let G be a group, and Hi, i ă ω an infinite descending
chain of subgroups Hi ŋ Hi`1, then we get a binary tree (subset vs. coset).
So totally transcendental is much stronger than stable.

Proposition 1.23. If G is totally transcendental, there is no infinite prop-
erly descending chain of definable subgroups.

Proof. Otherwise we get a binary tree.

[Lecture 03, 2024-04-22]

Corollary 1.24.
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(i) In a totally transcendental group G every intersection of definable
subgroups is definable. In particular, there is a minimal definable
subgroup G0 of finite index in G, the connected component of G.

(ii) If G is totally transcendental, every injective definable endomorphism
of G is surjective, i.e. an automorphism of G.

(iii) If G is ω-stable, abelian and torsion free, then G is divisiblea.

aAn abelian group A is divisible iff @a P A. @n P N. Db P A. n ¨ b “ a, i.e. iff
G – biPIQ.

Proof. (i) Clear.

(ii) Suppose that s : G ãÑ G is definable but not surjective. Then sipGq is a
proper descending sequence of definable subgroups  .

(iii) Note that the map g ÞÑ n ¨ g is definable and injective.6

Remark 1.24.6. If G is stable, then for any formula φpx, yq the group

G0pφq “
č

tφpG, aq|φpG, aq ď G, rG : φpG, aqs ă 8u

is a definable subgroup of finite index by Baldwin-Saxl (1.18), the φ-
connected component of G.

In particular, we’ll be interested in the case

φpx, yq àã xxy “ yxy.

Definition 1.25. A group G is called centralizer connected iff G “

G0pxy “ yxq, i.e. iff for all a P GzZpGq the index rG : Cenpaqs is infinite.

Lemma 1.26. If G is centralizer connected, A Ď G finite and A normalized
bya G, then A Ď ZpGq.

aForA,B ď G we say thatA is normalized byB iff @b P B. Ab “ A, i.e.B ď NGpAq.

Proof. If aG is finite, then a P ZpGq, since |G : Cenpaq| “ |aG|.

Remark 1.26.7. This does not depend on stability.

6Warning: g ÞÑ n ¨ g is not uniformly definable.
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Proposition 1.27. If G is stablea and trg, hs|g, h P Gu finite, then G is
virtually abelian.b

aThe assumption of G being stable can be removed.
bA group is called virtually abelian or abelian-by-finite iff ZpGq has finite index

in G.

Proof. For every g P G, the set trg, hs : h P Gu is finite. Hence gG is finite,
so |G : Cenpgq| is finite. By the Corollary of Baldwin-Saxl (1.19), we have
ZpGq “

Ş

iďnCenpgiq for some n P N, and this has finite index.

Proposition 1.28. If G is centralizer connected with finite center, then
ZpGq “ ζ2pGq, i.e. ZpG{ZpGqq “ t1u.

Corollary 1.29. If G is centralizer connected, infinite and nilpotent, then
ZpGq is infinite.

Proof of Proposition 1.28. Recall that ζ2pGq “ tg P G|gZpGq P ZpG{ZpGqqu.
So for all g P ζ2pGq, h P G we have rg, hs P ZpGq.

Since ZpGq is finite, we get for g P ζ2pGq that the orbit gG is finite, so rG :
Cenpgqs is finite. Hence g P ZpGq, since G is centralizer connected.

Remark 1.29.8. If G is nilpotent, 1 ‰ N Ĳ G, then N X ZpGq ‰ t1u:

Suppose n P pN X ζi pGqqzt1u with i minimal. If i ą 1, then there exists
g P G such that 1 ‰ rg, ns P ζi´1pGq XN .

Lemma 1.30. If G is nilpotent, centralizer connected and N Ĳ G infinitea,
then N X ZpGq is infinite.

anot necessarily definable

Proof. If N ď ZpGq this is trivial. Otherwise N X ZpGq ‰ t1u. If 1 ‰ n P
N X ζ2pGqzZpGq, then nG is infinite and n´1 ¨ nG “ rn,Gs Ď ZpGq X N is
infinite.

Remark 1.30.9. If G is nilpotent, then for any subgroup H ň G we have
H ň NGpHq (cf. Sheet 1, Exercise 1 (B.1.1)).

Theorem 1.31. If G is stable, nilpotent, and H ă G definable of infinite
index, then H has infinite index in NGpHq.
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Proof. Let Z :“ ZpGq. If rZH : Hs is infinite, the claim is clear.

Now we use induction on the length of the central series: If rZH : Hs is finite,

then rG : ZHs “ rG{Z : ZH{Zs is infinite. By the inductive assumption ZH Z
has infinite index in NG{ZpZH{Zq, hence ZH has infinite index in NGpZHq.
We have

H ď ZH ď NGpHq ď NGpZHq :“N.

By Baldwin-Saxl (1.18) it is

č

nPN
Hn “ Hn1 X . . .XHn2 :“H0

for some l P N.

Since rZH : Hs is finite, H0 has finite index in H and NGpZHq ď NGpH
0q. We

obtain
H0 ď H ď ZH,

where each step is of finite index. Hence

´

H
H0

¯N

Ď ZH
H0

is finite. Therefore NN pHq has finite index in N . Since NN pHq ď NGpHq ď N ,
the claim follows.

[Lecture 04, 2024-04-25]

Remark 1.31.10. Note that when taking a quotient by a H-definable
subgroup, e.g. G{ZpGq in the proof of Theorem 1.31, the elements of the
quotient are not elements of our structure. However the quotient is in-
terpretable in G, i.e. equality up ZpGq can be written as a formula in
our language. We call elements of such an interpretable structure virtual
elements.

More generally if E is aH-definable equivalence relation onMn for some L-
structureM , n P N, we can extend the structure by a new sort of elements,
whose elements are the equivalence classes modulo E. We extend the
language L to a language Leq by adding for each such equivalence relation

E a new sort and a new n-ary function symbol πE : Mn ÑMn

E.

Lemma 1.32. For every Leq-formula φpx1, . . . , xnq, where x1 is of the sort
Nni{Ei, there is an L-formula ψpy1, . . . , ynq which in T eq is equivalent to
φpπE1py1q, . . . , πEnpynqq.

Corollary 1.33. In M eq there are no new definable relations on M . In
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particular, if M is stable / totally transcendental / NIP / ω-categorical
then so is M eq.

Example 1.34. If H ă G is 0-definable subgroup, then the cosets in G{H
are the elements of the sort corresponding to aEHb ðñ ab´1 P H.

Furthermore if H Ĳ G is a normal subgroup then G{H is an interpretable
group in G and is stable etc. if G is.

2 ω-categorical groups

Definition 2.1. A countable L-structure M is called ω-categorical iff
AutpMq has only finitely many orbits on Mn for each n.

Example 2.2. • pQ,ăq is ω-categorical:

Take a1 ă . . . ă an, and b1 ă . . . ă bn, ai, bi P Q. Put φpaiq :“ bi.
Since Q is dense, φ can be extended to an automorphism of Q.

• The random graph is ω-categorical.

• Vector spaces over a finite field K viewed as pV,`, 0, λk : k P Kq,
where λk denotes scalar multiplication by k.

Note that for an infinite field two elements can be linearly dependent
in infinitely many ways. Hence vector spaces of an infinite field are
not ω-categorical.

Remark 2.2.11. (i) M is ω-categorical iff there is a unique countable
structure elementarily equivalenta to M (up to isomorphism).

(ii) M is ω-categorical iff for any finite set A Ď M , AutApMq
b has only

finitely many orbits. Exercise

aL-structures M , N are elementarily equivalent, M ” N , iff they satisfy exactly
the same sentences, i.e. tφ|M |ù φu “ tφ|N |ù φu.

bAutApMq denotes the pointwise stabilizer of A.

(iii) If M is ω-categorical and A Ď Mn is invariant under AutBpMq for

some finite set B
finite
Ď M , then A is B-definable. Exercise

In particular if G is ω-categorical, then all characteristic subgroups
are H-definable.

Definition 2.3. A group G is called locally finite iff every finite subset
generates a finite subgroup.

It is called uniformly locally finite iff for all n P N, there is a bound
k P N, such that for all a1, . . . , an P G, we have |xa1, . . . , any| ď k.

In particular, a (uniformly) locally finite group is torsion (of bounded exponent).
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Lemma 2.4. If G is an ω-categorical group, then G is uniformly locally
finite.

Proof. Any automorphism of G fixing a1, . . . , an fixes xa1, . . . , any pointwise,
hence xa1, . . . , any is finite, as otherwise Auta1,...,anpGq has infinitely many orbits
on M , one for each x P xa1, . . . , any (cf. Remark 2.2.11).

Since there are only finitely many orbits on n-tuples, and n-tuples in the same
orbit generate isomorphic subgroups, the maximal bound works for all n-tuples.

So far we have not used stability; now we’ll add this assumption.

Theorem 2.5. If G is ω-categorical and stable, then the connected com-
ponent

G0 :“
č

tH ă G|H definable (with parameters) of finite indexu

is H-definable and of finite index.

Proof. If H ă G is definable (with parameters) and of finite index, then H0 :“
Ş

φPAutpGq φpHq is a finite intersection (by Baldwin-Saxl (1.18)) and hence of
finite index in G.

Since H0 is a characteristic subgroup, it is H-definable. There are only finitely
many such subgroups (cf. Remark 2.5.12 (i)), hence G0 is H-definable and of
finite index.

Remark 2.5.12.

(i) An ω-categorical group has only finitely many characteristic sub-
groups:

If H Ÿchar G, G̃ :“ AutpGq, then xG̃ Ď H or xG X H “ H for all
x P G. Since there are only finitely many 1-orbits, the claim follows.

(ii) An ω-categorical stable group G contains minimal normal subgroups
and any normal subgroup contains a minimal one:

There are only finitely many AutpGq-orbits on G ˆ G. Hence there
is some k P N such that for x P xyyG we have x “ yg1 ¨ ygi for some
i ď k. Hence all normal subgroups of the form xaGy are uniformly
definable,

xaGy “ tag1 ¨ . . . ¨ agi |gi P G, i ď ku.

By the Trivial Chain Condition (1.13.4), there is a minimal one.
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(iii) A stable group does not contain subgroups which are unbounded
direct products of non-abelian groups.

If H1 ˆ . . . ˆHk ď G, hi P HizZpHiq, then
Ş

j‰iCenphjq ě Hi and
Hi ę

Ş

jďk Cenphjq.

By the Corollary of Baldwin-Saxl (1.19), there is a bound on k de-
pending only on ThpGq.

(iv) Every finite simple group is 2-generated.

[Lecture 05, 2024-04-29]

Theorem 2.6 (Baw-Cherlin-Macintyre, Felgner). An ω-categorical stable
group G is virtually nilpotent.

TODO: Proof
(lectures 5
and 6)

[Lecture 06, 2024-05-02] TODO

3 Morley Rank

The Morley rank is a notion of dimension on definable sets, similarly to the
algebraic dimension of an algebraic variety (and agrees with it in this context).

In this section let T always denote a complete theory with infinite models.

Definition 3.1. Let φpxq be an LpMq-formula, M |ù T very saturated.

(i) MRpφq ě 0 if φ is consistent (i.e. φpMq ‰ H).

(ii) MRpφq ě β`1 if there is an infinite family of formulae φi, i ă ω such
that φi Ñ φ, φipMq X φjpMq “ H for i ‰ j and MRpφiq ě β for all
i ă ω.

(iii) MRpφq ě λ for limit ordinals λ if MRpφq ě α for all α ă λ.

If φ is inconsistent, put MRpφq “ ´8. If MRpφq ě α for all α P Ord, put
MRpφq :“ 8. If MRpφq ě α, MRpφq ğ α` 1 put MRpφq “ α.

[Lecture 07, 2024-05-06]

Remark 3.1.13. (i) It is MRpφq “ 0 iff φpMq is finite (in any model of
T ).

(ii) If for all M |ù T we have φpMq Ď ψpMq (equivalently T $ φÑ ψ),
then MRpφq ď MRpψq.

(iii) If MRpφq “ α and β ď α then there exists some ψ with T $ ψ Ñ φ
and MRpψq “ β.

Lemma 3.2. MRpφ^ ψq “ maxtMRpφq,MRpψqu.
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Proof. By Remark 3.1.13 (ii). MRpφ ^ ψq ě maxtMRpφq,MRpψqu. We show
by induction on α, that if MRpφ^ψq ě α, then maxtMRpφq,MRpψqu ě α` 1.
If MRpφ ^ ψq ě α ` 1, then there exists pφiqiăω, such that T $ φi Ñ pφ ^ ψq
and MRpφiq ě α for all i ă ω. By inductive assumption, MRpφi ^ φq ě α or
MRpφi ^ ψq ě α for each i ă ω. Hence for φ or ψ there exists infinitely many
i, such that MRpφi ^ φq ě α or MRpφi ^ ψq ě α, so maxtMRpφq,MRpψqu ě
α` 1.

Remark 3.2.14. .

• φ,ψ are called disjoint (over all models) if T Ytφ,ψu is inconsistent.

• If MRpφq “ α, then there exist only finitely many disjoint formulae
φ1, . . . , φd with T $ φi Ñ φ and MRpφiq “ α.

The Morley degree, Mdegpφq, is defined to be the maximum of all
such d.

Theorem 3.3. A theory T is totally transcendental iff every formula has
a Morley rank.a

ai.e. MRpφq ‰ 8

Proof. “ ùñ ” Any formula without a Morley rank can be decomposed into an
infinite binary tree.

“ ðù ” If pφsqsPăω2 is a binary tree of consistent formulae, such that φs is of
minimal Morley rank and Morley degree, then φ

s⌢ 0
and φ

s⌢ 1
have smaller

Morley rank or Morley degree.

Definition 3.4. For types p we put

MRppq :“ mintMRpφq|φ P pu,

Mdegppq :“ mintMdegpφq|MRpφq “ MRppq, φ P pu.

Thus MRpφq “ maxtMRppq|φ P pu.

If G is a totally transcendental group, a formula φpxq and type ppxq are
called generic iff MRpφq “ MRppq “ MRpGq :“ MRpxx “ xyq.

We will need that in stable theories all types p P SpBq, B Ď M, M |ù T are
definable. First we do this for φ-types: We set p P SφpBq iff p is consistent
and for every b P B we have φpx, bq P p or ␣φpx, bq P p.

Definition 3.5.
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• A type p P SnpBq is definable over C iff for each L-formula φpx, yq,
there is an LpCq-formula ψpyq such that for all b P B we have φpx, bq P
p ðñ M |ù ψpbq.

• φpx, yq is called stable iff for some infinite cardinal λ we have |SφpBq| ď
λ for all |B| ď λ.

• φpx, yq has the order property (OP) iff there are tuples ai, bi, i ă ω
such that M |ù φpai, bjq ðñ i ă j.

• φpx, yq has the binary tree property iff there is a binary tree
pbsqsPăω2 of parameters such that for all σ P ω2 the set

tφσpnqpx, bσ|n |n ă ωu

is consistent, where φ0 :“ ␣φ and φ1 :“ φ.

Theorem 3.6. The following are equivalent:

(i) φ is stable.

(ii) |SφpBq| ď |B| for all infinite B.

(iii) φ doesn’t have (OP).

(iv) φ doesn’t have the binary tree property.

(v) Every φ-type p P SφpBq is definable over B.

For the proof we need some preparation:

Lemma 3.7. If φpx, yq has (OP) and pI,ăq is a linear order, then there
are ai, bi, i P I such that |ù φpai, bjq iff i ă j.

Proof. Cf. Sheet 5, Exercise 3 (B.5.3).

Corollary 3.8. If φpx, yq has (OP), then three are ai, bi, i ă ω such that
|ù φpai, bjq iff i ą j.

We also need

Theorem 3.9 (Ramsey). Let A be infinite, n ă ω, C1 \ . . . \ Ck “ rAs
n

a colouring of the n-element subsets of A. Then there exists some infinite
A0 Ď A, i ď k such that rA0s

n Ď Ci.

Proof. We use induction on n. The statement is trivial for n “ 1. Assume
that we have shown the theorem for some n. Consider a coloring c on rAsn`1.
Fix some a0 P A. We obtain a coloring on rAzta0us

n as follows: For ra0s Y
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X P rAsn`1 put ca0pXq :“ cpX Y ta0uq. By the induction hypothesis, there
is a monochromatic set B1 Ď Azta0u. Take a1 P B1. Color rB1zta1us

n by
ca1pXq :“ cpX Y ta0uq. Iterating this construction we obtain a chain

A “ B0 Ě B1 Ě B1 Ě . . .

and ai P BizBi`1 such that Cptai0 , ai1 , . . . , ainuq depends only on i0 for all
i0 ă i1 ă . . . ă in. By induction hypothesis for n “ 1, there are infinitely many
i0 yielding the same coloring. Let A0 be the set of such i0.

Theorem 3.10 (Erdős-Makkai). If B is infinite and S Ď PpBq such that
|B| ă |S|, then there is xbi|i ă ωy, bi P B, xSi|i ă ωy, Si P S such that
either

(i) bi P Sj ðñ j ă i or

(ii) bi P Sj ðñ i ă j.

Proof. We say that X separates A from B if A Ď X and XXB “ H. Construct
S 1 Ď S, |S 1| “ |B| such that any pair of finite subsets of B that can be separated
in S are separated in S 1: For any two finite subsets of B put a corresponding
B0 Ď B into S 1.

Since |PfinpBq| “ |B|, we have |S 1| “ |B|. Since |S 1| ă |S| there is S˚ P S which
is not a boolean combination of sets in S 1. We now construct sequences

xb1
i|i ă ωy in S˚,

xb2
i |i ă ωy in BzS˚,

xSi|i ă ωy in S 1,

such that

• tb1
0, . . . , b

1
nu Ď Sn, tb

2
0, . . . , b

2
nu Ď BzSn and

• b1
n P Si ðñ b2

n P Si for all i ă n.

Assume we have defined those for i ă n. Since S˚ is not a boolean combination
of Si, i ă n, there exist b1

n P S
˚, b2

n P BzS
˚ such that for all i ă n, b1

n P Si ðñ
b2
n P Si. Let Sn P S 1 separate tb1

0, . . . , b
1
nu from tb2

0, . . . , b
2
nu (this exists, since

S˚ P S separates them).

We may assume b1
n P Si or b1

n R Si for all i ă n ă ω: Set cptn,muq :“
rbmaxpn,mq P Sminpn,mqs. Ramsey’s Theorem (3.9) yields N Ď ω infinite such
that rN s2 is monochromatic.

In the first case put bi :“ b2
i (R S˚, ; (i)). Otherwise put bi :“ b1

i`1 (; (ii)).
By construction we have i ď n ùñ b1

i P Sn, b
2
i R Sn. If b1

n P Si for i ă n,
then also b2

n P Si. Hence i ă n iff bn P Si by choice of Sn. The other case is
similar.
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Proof of Theorem 3.6. Clearly (ii) ùñ (i), (v) ùñ (ii).

(i) ùñ (iv) Suppose that φ is λ-stable and µ minimal such that 2µ ą λ. The
tree T “ ăµ2 has cardinality ď λ. If φpx, yq has the binary tree property, then
by the Compactness Theorem (A.14) we find pbsqsPT such that for σ P µ2 the
type

qσ :“ tφσpxqpx, bσ|αq|α ă µu

is consistent. Hence the qσ extend to a family of pairwise distinct φ-types over
B “ tbs|s P T u, so |B| ď λ ă 2µ ď |SφpBq|.  

(iv) ùñ (iii) Choose a linear ordering on I “ ďω2 such that σ ă σ|n ðñ

σpnq “ 1 for all σ P ω2, n ă ω. If φpx, yq has (OP), by Lemma 3.7 we find
pai, biqiPI such that |ù φpai, bjq ðñ i ă j.

Thus the tree φpx, bsq, s P
ăω2 has the binary tree property.

(iii) ùñ (ii) Let |B| ě |T |, |SφpBq| ą |B|. The φ-type of a over B is determined
by

Sa “ tb Ď B| |ù φpa, bqu Ď Bn.

Since |Bn| “ |B| we may assume n “ 1. Applying Theorem 3.10 to B and
S “ tSa|a PMu we obtain pbiqiăω ,paiqiăω, bi P B, ai PM such that either

• bi P Saj ðñ j ă i for all i, j ă ω or

• bi P Saj ðñ i ă j for all i, j ă ω.

Thus φ has (OP).

(v) ùñ (iv) Suppose φpx, yq doesn’t have the binary tree property. For a
formula θpxq let dφpθq be the maximal n such that there is a binary three
pbsqsPăn2 such that

tθpxqu Y tφσpiqpx, bσ|i |i ă nu

is consistent for all σ P n2. Let p P SφpBq and let θ be a conjunction of formulae
in p such that n :“ dφpθq is minimal. Then

φpx, bq P p ðñ dφpθpxq ^ φpx, bqq “ n.

Note that the right hand side is definable.

[Lecture 08, 2024-05-13]
7

Corollary 3.11 (Separation of Variables). Let T be stable, M |ù T and
A “ φpMq a H-definable subset. Then every LpMq-definable subset of A
is A-definable.

In other words, for every formula ψ and c ĎM such that ψpM, cq Ď φpMq,

7The proof of Theorem 3.6 was finished in this lecture.
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there exist ψ1 and a Ď A such that

ψ1pM, aq “ ψpM, cq.

Proof. The type ppyq “ tppc{φpMqq is definable over A by Theorem 3.6, i.e.

ψpM, cq “ ta P A|ψpa, yq P pu

is A-definable.

Example 3.12. This does not hold without stability: Let Γ be the random
graph Consider pΓ, aq for some a P Γ. Then A “ Γ1paq :“ tb P Γ :
distpa, bq “ 1u is H-definable. However for b P ΓzA the set Γ1paq X Γ1pbq
is not definable over A. (Note that pΓ, aq has QE.)

[Lecture 09, 2024-05-16] If p is a type with Morley rank, then by definition there
exists φ P p such that MRpφq “ MRppq, Mdegpφq “ Mdegppq. We call such a
φ the characterising formula8 for p. Then for a formula ψ we have ψ P p iff
MRpφ^␣ψq ă MRpφq,

Corollary 3.13 (MR is definable). For ψpx, yq the set

Bψ,p :“ tb|MRpφpxq ^ ␣ψpx, bqq ă MRpφqu

is definable.

If p P SpBq, the set Bψ,p is defined by an LpBq-formula and we can evaluate
this formula on arbitrary elements. If C Ě B, this defines a φ-type q P SpCq,
q Ě p such that

ψpx, cq P q ðñ |ù defppψqpcq

where defppψq is the formula defining Bψ,p. By construction MRpqq “ MRppq.9

Definition 3.14. Let A Ď B, p P SpAq with MRppq “ α. Then q P SpBq
with q Ě p and MRppq “ MRpqq is called a non-forking extension of p.

Remark 3.14.15 (Heir property). All formulae in a non-forking extension
q are (possibly with different parameters) already in p.

Lemma 3.15. Every type p P SpAq with MRppq “ α has a non-forking
extension to any set B Ě A. There are at most Mdegppq many non-forking

8This is not official notation.
9In a sense, q adds no additional information.
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extensions to B and

Mdegppq “
ÿ

tMdegpqq|q P SpBq non-forking extension of pu.

Proof. If φ is a characterising formula for p, the non-forking extensions of p to
B are give exactly by those ψ P LpBq that preserve the Morley rank (but maybe
have smaller degree).

Definition 3.16. A type with Morley rank is stationary iff Mdegppq “ 1,
i.e. iff it has a unique non-forking extension to any superset of its domain.

Corollary 3.17. If p P SpAq is stationary, B Ě A and q P SpBq a non-
forking extension, then q is definable over A.

Proof. The characterising formula for p is also characterising for q.

Remark 3.17.16. If T is totally transcendental andM |ù T is ω-saturated,
then MR and Mdeg for φ P LpMq can be computed in M. I.e. “very satu-
rated” as in Definition 3.1 is just ω-saturated if T is totally transcendental.
In particular, all types in SpMq are stationary.

[Lecture 10, 2024-05-27]

Notation 3.17.17. Let T be totally transcendental, M |ù T , a, b, A ĎM.
We write

MRpa{Aq :“ MRptppa{Aqq

and a |
!

A

b (“a and b are independent over A”) iff

MRpa{Abq “ MRpa{Aq,

i.e. iff tppa{Abq is definable over A. Similarly we define a |
!

A

B.

a |
!

H

b is abbreviated as a |
!
b.

Example 3.18. Let Ttree be the theory of cycle-free graphs such that every
vertex has infinite valency. Ttree is a complete theory with QE in the
language dnpx, yq :“ “ distpx, yq “ n”. Furthermore it is ω-stable (follows
from QE).

Let b be a vertex. We claim that ppx, bq “ td1px, bqu is a complete type. Exercise:
Work out the
details
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For A ‰ H we have a |
!

A

b iff the shortest path from a to b passes through

convpAq, the convex closure of A.

For A “ H it is a |
!

A

b iff a and b belong to different connected components.

Note that MRpa{Aq “ MRpa| convpAqq.

Theorem 3.19. If T is totally transcendental, then a |
!

A

b ðñ b |
!

A

a.

Proof. Let M |ù T be an ω-saturated model (a submodel of the monster-model)
and A ĎM. Wlog.

(i) a |
!

A

M and

(ii) b |
!

Aa

M

by Lemma 3.15.

Suppose that a ∤
!

A

b. Then by (i) a ∤
!

M
b as MRpa{Mq

piq
“ MRpa{Aq

a ∤
!

A

b

ą MRpa{Abq ě

MRpa{Mq.

We need to show that b ∤
!

A

a.

Claim 1. b ∤
!

M
a.

Subproof. Let α :“ MRpa{Mq, β :“ MRpb{Mq, and φpxq P tppa{Mq, ψpyq P
tppb{Mq the characteristic formulas.

Since a ∤
!

M
b, there is an LpMq formula χpx, yq, such that |ù χpa, bq (i.e. χpx, bq P

tppa{bMq) and MRpχpx, bqq ă α. Wlog. |ù φpx, yq Ñ φpxq ^ ψpyq.

■

If b |
!

A

a, then by (ii), b |
!

A

M, hence b |
!

M
a  .

By Corollary 3.13 the set tc|MRpχpx, cqq ă αu isM-definable. Hence wlog. MRpχpx, cqq ă
α for all c PM. Since MRpa{Mq “ α, χpa, yq P tppb{aMq is not realized in M.
Hence MRpχpa, yqq ă MRpψpyqq “ β.

Remark 3.19.18. Prof. Tent sometimes uses RM (french) instead of MR.
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Definition 3.20. If G is a totally transcendental group, a formula φ P
LpGq and a type p P S1pGq are generic if

MRpφq “ MRppq “ MRpGq “ MRpxx “ xyq.

Note that G acts by left-multiplication on the compact space S1pGq : If p P
S1pGq then p “ tppx{Gq for some x in G̃ ą G, then for a P G, we let ap :“
tppax{Gq.

Since multiplication is a definable bijection on G̃, it preserves MR and Mdeg.
Furthermore, the action of G on S1pGq is definable: If φpx, bq P p is the charac-
teristic formula, then φpa´1x, bq is the characteristic formula of ap. So

Stabppq “ ta P G|ap “ pu

“ ta P G|φpa´1x, bq P pu

“ ta P G|MRpφpx, bq ^ ␣φpa´1, bqq ă MRpφpx, bqqu

is a definable subgroup of G.

There are only finitely many generic types, so if p P S1pGq is generic, then
Stabppq has finite index in G.

Lemma 3.21. The number of generic types in G is equal to |G{G0| “

MdegpGq.

Proof. If p is generic, then Stabppq ě G0 and p P S1pGq has Morley degree 1,
so it has to specify in which coset of G̃{G̃0 the realization lies.

Lemma 3.22. p is generic iff Stabppq “ G0.

Proof. “ ùñ ” was done in Lemma 3.21.

“ ðù ” Let Stabppq “ G0, ppxq “ tppa{Gq for some a P G̃ and v P G̃0 generic
over G such that b |

!

G

a.

Then tppa{Gq “ tppb ¨ a{Gq. Furthermore

MRpb{Gq “ MRpb{Gaq “ MRpba{Gaq ď MRpba{Gq
bPStabppq
“ MRpa{Gq.

Since MRpb{Gq is maximal we have equality, i.e. a is generic over G.

Remark 3.22.19. If g P G is generic and a |
!
g, then a ¨ g is also generic:

We have MRpgq “ MRpg{aq “ MRpa ¨ g{aq ď MRpa ¨ gq.
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Lemma 3.23. (i) Every g P G is a product of two generics.a

(ii) If A,B Ď G are generic such that GzA and GzB are not generic, then
G “ A ¨B.

aThis happens for many concepts of “large such that the complement is small”.

Proof. (i) Let x |
!
g such that x is generic. Then x´1 and gx´1 are generic and

g “ pgx´1q ¨ x.

(ii) We have Apxq, Bpxq P ppxq for every generic type ppxq.

Definition 3.24. A definable set A Ď G is called indecomposable iff for
every definable subgroup H ď G

|taH|a P Au| P t1,8u,

i.e. either A is contained in a coset of H or it intersects infinitely many
cosets.

Remark 3.24.20. A definable subgroup is indecomposable iff it is con-
nected.

[Lecture 11, 2024-06-03]

Theorem 3.25. If G is totally transcendental, every definable subset is
a disjoint union of finitely many indecomposable subsets, its irreducible
components .

The decomposition is unique if the components are maximal.

Proof. If A is decomposable, there exists a definable subgroup H ď G such that
1 ă n :“ |taH|a P Hu| ă ω.

Write A “ A1 \ . . . \ An, Ai “ A X aiH. If Ai is decomposable, write Ai “
Ai1 \ . . . \ Aik and so on. We obtain a finitely branching tree of finite height
(the tree is finite since G is totally transcendental). The leaves of the tree form
a decomposition into disjoints indecomposable sets Bi, i ď l.

If B Ď A is indecomposable let

C :“
ď

tBi|Bi XB ‰ H, Bi indecomposableu.

C is indecomposable. Thus we an replace the Bi Ď C by C and get a unique
decomposition as required.
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Definition 3.26. We call S a definable group of automorphisms of a
group G if S and the action S ˆGÑ G, ps, gq ÞÑ spgq are definable.

Remark 3.26.21. Not every definable automorphism is contained in a
definable group of automorphisms.

Theorem 3.27. Let G be stable with a definable group S Ď AutpGq of
automorphisms. Let A Ď G be definable and S-invariant. Then A is inde-
composable iff the condition from Definition 3.24 holds for all S-invariant
subgroups.

Proof. Let H ď G be definable such that |A{H| :“n ą 1. For s P S, we have
|A{Hs| “ n,

K “
č

sPS

Hs Baldwin-Saxl
“ Hs1 X . . .XHsm

is S-invariant and n ď |A{K| ď n ¨m.

Theorem 3.28 (Zilber’s Indecomposability Theorem). Let G be a group
of finite Morley rank and let Ai, i P I be indecomposable such that 1 P Ai
for all i P I.

ThenH :“ xAi|i P Iy is definable and connected and there existA1, . . . , Am,
m ď MRpHq such that H “ pA1 . . . Amq

2.

Proof. Since G has finite Morley rank, we find B “ A1 ¨ . . . ¨ Am of maximal
Morley rank, i.e. MRpBq “ MRpAiBq for all i P I.

Let p be a generic type, i.e. a type of maximal Morley rank in B, and let
H :“ Stabppq. ThenH is definable and ifH divides some Ai into infinitely many
cosets, then AiB contains infinitely many translates of p, which are pairwise
disjoint. Then MRpAiBq ą MRpBq . Hence Ai Ď H (since 1 P Ai), thus
B Ď H, and we obtain xx P Hy P ppxq. Thus p is the unique generic in H,
B Ď H is generic and by Lemma 3.23 H “ B2.

Theorem 3.29. Let G be a group of finite Morley rank and H ă G defin-
able. Then MRpGq ě MRpHq `MRpG{Hq.

Proof. Cf. Sheet 4, Exercise 3 (B.4.3).

The statement is clear if |G : H| is finite. Otherwise π : G Ñ G{H is inter-
pretable, hence for a definable A Ď G{H, π´1pAq is definable. By induction we
get

MRpπ´1pAqq ě MRpHq `MRpAq.
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Remark 3.29.22 (Additivity of Morley rank in groups of finite Morley
rank). In fact equality holds. This is however hard to prove.

Lemma 3.30. If b P aclpaAq, then

MRpb{Aq ď MRpa{Aq “ MRpba{Aq.

Proof. Cf. Sheet 4, Exercise 3 (B.4.3).

4 Fields

Goal. ω-stable fields are algebraically closed. (Macintyre)

This also holdes for ω-stable integral domains of finite MR (Cherlin).

Theorem 4.1 (Macintyre). If pK,`, ¨, . . .q is an infinite ω-stable field, then
K is algebraically closed.

We need two ingredients from Galois theory:

(a) (Kummer) If L{K is a cyclic Galois extension of degree n, and charK ∤ n
and K contains all nth roots of unity, then the minimal polynomial of L{K
is of the form Xn ´ a for some a P K.

An extension of this form is called Kummer-extension.

(b) (Artin-Schreier) Let charK “ p ą 0, L{K a Galois extension of degree p,
then the minimal polynomial of L{K is of the form Xp ´ X ´ a for some
a P K.

An extension of this form is called Artin-Schreier-extension.

Remark 4.1.23. If F {K is a finite extension, then pF,`q – pKm,`q for
m “ rF : Ks, since F is a finite dimensional K-vector space.

Choose a basis B “ tb1, . . . , bmu for F {K. Then the multiplication on
F is definable by bi ¨ bj . Hence pF,`, ¨q is interpretable in pK,`, ¨q using
parameters from B.

[Lecture 12, 2024-06-06]

Proof of Theorem 4.1.

Claim 4.1.1. pK,`q is connected.
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Subproof. Let K0 be the connected component of pK,`q.

For a P Kzt0u, x ÞÑ a ¨ x is a definable group automorphism of pK,`q, hence
it leaves K0 invariant. Hence K0 is an ideal in K, hence K “ K0 since K is a
field. ■

From Lemma 3.21 it follows that pK,`, ¨q has a unique generic type.

Claim 4.1.2. K˚ “ pK˚q
n
, i.e. K contains n-th roots for all n.

Subproof. If a R K is generic over K, then a and an are interalgebraic over K,
i.e. an P aclpaKq and a P aclpanKq. Hence by Lemma 3.30 we have

MRpa{Kq “ MRpan{Kq.

Since a is generic over K, we get that an is generic as well.

Therefore pK˚qn ď K˚ is a generic subgroup of pK˚, ¨q and by connectedness
we get equality.

■

So every element in K has n-th roots for all n. In particular, K is perfect
(cf. Fact A.17.39).

If charpKq “ p ą 0, then X ÞÑ Xp ´ X is a homomorphism of the additive
group. So if a is generic, then so is ap ´ a. Therefore the image is all of K, so
in other words K has no Artin-Schreier extensions.

Claim 4.1.3. If K is an infinite ω-stable field containing all m-th roots of unity
for all m ď n, then K has no Galois extensions of degree n.

Subproof. Suppose L{K is a counter example where n is minimal.

Let q be prime, q | n. By Cauchy’s theorem10 and the Galois correspondence,
there exists an intermediary field K Ď F Ĺ L such that L{F is Galois of degree
q. By Remark 4.1.23 F is interpretable in K and hence ω-stable. Since n was
minimal, we conclude n “ q, F “ K.

If charpKq ‰ q, the minimal polynomial for L{K is of the form Xq´a for a P K
(L{K is a Kummer extension). But since pK˚qq “ K˚, Xq ´ a is reducible  .

If charpKq “ q, the minimal polynomial for L{K is of the form Xp ´ X ´ a
for some a P K (L{K is an Artin-Schreier extension). Since X ÞÑ Xp ´ X is
surjective, this is again reducible. ■

Claim 4.1.4. If K is an infinite ω-stable field, then K contains all roots of
unity.

10If G is a group and p | |G|, then G contains an element of order p.

4 FIELDS 28



Subproof. Let n be minimal such that K doesn’t contain all nth roots of unity.
Let ξ be a primitive nth root of unity. Then Kpξq is a Galois extension of degree
ď n´ 1, contradicting Claim 4.1.3.

■

Thus K contains all nth roots of unity for all n, so by Claim 4.1.3 K has
no Galois extensions. Since K is perfect, it follows that K is algebraically
closed.

Corollary 4.2. A field K of finite MR has no definable infinite proper
subrings.

Proof. By Corollary 1.7 any definable subring k Ď K is itself a field and hence
algebraically closed. Since k has no algebraic extensions, either either k “ K
or rK : ks “ 8. If k ‰ K, then for any n ă ω, the k-vector space kn Ď K is
definable and has MRpknq ě nMRpkq by Theorem 3.29. But MRpKq is finite
by assumption.

Corollary 4.3. If K is an infinite field of finite MR and charK “ 0, then
K has no proper definable additive subgroups.

Any definable homomorphism pKn,`q Ñ pKm,`q is K-linear. In par-
ticular, the group of definable endomorphisms of pK,`q is isomorphic to
pK˚, ¨q.

Proof. Let A Ď K be a definable additive subgroup and H “ ta P K|aA Ď Au.
Then H is a definable infinite subring of K, hence H “ K by Corollary 4.2.
Thus A “ t0u or A “ K.

If s : pKn,`q Ñ pKm,`q is a definable homomorphism, then the centralizer of
s,

H “ ta P K|@x P Kspaxq “ aspxqu

is a definable infinite subring of K, hence H “ K, so s is K-linear.

Remark 4.3.24. There are fields of finite Morley rank with a definable
subgroup H ď K˚.

Remark 4.3.25. If K is an infinite field of finite Morley rank, charK “

p ą 0 and k :“ F̃p, then every definable automorphism s ofK is determined
by its action on k:

If s, s1 are definable automorphisms ofK such that s|k “ s1|k, then Fixps1s´1q

is a definable subfield of K containing k, hence Fixps1s´1q “ K, i.e. s “ s1.
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Therefore the group of definable automorphismsa of K is contained in
Galpk{Fpq “ Autpkq – Ẑ (cf. Fact A.18.43).

aNote that in general this group is not definable.

Lemma 4.4. If K is an infinite field of finite MR, charK “ p ą 0, then
every definable automorphism of K is of the form Frobnp for some n. In
particular, it is H-definable.

Proof. Again consider k :“ F̃p Ď K. Let f be an automorphism defined by
φpx, y, aq. By the Compactness Theorem (A.14) applied to Remark 4.3.25,
there is some n such that g|Fpn

“ f |Fpn
ùñ f “ g.

Since the automorphisms of Fpn are of the form Frobkp, the claim follows.

Corollary 4.5. Let K be an infinite field of finite MR. Then every defin-
able G ď AutpKq is trivial.

Proof. Let s P G. Then Fixpsq is definable, hence finite if s ‰ id. Hence

charpKq “ p and G ď Ẑ by Lemma 4.4. G is abelian, torsion free and has finite

MR, so it is divisible by Corollary 1.24 (iii). But Ẑ has no divisible elements.

[Lecture 13, 2024-06-10]

Conjecture 4.6 (Cherlin-Zilber). Any infinite simple group of finite Mor-
ley rank is an algebraic group over an algebraically closed field.

Remark 4.6.26. Conversely, any simple algebraic group over an alge-
braically closed field is definable in the field as a matrix group, hence
of finite MR. In fact, biinterpretability holds, i.e. if the conjecture is true
every infinite simple group of finite Morley rank interprets a field.

Remark 4.6.27. The conjecture is proved for MR ď 3.

Problem. Using model theory, we can only talk about definably simple groups
(i.e. there is no definable normal subgroup).

However in the context of finite Morley rank, the notions of definably simple
and simple coincide:

Lemma 4.7. If G is definably simple of finite MR, such that G1 is infinitea

then G is simple and in fact boundedly simple, i.e. for all a P Gzt1u and
g P G g can be written as a product of at most 2 ¨MRpGq may conjugates

4 FIELDS 30



of a.

aThe derived group, also called commutator subgroup, is G1 :“ rG,Gs.

Note that being boundedly simple can be written as a first order formula. In
particular, all models of the theory of a boundedly simple group are simple.
This does not hold for simple groups!

Proof. Let G be an infinite, definably simple group of finite MR.

By Theorem 3.27 every infinite set A Ď G invariant under conjugation is inde-
composable. Since G is connected (otherwise the connected component would
be a definable proper normal subgroup) and ZpGq “ 1, we have |aG| “ |G| for
all a P Gzt1u. Hence for all a ‰ 1, we have that aGYt1u is indecomposable. So
by Zilber’s Indecomposability Theorem (3.28) the claim follows.

Remark 4.7.28. move this to
appendix?

A theory T is called κ-categorical, if all models of T of
cardinality κ are isomorphic. For example

• pQ,ăq is ℵ0-categorical,

• pC,`q is κ-categorical for all κ ě ℵ1,

• pV,`, pλxqxPF q is κ-categorical for all κ ą |F |.

Morley’s Theorem says that for all κ, λ ě ℵ1, a theory is κ-categorical iff
it is λ-categorical. a

The idea of the proof is to introduce a notion of dimension.

A set is called strongly minimal iff it has Morley rank 1 and Morley
degree 1.

Recall that acl has the following exchange property: if a P aclpbAqz aclpAq,
then b P aclpaAq. This exchange property also holds in strongly minimal
structures. We get a notion of dimension. Matroidal

hull operator?

aNote that this does not hold for ℵ0-categorical, e.g. ACF is ℵ1 categorical, but not
ℵ0-categorical.

The Baldwin-Lachlan Theorem says that a theory is ℵ1-categorical iff it is
ω-stable and has not Vaughtian pair.

A theory T has a Vaughtian pair (VP) iff there are models M ‰ N ,
M ă N and φ P LpMq, such that φpMq is infinite and φpMq “ φpN q.

Not having a Vaughtian pair removes the possibility of certain subsets
growing unevenly. For example if models of a theory T have two infinite
equivalence classes, then the cardinalities of those equivalence classes might
be unrelated, and in this case T is not ℵ1-categorical.

A theory T is called almost strongly minimal iff there is a strongly
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minimal formula φ and a finite set B, such that for every model M |ù T ,

M Ď aclpφpMq YBq.

Example 4.8. Consider P2pKq, the projective plane over an alge-
braically closed fieldK. Everything can be defined from a line (strongly
minimal) and two additional points not belonging to this line.

If T is almost strongly minimal, then it is ℵ1-categorical.

Proposition 4.9. Every simple group of finite MR and every field of finite
MR is ℵ1-categorical and in fact almost strongly minimal.

Proof. Let G be a simple group of finite MR and A Ď G infinite and defin-
able. Wlog. A is indecomposable (otherwise replace it by an indecomposable

component). Wlog. 1 P A, otherwise shift A. Consider xAg|g P Gy
Zilber
“

G “ Ag1 ¨ . . . ¨ Agn . Since this holds in every extension of G, the defin-
able set A has to increase in an extension of G, so G has no (VP), since
@g. Dg1, . . . , gn. g P A

g1 ¨ . . . ¨Agn can be written as a first order formula.

We also get almost strongly minimal: Suppose φ is strongly minimal, then G is
contained in aclpφpGq, g1, . . . , gnq.

Suppose that K is a field of finite MR (i.e. it is algebraically closed and strongly
minimal as a pure11 field). Let A :“ φpKq be an infinite, definable, indecom-
posable with respect to pK,`q set. Wlog. 0 P A. Then

K0 :“ xgA|g P Ky
Zilber
“ g1A` . . .` gnA

is a definable ideal, so K0 “ K1, and the same argument as in the case of groups
applies.

Goal. If the Cherlin-Zilber conjecture holds, then every simple group of finite
MR must interpret an infinite field, since this is the case in algebraic groups
over algebraically closed fields We want to find the field.

Definition 4.10. Let A be an infinite, abeliana group, G ď AutpAq. Then
A is G-minimal iff every G-invariant subgroup of A is finite.

aThis notion is also used for non-abelian groups.

Remark 4.10.29. A linear representationGñKn is called an irreducible
representation iff Kn has no G-invariant subspace (execept 0,Kn). In

11not considering additional structure
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this case by Schur’s lemma CenpGq is a skew field containing K.

Let s P CenpGq. Then gspKnq “ sgpKnq “ spKnq for all g P G, i.e. spKnq P

t0,Knu.

Theorem 4.11 (Zilber). Let A be an abelian group and M ď AutpAq
definable inside a structure of finite MR. If A is M -minimal, then there
exists a there exists a definable (algebraically closed) field K and a K-
vector space structure on A such that A – K` and M ď K˚ (and 0 is the
only M -invariant subspace).

[Lecture 14, 2024-06-13]

Proof of Theorem 4.11. By the chain condition, there exist a1, . . . , am P A such
that FixM pta1, . . . , amuq “ 1, i.e. for m,m1 P M we have m “ m1 iff mpaq “
m1paq.

SinceM is infinite, there exists a “ ai, i ď n such that the orbitM ¨a is infinite.

Claim 4.11.1. Ma Y t0u is an indecomposable subset of A (and clearly M -
invariant).

Subproof. By Theorem 3.27 it suffices to check the criterion for M -invariant
subgroups of A. But by assumption, A is M -minimal, i.e. it has only finite
M -invariant subgroups, so this is trivial. ■

By Zilber’s Indecomposability Theorem (3.28) we have that xMay ď A is defin-
able. Clearly it is M -invariant, hence

A “ xMay “
ÿ

iďk

M ¨ a

As in the proof of Theorem 2.5, the endomorphism ring S of A generated by M
is interpretable as a quotient of pM Y t0uqk. Since M and S are commutative,
for any s P S, we have that s ¨A is an M -invariant S-submodule of A and thus
s ¨ A P t0, Au. Hence S is an integral domain of finite MR, hence a field by
stability, hence an algebraically closed field K with A “ K`, M ď K`, since
the Morley rank is finite.

This can be generalized further:

Theorem 4.12. Let A be an abelian group, and G ď AutpAq definable in
a structure of finite Morley rank, where G is connected and

(i) there exists an infinite, definable, abelian normal subgroup M Ĳ G,

(ii) there exists a definable,M -invariant andM -minimal subgroup B ď A
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such that A “ xgB|g P Gy.

Then there exists a definable, algebraically closed field K and a finite
dimensional K-vector space on A, such that G acts K-linearly on A and
M acts as K-scalars, i.e. M ď K˚, M ď ZpGq.

Proof.

Claim 1. M0 acts non-trivially on B.

Subproof. Otherwise gM0g´1 “ M0 would act trivially on gB, hence by (ii)
trivially on A. Thus M0 “ tidu (since it is a subgroup of the automorphism
group), so M is finite  . ■

SoM AnnpBq
12 and B satisfy the assumptions of Theorem 4.11. Thus B – K`

and M AnnpBq ď K˚ for some algebraically closed field K.

Let R be the endomorphism ring of A generated by M . The action of R on B
arises from the algebraically closed field K, so AnnRpBq “ I Ď R is a maximal

ideal, i.e. K “ R
I.

Take g1, . . . , gn P G and let Bi :“ giB. Since M Ĳ G, we have AnnpBjq “
gjIg

´1
j :“Ij .

Claim 2. All the Ij coincide.

Subproof. Suppose we can find g1, . . . , gn P G such that the Ij are pairwise
distinct. All Ij are maximal ideals, hence coprime, i.e. Ij` Ik “ R for all j ‰ k.

Claim 1. The corresponding R-modules Bj, j ď n form a direct sum.

Subproof. Let xj P Bj be such that
ř

xj “ 0. By the Chinese Remainder
Theorem there exists si P R, such that si P 1 ` Ii but s P Ij for all j ‰ i. We
get

si

´

ÿ

xj

¯

“ xi “ 0,

hence x1 “ x2 “ . . . “ xr “ 0. ■

Hence MRpAq ě MRpB1 ` . . . ` Bnq ě n ¨MRpBq. Therefore there are only
finitely many distinct ideals Ij . Let tI1, . . . , Inu be the set of all of these with
Ij “ AnnpBjq.

Consider the action of G on tI1, . . . , Inu. Since the Ij are conjugate, this action
is transitive.

12Recall that the annihilator is defined as AnnpBq “ tm P M |mB “ 0u.
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Claim 2. The action of G on tI1, . . . , Inu is definable.

Subproof. Pick ijk P IjzIk for all 1 ď j ‰ k ď n. Let g P G. Then Igj “ Il iff for
all k ď n

pijkq
g P AnnpBlq

looooooooomooooooooon

definable

“ Il.

■

Since G is connected, we get that the action is trivial (otherwise the stabilizers
would be definable proper subgroups). So since the action is both trivial and
transitive, there can only be on ideal. ■

Since A is generated by the gB, g P G and AnnpgBq “ AnnpBq “ I, we have
I ď AnnpAq, i.e. I “ 0. Thus R “ K.

Claim 3. The action of K on A is definable.

Subproof. By Zilber’s Indecomposability Theorem (3.28), we haveA “
ř

iďn giB.

The action of M “M
AnnpBq on A shows that every s P R can be written as

s “ m1 ` . . .`mn,

so K “
ř

iďnM . ■

By construction, the elements of M act as scalars on A. G acts on M be
conjugation, hence it induces a definable group of automorphisms on K. By
Corollary 4.5 this induced group is trivial, i.e. M ď ZpGq, hence G acts K-
linearly on A.

Corollary 4.13. Let G be a definable (in a structure of finite MR) group
of automorphisms of an abelian group A, where A is G-minimal. Then
either

• G has an infinite center or

• G has no definable nontrivial abelian normal subgroup (i.e. G is de-
finably semi-simple).

Proof. This follows from Theorem 4.12: If M Ĳ G is an infinite definable
abelian subgroup, then using finiteness of the Morley rank we find a defin-
able M -invariant, M -minimal subgroup B ď A. Since A is G-minimal and
M Ĳ G we have A “

ř

giB. By Theorem 4.12 we get M ď ZpGq and G acts
K-linearly.
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Remark 4.13.30. We call a group G minimal’a iff it doesn’t contain
proper infinite definable subgroups.

aConfusingly, in the lecture this was called “minimal” as well. Note that in the
previous definition all definable subsets were considered.

The proof of Theorem 1.3 shows:

Theorem 4.14. Minimal’ groups are abelian.

Corollary 4.15. ??

(i) Any group of Morley rank 1 is virtually abelian.

(ii) Any ω-stable infinite group contains an infinite, definable, abelian
subgroup.

Proof. (i) G0 is minimal’, hence abelian.

(ii) Since G has finite MR, there exists and infinite, definable subgroup H ď G
of minimal MR. Then H is minimal’, hence abelian.

Remark 4.15.31.

(i) If A is a minimal’ group, then it is G-minimal for every definable
G ď AutpAq.

(ii) Algebraic groups of dimension 1 are abelian. Algebraic groups of
dimension 2 are solvable.
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A Recap
[Tutorial 01, 2024-04-16]

A.1 Groups

Definition: A.0.32. Let G be a group. The center of G is

ZpGq :“ tz P G|@g P G. zg “ gzu.

Definition: A.0.33. Let G be a group and S Ď G a subset.

The centralizer of S in G is

CGpSq :“ tg P G|@s P S. gs “ sgu.

The normalizer of S in G is

NGpSq :“ tg P G|gS “ Sgu.

Clearly CGpSq ď NGpSq ď G are subgroups.

Let A,B ď G be two subgroups. Then A is normalized by B (B nor-
malizes A) iff for every b P B, Ab “ A, i.e. B ď NGpAq.

Similarly, A is centralized by B (B centralizes A) iff B ď CGpAq.

Definition: A.0.34. Let p be prime. A p-group is a group in which the
order of every element is a power of p.

Let G be a group. A p-Sylow subgroup of G is a maximal p-subgroup
of G. Sylow theo-

rems

Definition: A.0.35. Let G be a group. The order of G, ordpGq, is the
number of elements of G.

The order (period length / period) of g P G is the order of xgy, the
subgroup generated by g.

G is a torsion group (periodic group) iff every element has finite order.

The exponent of a torsion group G is the least common multiple of orders
of the group elements, i.e. the least n P N such that @g P G. gn “ 1. (This
does not necessarily exist.)

Definition A.1. A group G is called simple iff t1u and G itself are the

A RECAP 37



only normal subgroups of G.
Semidirect
product

A.1.1 Group actions

Definition A.2. Let G be a group and X a set. A group action GñX
is a group homomorphism π : GÑ SympXq. For g P G, x P X we will write
g.x :“ πpgqpxq.

• The action is transitive iff @x, x1 P X. Dg P G. g.x “ x1.

• The action is n-transitive iff for all pairwise distinct x1, . . . , xn P X
and all pairwise distinct x1

1, . . . , x
1
n P X there exists g P G such that

g.xi “ x1
i for all i ď n.

It is sharply n-transitive iff there exists exactly one such g.

• The action is faithful iff π is injective.

• The action is free iff no non-trivial element has a fixpoint, i.e. @g P
Gzt1u, x P X. g.x ‰ x.

• The action is regular iff it is transitive and free.

• The stabilizer of x P X is the subgroup Gx :“ tg P G : g.x “ xu.

• The orbit of x P X is G.x :“ tg.x|g P Gu.

Definition A.3. For a subgroup H ď G the index of H in G, |G : H| is
defined as |tgH{g P Gu|.

Theorem A.4 (Orbit stabilizer theorem). Let GñX, x P X. Then
|G.x| “ |G : Gx|.

Proof. The map

φ : G.x ÝÑ G{Gx

g.x ÞÝÑ gGx

is bijective.

A.1.2 Nilpotent and solvable groups

Definition A.5. Let G be a group. The commutator or derived sub-
group of G, denoted rG,Gs or G1, is defined as trg, g1s : g, g1 P Gu. rG,Gs
is the smallest subgroup of G such that G{G1 is abelian.

We recursively define Gp0q :“ G and Gpn`1q :“ rGpiq, Gpiqs.

We say that G is solvable if Gpnq “ 1 for some n P N.
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Proposition A.6. G is solvable iff we have a sequence 1 Ĳ H1 Ĳ . . . Ĳ
Hm “ G such that Hi`1{Hi is abelian.

Example A.7. Let K be a field, AGL1pKq :“ tx ÞÑ ax`b|a ‰ 0, b P Ku –
K ¸K the group of affine transformations.

We have AGL1pKq{K
` – K`, so 1 Ĳ K` Ĳ AGL1pKq.

Definition A.8. A linear algebraic group of a field k is a subgroup of
GL1pKq, e.g. SL1pKq. For such a group, a Borel subgroup is a maximal
closed connected solvable group.

Example A.9. • A Borel subgroup for GLnpKq is the group of upper
triangular matrices.

• A Borel subgroup for SLnpKq is the group of upper unitriangular
matrices (i.e. upper triangular matrices with only 1 on the diagonal).

Definition A.10. Let G be a group. We define Grns inductively be Gr0s :“
G, Grns :“ rG,Grn´1ss.

We say that G is (n-step) nilpotent iff there exists n P N (minimal) such
that Grns “ 1.

Nilpotent groups are solvable.

Proposition A.11. The following are equivalent

• G is nilpotent.

• There exists a finite ascending central series, ζ0pGq “ 1 Ĳ ζ1pGq “
ZpGq Ĳ . . . Ĳ ζnpGq “ G with ζi`1pGq “ tg P G : gζipGq P
ZpG{ζipGqqu, that is ζi`1pGq is the subgroup such that ζi`1pGq{ζipGq “
ZpG{ζipGqq.

Example A.12. • For a field K, the group of upper unitriangular ma-
trices is nilpotent.

• The quaternion group Q8 “ xa, b|a4 “ e, a2 “ b2, ba “ a´1by is
nilpotent.

If a group is nilpotent / solvable, then its subgroups have the same property.
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A.2 Model Theory

It was recommended to read the first two chapters of [TZ12] (Structures, Lan-
guages, Theories, Elementary Substructures, Compactness Theorem, Löwenheim-
Skolem) as an introduction to model theory.

A.2.1 The Compactness Theorem

Definition A.13. Let L be a first order languages and Σ a set of sentences
in the language L. We say that Σ is satisfiable iff there exists an L-
structure M such that M |ù σ for all σ P Σ (or short M |ù Σ).

We say that Σ is finitely satisfiable iff every finite subset Σ1 Ď Σ is
satisfiable.

Theorem A.14 (Compactness Theorem). Σ is satisfiable iff it is finitely
satisfiable.

A.3 Saturated Models

Definition A.15. Let T be a complete theory with infinite models. We
say that M |ù T is κ-saturated iff for A ĎM, |A| ă κ every p P SnpAq
is realized in M.

We say that M is saturated iff it is |M|-saturated.

It is easy to construct κ-saturated models using the Compactness Theorem
(A.14). However saturated models can not be constructed this easily, as the
model might have too many types. (So one needs to use inacessible cardinals.)

We will often consider a monster model, which is very saturated, in the sense
that it realizes all the types we care about and only consider submodels of this.

Definition A.16. A model M |ù T is called κ-homogeneous, iff for all
A,B ĎM of size at most κ and f : AÑ B is an elementary map, then for
all a PM, f can be extended to f : AY tau Ñ B Y tbu for some b PM.

M is called homogeneous iff it is |M|-homogeneous.

Fact A.16.36. κ-saturated models are κ-homogeneous: Consider tppa{Aq.
Since the model is κ-saturated, it realizes the same type over B.

Theorem A.17. If M and N are saturated models of T of the same
cardinality, then M and N are isomorphic.

Proof. Back-and-forth.
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Fact A.17.37. Let M be saturated. Then tppa{Aq “ tppb{Aq iff there
exists an automorphism of M fixing A pointwise and sending a to b.

A.4 Fields

Let K Ď L be fields. We can view L as a K-vector space. rL : Ks :“ dimK L is
called the degree of the field extension. The field extension is called algebraic
iff every element of L is a zero of a polynomial in KrXs.

Fact A.17.38. Finite field extensions are algebraic.

An extension L{K is separable iff for every l P L, the minimal polynomial of l
is separable, i.e. it has no multiple roots (equivalently its formal derivative does
not vanish). This holds trivially in characteristic 0.

A field is called perfect iff all algebraic extensions of it are separable.

Fact A.17.39. If charK “ p, then K is perfect iff Frobp : x ÞÑ xp is
surjective.a

In particular, finite fields are perfect.

aRecall that morphisms of fields are always injective.

L{K is normal iff every irreducible polynomial in KrXs that has a zero in L
splits into linear factors in L.

L{K is Galois iff it is separable and normal. In this case let GalpL{Kq :“
AutKpLq.

Fact A.17.40. If L{K is Galois, then |GalpL{Kq| “ rL : Ks.

Theorem A.18 (Fundamental Theorem of Galois Theory). If L{K is
Galois, there is a bijection between intermediate fields and subgroups of
GalpL{Kq, sending and intermediate field K ĎM Ď L to AutpL{Kq.

Fact A.18.41. If ξ is a primitive n-th root of unity, then the minimal
polynomial of ξ has degree at most n ´ 1. (Note that Xn ´ 1 factors as
pX ´ 1q ¨ . . .)

Fact A.18.42. The algebraic closure of Fp is F̃p “
Ť

n Fpn .

Fact A.18.43. GalpFpn{Fpq is a cyclic group of order n, generated by
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xFrobpy.

It is GalpF̃p{Fpq “ Ẑ “ lim
ÐÝnăω

Cn, the profinite completion of the integers.

B Exercises

B.1 Sheet 1
[Tutorial 02, 2024-04-23]

Definition B.1. The ascending central series of a group G is the chain
Z0pGq ď Z1pGq ď . . . of subgroups of G defined inductively by Z0 :“ t1u
and ZipGq{Zi´1pGq :“ ZpG{Zi´1pGqq for i ą 0. A group G is nilpotent
if ZnpGq “ G for some n P N.

Definition B.2. A Sylow-p-subgroup of G is a p-group that is maximal
wrt. inclusion.

Usually this is only defined for finite groups, where Sylow’s theorem holds.
However, we also consider Sylow-subgroups of infinite groups. The following
version of Sylow’s theorem holds:

Theorem B.3 (Sylow’s theorem for infinite groups). Let P be a Sylow-
p-subgroup of G. If P has finitely many conjugacy classes in G, then all
Sylow-p-subgroups of G are conjugate.

Definition B.4. A characteristic subgroup is a subgroup that is fixed
by every automorphism.

This is a stronger condition than being normal (i.e. fixed under the automor-
phisms of the for h ÞÑ ghg´1.)

B.1.1 Exercise 1 TODO

B.1.2 Exercise 2

Let G be a group and P ď G be a p-Sylow subgroup of G.

(a) Show that P is a characteristic subgroup ofNGpP q. Deduce thatNGpNGpP qq “
NGpP q.

(b) Suppose that G is nilpotent.

• Show that NGpP q “ G, i.e. P is normal in G.

• Deduce that G has a unique p-Sylow subgroup for each prime p.
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• Conclude that any finite nilpotent group is the direct sum of its p-Sylow
subgroups.

B.1.3 Exercise 3

(a) Let G be a group of exponent p,13 where p is prime. Let g P Gzt1u.

Show that no two distinct elements of xgy are conjugate and deduce that G
has at least p conjugacy classes.

(b) Let G be a group. Suppose g P Gzt1u has finite order and G “ gG Y t1u.
Show that |G| “ 2.

B.1.4 Exercise 4

Definition B.5. A transitive group action GñX, with |X| ą 1 is called
primitive iff each stabilizer Gx is a maximal proper subgroup of G.

(a) Let G be a group acting transitively on a set X.

Suppose that for some x P X, the stabiliser Gx is normal. Show

(i) Gy “ Gx for every y P X.

(ii) G{Gx acts regularly14 on X.

(b) Let GñX be primitive and G nilpotent. Then |X| is prime.

B.2 Sheet 2
[Tutorial 03, 2024-04-30]

B.2.1 Exercise 1

Let G be a group considered as a structure in a language L Ě Lgroup.

(a) Let φpx, y1, . . . , ysq be an L-formula such that for any g P Gs, Hg :“ φpG, gq
is a finite index subgroup of G.

Then the following are equivalent:

(i) The index is uniformly bounded, i.e. Dn P N. @g P Gs. |G : Hg| ă n.

(ii) For every model G1 of ThpGq and every g P pG1qs, Hg “ φpG1, gq is a
finite index subgroup of G1.

(b) Suppose that for every G1 ” G and g P G1, the conjugacy class gG
1

is finite.
Then |gG

1

| is uniformly bounded.

13We say that G is a group of exponent p iff gp “ 1 for all g P G.
14A group action is called regular iff g ÞÑ gx is bijective for all x.
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B.2.2 Exercise 2

Let G be an infinite stable group. Show that Gzt1u does not form a single
conjugacy class.

B.2.3 Exercise 3

Let G be an NIP group in a language L. Let φpx, y1, . . . , ysq be an L-formula
such that Hg :“ φpG, gq is a subgroup for every g P Gs. Let k P N and let

Xk :“ tg P Gs : |G : Hg| ď ku Ď Gs.

Show that
Ş

gPXk
Hg is a finite index subgroup of G which is H-definable.

B.2.4 Exercise 4

Let G be a stable group. Then any abelian subgroup of G is contained in a
definable abelian subgroup of G.

B.3 Sheet 3
[Tutorial 04, ]

B.3.1 Exercise 1 TODO

B.3.2 Exercise 2

Let p be prime and V and ℵ0-dimensional Fp-vector space. Then pV,`q is
ω-categorical.

B.3.3 Exercise 3

Let M be a countable infinite ω-categorical L-structure and let n P N.

(a) There are only finitely many possibilities for the type of an n-tuple from
M.

(b) For each such type, the set of n-tuples form M with that type (i.e. the
”-equivalence class) is defined by an L-formula.

(c) Two n-tuples a, b PMn have the same type iff they are in the same AutpMq-
orbit.

(d) The AutpMq-invariant subsets of Mn are precisely the subsets definable by
L-sentences.

B.3.4 Exercise 4 TODO

B.4 Sheet 4
[Tutorial 05, 2024-05-14]
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B.4.1 Exercise 1

No infinite field is ω-categorical.

B.4.2 Exercise 2

Let M be a structure. Let X be a definable set and Yi Ď X definable subsets for
i P ω with MRpYiq ě α but MRpYi X Yjq ă α for i ‰ j. Then MRpXq ě α` 1.

B.4.3 Exercise 3

Let M be a structure, k P N, X a definable set and Yi Ď X definable sub-
sets for i P ω with MRpYiq ě α. Suppose that for any I Ď ω with |I| “ k,
MR p

Ş

iPI Yiq ă α. Show MRpXq ě α` 1.

B.5 Sheet 5
[Tutorial 06, 2024-05-28]

B.5.1 Exercise 1

Let M be a sufficiently saturated structure (as in the definition of MR). Let
X,Y be non-empty definable sets and let f : X Ñ Y be a definable function
(i.e. the graph of f is a definable set).

(a) Suppose that f is surjective. Show that MRpXq ě MRpY q.

Furthermore, show for any n P N: If MRpf´1pbqq ě n for every b P Y and
MRpY q ă ω, then MRpXq ě MRpY q ` n.

(b) Suppose that f´1pbq is finite for every b P Y . Show that MRpXq ď MRpY q.

B.5.2 Exercise 2

Let pG,`, . . .q be a totally transcendental connected15 abelian group, written
additively. Let n P N and suppose that the n-torsion subgroup Grns “ tx P G :
nx “ 0u is finite. Show that G is n-divisible, i.e. nG “ tnx : x P Gu “ G.

B.5.3 Exercise 3

Let T be an L-theory and let φpx, yq be an L-formula.

(a) Suppose that φ has the order property. Let pI,ăq be a linear order. Show
that in some M |ù T there are ai PM|x|, bi PM|y| such that M |ù φpai, bjq
iff i ă j.

(b) Suppose that φ has the binary tree property. Let µ be a cardinal. Show
that in some M |ù T there are aσ for σ P 2µ and bs for s P 2ăµ such that
M |ù φpaσ, bsq iff s Ď σ.

15i.e. it has no proper definable subgroup of finite index
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B.5.4 Exercise 4

Any boolean combination of stable formulas φipx, yq is stable.

B.6 Sheet 6
[Tutorial 07, 2024-06-04]

For subsets A,B,C of a structure put A |
!

B

C iff a |
!

B

C for any finite a P Aăω,

i.e. for any such tuple MRpa{BCq “ MRpa{Bq

B.6.1 Exercise 1

The following properties of independence hold for all subsets A,B,C ĎM and
finite tuples a PMăω in a model M of a totally transcendental theory:

(a) (Monotonicity and transitivity) a |
!

A

BC ðñ

ˆ

a |
!

A

B ^ a |
!

AB

C

˙

.

(b) (Local character) DB0

finite
Ď B such that a |

!

B0

B.

(c) (Finite character) A |
!

B

C iff A |
!

B

c for every c P Căω.

(d) (Symmetry) A |
!

B

C ðñ C |
!

B

A.

(e) (Existence) Suppose M is |BC|`-saturated. Then there exists a1 P M|a|

with tppa1{Bq “ tppa{Bq and a1 |
!

B

C.

(f) (Algebraicity) a |
!

B

a ðñ MRpa{Bq “ 0.

B.6.2 Exercise 2

Let C be a group of finite Morley rank. Suppose H1, H2 Ĳ G are definable
normal subgroups with H1 X H2 “ teu. Show that H “ xH1, H2y is definable
and MRpHq ě MRpH1q `MRpH2q.

B.6.3 Exercise 3

Let G be a group of finite Morley Rank. The definable socle S of G is the
subgroup generated by the minimal definable non-trivial normal subgroups of
G. Suppose that G has no non-trivial finite normal subgroup. Show that S is
definable.

B.7 Sheet 7
[Tutorial 08, 2024-06-11]
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Let Ttree be the theory of non-empty cycle-free graphs in which every vertex has
infinite valency. We consider the models in the language with binary predicates
dn, where dnpx, yq holds iff n is the graph distance between x and y.

B.7.1 Exercise 1

(a) Any countable model M of Ttree is homogeneous, i.e. if a, b P M have
the same quantifier-free type over a finite set A Ď M, then there is an
automorphism of M fixing A pointwise and taking a to b.

(b) Ttree has quantifier elimination.

(c) A countable model of Ttree is saturated iff it has infinitely many connected
components.

B.7.2 Exercise 2

(not that important)

For subsets A,B,C of a model of Ttree, write A |!
C

B if any path from any element

of A to any element of B includes some element of the convex hull of C.

(a) Let xy denote the unique shortest path from x to y.

• (Monotonicity and transitivity) a |
!

A

BC ðñ

ˆ

a |
!

A

B ^ a |
!

AB

C

˙

.

• (Finite character) A |
!

B

C iff A |
!

B

c for every c P Căω.

• (Symmetry) A |
!

B

C ðñ C |
!

B

A.

• (Existence) Suppose M is |BC|`-saturated. Then there exists a1 P

M|a| with tppa1{Bq “ tppa{Bq and a1 |
!

B

C.

(b) (Local character) For any finite tuple a, DB0

finite
Ď convpBq such that a |

!

B0

B.

(c) (Stationarity over arbitrary sets) If a |
!

B

C and a1 |
!

B

C and tppa{Bq “ tppa1{Bq,

then tppa{BCq “ tppa1{BCq.

B.7.3 Exercise 3

Let G be a group of finite Morley rank and letX be an infinite16 indecomposable
subset. Show that the normal subgroup xxXyy generated by X (the minimal
normal subgroup containing X) is definable.

16this was wrong on the sheet
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B.7.4 Exercise 4

Let K be a field of finite Morley rank, and let X Ď K be an infinite definable
subset. Show that there exists a finite sequence of elements a1, . . . , an P K such
that K “

ř

i aiX “ t
ř

i aixi|x1, . . . , xn P Xu.

B.8 Sheet 8
[Tutorial 09, 2024-06-18]

B.8.1 Exercise 1

Let M be an ω-saturated model of a totally transcendental theory. Let M˚ ą

M be an elementary extension, a, b P pM˚qăω and suppose a |
!

M

b. Let φpx, yq

be a formula and suppose M˚ |ù φpa,mq.

Then there exists m PM|b| such that M˚ |ù φpa,mq.

B.8.2 Exercise 2

Let G be a connected, ω-saturated, totally transcendental group. Let φpxq be
a generic17 LpGq-formula in one variable, G˚ ą G an elementary extension and
a P G˚.

Then G˚ |ù φpg ¨ aq for some g P G. We need that
every generic
formula is an
element of
some generic
type.

B.8.3 Exercise 3

Let G be an ω-saturated, totally transcendental group and X Ď G definable.
Then the following are equivalent:

(a) MRpXq “ MRpGq.

(b) Dg1, . . . , gn P G.
Ť

i giX “ G.

B.8.4 Exercise 4

Let K be a division ring.

(a) Suppose that the center ZpKq if K is algebraically closed as a field and that
dimZpKq K ă 8.

Then ZpKq “ K.

(b) Conclude from this and Macintyre’s Theorem (4.1) that any division ring
of finite Morley rank with infinite centre is an algebraically closed field.

B.9 Sheet 9
[Tutorial 10, 2024-06-25]

17i.e. MRpφq “ MRpGq
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B.9.1 Exercise 1

(a) Let H be a connected group of finite Morley rank acting definably and
transitively on a finite set S ‰ H. Then |S| “ 1.

(b) Let G be a group of finite Morley rank, H a connected definable subgroup
and g P G.

(i) gH is indecomposable.

(ii) The subgroup generated by rg,Hs is definable.

B.9.2 Exercise 2

Let G be a group of finite Morley rank and let H and K be definable subgroups
of G. Suppose that H is infinite, K-normalized (i.e. Hk “ H for k P K) and
K-minimal for the conjugation action of K. Show that H is connected.

B.9.3 Exercise 3

(a) Any totally transcendental integral domain is a field.

(b) Let K be a field of finite Morley rank. Show that K does not contain a
proper, infinite, definable subring.

(c) Let K be a field of finite Morley rank in which a proper, infinite subgroup
T of the multiplicative group is definable.18

(i) Suppose that T ň K˚ is infinite, definable and connected. Then T is
indecomposable as a definable subset of the additive group.

(ii) Show that the additive subgroup generated by T is the whole of K.

B.9.4 Exercise 4

Let G be a connected group of Morley rank n P ω. Show that if G is solvable
(nilpotent), then it is n-step solvable (nilpotent).

18Such fields are called bad fields.
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G-Minimal, 32
G1, 38
Grns, 39
rG,Gs, 38
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ω-Categorical, 14
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Ann, 34
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φ-Types, 17
n-Transitive , 38
p, 37
p-Sylow subgroup, 37
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(VP), 31

Abelian-by-finite, 12
Algebraic, 41
Almost strongly minimal, 31
Annihilator, 34
Artin-Schreier-extension, 27
Ascending central series, 42

Bad field, 49
Binary tree of consistent formulae,

10
Binary tree property, 18
Boundedly simple, 30

Center, 5, 37
Centralized, 37
Centralizer, 5, 37
Centralizer connected, 11
Centralizes, 37
Characterising formula, 21
Characteristic subgroup, 42
Commutator, 38
Commutator subgroup, 31
Connected component, 11, 15

Definable, 5, 17, 18

Definable group of automorphisms,
26

Definable socle, 46
Definably semi-simple, 35
Definably simple, 30
Derived group, 31
Derived subgroup, 38
Disjoint, 17
Divisible, 11

Elementarily equivalent, 14
Exponent, 37, 43

Faithful, 38
Field

perfect, 41
Field extension

degree, 41
Galois, 41
normal, 41
separable, 41

Finitely satisfiable, 40
Fixpoint, 38
Free, 38

Generic, 17, 24
Group action, 38

definable, 7

Homogeneous, 40

Indecomposable, 25
Independence property, 8
Independent, 22
Index, 38
Interpretable, 13
IP, 8
Irreducible components, 25
Irreducible representation, 32

Kummer-extension, 27

Left-cancellation, 6
Linear algebraic group, 39
Locally finite, 14
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Minimal, 5
Minimal’, 36
Monster model, 40
Morley degree, 17
Morley rank, 16

Nilpotent, 39, 42
NIP, 8
Non-forking extension, 21
Normalized, 11, 37
Normalizer, 37
Normalizes, 37

Orbit, 5, 38
Orbit equation, 5
Order, 37
Order property, 18

Period, 37
Period length, 37
Periodic group, 37
Pointwise stabilizer of A, 14
Primitive, 43

Quaternion group, 39

Regular, 38, 43

Right neutral element, 6

Satisfiable, 40
Saturated, 40
Semigroup, 6
Sharply n-transitive, 38
Simple, 37
Solvable, 38
Sort, 13
Stabilizer, 5, 38
Stable, 6, 18
Stationary, 22
Strongly minimal, 31
Sylow-p-subgroup, 42

Torsion group, 37
Totally transcendental, 10
Transitive , 38
Trivial Chain Condition, 8

Uniformly definable, 8
Uniformly locally finite, 14
Unitriangular, 39

Vaughtian pair, 31
Virtual elements, 13
Virtually abelian, 12
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