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These are my notes on the lecture Logic II taught by Ralf Schindler in winter
23/24 at the University Münster.

Many thanks to Fakhar Ahmad, Mirko Bartsch and Shiguma Kawamoto
for providing notes for lectures I was unable attend!
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lecturenotes@jrpie.de.

Warning 0.1. This is not an official script.

These notes follow the way the material was presented in the lecture rather
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marked with :.
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[Lecture 01, 2023-10-16]

Literature

• Schindler, Set theory

• K. Kunen

• T. Jech

• A. Kanamori, The higher infinite

Outline

• Set theory

– Naive set theory

– ZFC

– Ordinals and Cardinals

– Models of set theory (in particular forcing)

– Independence of CH.

1 Naive set theory

Definition 1.1. Let A ‰ H, B be arbitrary sets. We write A ď B (A is
not bigger than B) iff there is an injection f : A ãÑ B.

Lemma 1.2. If A ď B, then there is a surjection g : B ↠ A.

Proof. Fix f : A ãÑ B. If f is also surjective, then f´1 : B Ñ A is also a
bijection. Otherwise define g by choosing an arbitrary x0 P B and let

gpyq :“

#

x : fpxq “ y,

x0 : if there is no such x.
.

Lemma 1.3. If there is a surjection f : A↠ B, then B ď A.

Proof. For every x P B choose one of its preimages under f . This is basically
equivalent to AC.
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Definition 1.4. For sets A, B write A ă B iff A ď B ^B ď A.

Theorem 1.5 (Cantor). N ă R.

Proof (Cantor’s original proof). Clearly N ď R. Take some function f : NÑ R

Define a sequence pran, bns, n P Nq of nonempty closed nested intervals, i.e. an ď
an`1 ă bn`1 ď bn as follows: Set a0 :“ 0, b0 :“ 1, and an`1, bn`1 such that
xn R ran`1, bn`1s. Then

Ş

nPNran, bns ‰ H since R is complete. Thus f is not
surjective.

Notation 1.5.1. For a set A, PpAq denotes the power set of A, i.e. the
set of all subsets of A.

Theorem 1.6. For all sets A, A ă PpAq.

Proof. Clearly A ď PpAq since A Q a ÞÑ tau P PpAq is an injection.

Let f : A Ñ PpAq, we want to show that this is not surjective. Let c :“ tx P
A|x R fpxqu P PpAq. Suppose that fpx0q “ c. Then both x0 P c and x0 R c lead
to a contradiction.

Definition 1.7. For sets A, B write A „ B for A ď B and B ď A.

Theorem 1.8 (Schröder-Bernstein). Let A, B be any sets. If A „ B,
there is a bijection h : AÑ B.

Proof. Let f : A ãÑ B and g : B ãÑ A be injective. We need to define a bijection
h : A Ñ B. For each x P A we define Npxq P N Y t8u and the maximal
“preimage sequence” pxn : n ă Npxqq as follows: x0 :“ x, if n ` 1 ă N and n
is even, then xn :“ gpxn`1q, if it is odd, xn :“ fpxn`1q and either N “ 8 or
xN´1 has no preimage under f if N ´ 1 is even, resp. g if N ´ 1 is odd.

Similarly for each y P B an M “ Mpyq P N Y t8u and the maximal preimage
sequence pyn : n ăMq can be defined.

Let Aodd :“ tx P A : Npxq is an odd natural numberu, Aeven :“ tx P A :
Npxq is an even natural numberu, A8 :“ tx P A : Npxq “ 8u and similarly for
B.
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Now define

h : A ÝÑ B

x ÞÝÑ

#

fpxq : x P Aodd YA8,

g´1pxq : x P Aeven.

It is clear that this is bijective. missing
picture
fpAodd

q Ď

Beven,
fpA8

q “ B8

.

Definition 1.9. The continuum hypothesis (CH) says that there is no
set A such that N ă A ă R, i.e. every uncountable subset A Ď R is in
bijection with R.

CH is equivalent to the statement that there is no set A Ď R which is
uncountable (N ă A) and there is no bijection AØ R.

What we’ll do next: Define open and closed subsets of R. Show CH for open
and closed sets.

[Lecture 02, 2023-10-19]

Definition 1.10. A set O Ď R is called open in R iff it is the union of a
set of open intervals.

A set A Ď R is called closed in R iff it is the complement of an open set.

Remark 1.10.2. • If H ‰ O
open
Ď R then O „ R.

• If O Ď R is open, then O is the union of open intervals with rational
endpoints, since Q is dense.

Remark: 1.10.3. tO Ď Ru „ 2ℵ0 ă PpRq.

Definition 1.11. We call x P R an accumulation point of A iff for all
a ă x ă b there is some y P A, y P pa, bq, y ‰ x. We write A1 for the set of
all accumulation points of A.

Example 1.12. t 1
n`1 |n P Nu

1 “ t0u.

Lemma 1.13. A set A Ď R is closed iff A1 Ď A.

Proof of Lemma 1.13. “ ùñ ” Let A be closed. Suppose that x P A1zA. Then
there exists pa, bq Q x disjoint from A. Hence x R A1 
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“ ðù ” Suppose A1 Ď A.

Claim 1.13.1. A Ď R is closed iff all Cauchy sequences in A converge in A.

Subproof. Let A be closed and xxn : n P ωy a Cauchy sequence in A. Suppose
that x “ lim

nÑ8
xn R A. Then there is pa, bq Q x disjoint from A. However

xn P pa, bq for almost all n P ω  

On the other hand let A not be closed. Then there exists a witness x P RzA
such that A X pa, bq ‰ H for all pa, bq Q x. In particular, we may pick xn P
px´ 1

n`1 , x`
1

n`1 q XA for all n ă ω. ■

Now if A1 Ď A and A were not closed, there would be some Cauchy-sequence
pxnq in A such that lim

nÑ8
xn R A. But then x P A1 Ď A .

Definition 1.14. P Ď R (or, more generally, a subset of any topological
space) is called perfect iff P ‰ H and P “ P 1.

Example: 1.14.4. Note that being perfect depends on the surrounding
topological space: For example, r0, 1s XQ is perfect as a subset of Q, but
not perfect as a subset of R.

We want to prove two things:

• If P is perfect, then P „ R.

• If A is closed and uncountable then A has a perfect subset. In particular
A „ R.

Lemma 1.15. Let P Ď R be perfect. Then P „ R.

Proof. It suffices to find an injection f : R ãÑ P . We have t0, 1uω
loomoon

infinite 0-1-sequences

„ R,

hence it suffices to construct f : t0, 1uω ãÑ P .

In order to do that, we are going to construct some g : t0, 1uăω
looomooon

finite 0-1-sequences

Ñ P

with certain properties by recursion on the length of s P t0, 1uăω.

Let gpHq be any point in P . Suppose that gpsq P P has been chosen for all s of
lengthď n. For each s P t0, 1un pick gpsq P pas, bsq such that pas, bsqXpas1 , bs1q “

H for all s, s1 of length n, bs ´ as ď
1
n3 and pas|n´1

, bs|n´1
q Ď pas, bsq.

For each such s pick xs P pas, bsq X P with xs ‰ fpsq. This is possible since
P Ď P 1. Now set gps"0q :“ gpsq and gps"1q :“ gpxsq. This finishes the
construction.
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If t P t0, 1uω, then pgpt|nq, n ă ωq is a Cauchy sequence.

By P 1 Ď P we get that this sequence converges to a point in P . Define fptq to
be this point.

If t ‰ t1 P t0, 1uω, then there is some n such that t|n ‰ t1|n, hence fptq P
rat|n , bt|ns and fpt1q P rat1|n , bt1|ns which are disjoint. Thus fptq ‰ fpt1q, i.e. f is
injective.

[Lecture 03, 2023-10–23]

Theorem 1.16 (Cantor-Bendixson). If A Ď R is closed, it is either at most
countable or else A contains a perfect set.

Corollary 1.17. If A Ď R is closed, then either A ď N or A „ R.

Fact 1.17.5. A1 “ tx P R|@a ă x ă b. pa, bq XA is at least countableu.

Proof. Ě is clear. For Ď, fix a ă x ă b and let us define pyn : n P ωq as
well as ppan, bnq : n P ωq. Set a0 :“ a, b0 :“ b. Having defined pan, bnq, pick
x ‰ yn P A X pan, bnq, Then pick an ă an`1 ă x ă bn`1 ă bn such that
yn R pan`1, bn`1q. Clearly yn ‰ yn`1, hence tyn : n P Nu is a countable subset
of AX pa, bq.

Definition 1.18. Let A Ď R. We say that x P R is a condensation point
of A iff for all a ă x ă b, pa, bq XA is uncountable.

By the fact we just proved, all condensation points are accumulation points.

Proof of Theorem 1.16. Fix A Ď R closed. We want to see that A is at most
countable or there is some perfect P Ď A. Let

P :“ tx P R|x is a condensation point of Au.

Since A is closed, P Ď A.

Claim 1.16.1. AzP is at most countable.

Subproof. For each x P AzP , there is ax ă x ă bx such that pax, bxq X A is at
most countable. Since Q is dense in R, we may assume that ax, bx P Q.

Then

AzP “
ď

xPAzP

pax, bxq XA.
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Ď holds by the choice of ax and bx. For Ě let y be an element of the RHS. Then
y P pax0 , bx0q XA for some x0. As pax0 , bx0q XA is at most countable, y R P .

Now we have that AzP is a union of at most countably many sets, each of which
is at most countable. ■

Claim 1.16.2. If P ‰ H, the P is perfect.

Subproof. P ‰ H: ✓

P Ď P 1:

Let x P P . Let a ă x ă b. We need to show that there is some y P pa, bqXP ztxu.
Suppose that for all y P pa, bqztxu there is some ay ă y ă by with pay, byq X A
being at most countable. Wlog. ay, by P Q. Then

pa, bq XA “ txu Y
ď

yPpa,bq
y‰x

rpay, byq XAs.

But then pa, bq XA is at most countable contradicting x P P .

P 1 Ď P (i.e. P is closed): Let x P P 1. Then for a ă x ă b the set pa, bq X P
always has a member y such that y ‰ x. Since y P P , we get that pa, bq X A in
uncountable, hence x P P . ■

But now

A “

perfect, unless “ H
hkkikkj

P YpAzP q
loomoon

at most countable

.

Alternative
proof of
Cantor-
Bendixson

[Lecture 04, ]

2 ZFC

ZFC stands for

• Zermelo’s axioms (1905),

• Fraenkel’s axioms,

• the Axiom of Choice (2.9).

Notation 2.0.6. We write x Ď y as a shorthand for @z. pz P x ùñ z P yq.

We write x “ H for ␣Dy.y P x and xX y “ H for ␣Dz. pz P x^ z P yq.
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We use x “ ty, zu for

y P x^ z P x^ @a. pa P x ùñ a “ y _ a “ zq.

We write z “ xX y for

@u. ppu P zq ùñ u P x^ u P yq,

z “ xY y for
@u. ppu P zq ðñ pu P x_ u P yqq,

z “
Ş

x for

@u. ppu P zq ðñ p@v. pv P x ùñ u P vqqq,

z “
Ť

x for
@u. ppu P zq ðñ Dv. pv P x^ u P vqq

and z “ xzy for

@u. ppu P zq ðñ pu P x^ u R yqq.

ZFC consists of the following axioms:

Axiom 2.1 (Extensionality).

@x. @y. px “ y ðñ @z. pz P x ðñ z P yqq.

Equivalent statements using Ď:

@x. @y. px “ y ðñ px Ď y ^ y Ď xqq.

Axiom 2.2 (Foundation). Every set has an P-minimal member:

@x. pDa. pa P xq ùñ Dy. y P x^␣Dz. pz P y ^ z P xqq .

Shorter:
@x. px ‰ H ùñ Dy P x. xX y “ Hq.

Axiom 2.3 (Pairing).

@x. @y. Dz. pz “ tx, yuq.

Remark 2.3.7. Together with the axiom of pairing, the axiom of founda-
tion implies that there can not be a set x such that x P x: Suppose that
x P x. Then x is the only element of txu, but xX txu ‰ H.
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A similar argument shows that chains like x0 P x1 P x2 P x0 are ruled out
as well.

Axiom 2.4 (Union).

@x. Dy. py “
ď

xq.

Axiom 2.5 (Power Set). We write x “ Ppyq for @z. pz P x ðñ z Ď xq.
The power set axiom states

@x. Dy. y “ Ppxq.

Axiom 2.6 (Infinity). A set x is called inductive, iff H P x ^ @y. py P
x ùñ y Y tyu P xq.

The axiom of infinity says that there exists and inductive set.

Axiom Schema 2.7 (Separation). Let φ be some fixed fist order formula
in LP with free variables x, v1, . . . , vp. Let b be a variable that is not free
in φ. Then (Aus)φ states

@v1. @vp. @a. Db. @x. px P b ùñ x P a^ φpx, v1, vpqq

Let us write b “ tx P a|φpxqu for @x. px P b ðñ x P a ^ fpxqq. Then
(Aus) can be formulated as

@a. Db. pb “ tx P a|φpxquq.

Remark 2.7.8. (Aus) proves that

• @a. @b. Dc. pc “ aX bq,

• @a. @b. Dc. pc “ azbq,

• @a. Db. pb “
Ş

aq.

Axiom Schema 2.8 (Replacement (Fraenkel)). Let φ be some LP for-
mula with free variables x, y. Then

@v1 . . .@vp.

rp@xD!y. φpx, y, vqq Ñ @a. Db. @y. py P bØ Dxpx P a^ φpx, y, vqqs

Axiom 2.9 (Choice). Every family of pairwise disjoint non-empty sets
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has a choice set:

@x. p

pp@y P x. y ‰ Hq ^ p@y P x. @y1 P x. py ‰ y1 ùñ y X y1 “ Hqqq

ùñ Dz. @y P x. Du. pz X y “ tuuq

q

[Lecture 05, 2023-10-30]

Definition 2.10. Zermelo:

Z :“ (Ext)` (Fund)` (Pair)` (Union)` (Pow)` (Inf)` (Aus)φ

Zermelo and Fraenkl:
ZF :“ Z ` (Rep)φ

ZFC :“ ZF`(C)

Variants:

ZFC´ :“ ZFC z(Pow).

ZFC´8 :“ ZFC z(Inf)

Definition 2.11. For sets x, y we write px, yq for ttxu, tx, yuu.

Remark 2.11.9. Note that px, yq “ pa, bq ðñ x “ a^y “ b. ZFC proves
that px, yq always exists.

Definition 2.12. For sets x1, . . . , xn`1 we write

px1, . . . , xn`1q :“ ppx1, . . . , xnq, xn`1q

where we assume that px1, . . . , xnq is already defined.

Definition 2.13. The cartesian product a ˆ b of two sets a and b is
defined to be aˆ b :“ tpx, yq|x P a^ y P bu.

Fact 2.13.10. aˆ b exists.

Proof. Use (Aus) over PpPpaY bqq.
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Definition 2.14. For a1, . . . , an we define

a1 ˆ . . .ˆ an :“ pa1 ˆ . . .ˆ an´1q ˆ an.

recursively.

For a “ a1 “ . . . “ an, we write an for a1 ˆ . . .ˆ an.

Remark 2.14.11. The fact that ZFC can be used to encode all of math-
ematics, should not be overestimated. It is clumsy to do it that way.
Nobody cares anymore. There are better foundations. What makes ZFC
special is that it allows to investigate infinity.

Definition 2.15. An n-ary relation R is a subset of a1 ˆ . . . ˆ an for
some sets a1, . . . , an.

For a binary relation R (i.e. n “ 2) we define

dompRq :“ tx|Dy. px, yq P Ru

and
ranpRq :“ ty|Dx. px, yq P Ru.

Definition 2.16. A binary relation R is a function iff

@x P dompRq. Dy. @y1. py1 “ y ðñ xRy1q.

A function f is a function from d to b iff d “ dompfq and ranpfq Ď b.

We write f : dÑ b. The set of all function from d to b is denoted by db or
bd.

Fact 2.16.12. Given sets d, b then db exists.

Proof. Apply again (Aus) over Ppdˆ bq.

Definition 2.17. We all know how injective, surjective, bijective, . . .
are defined.

Notation 2.17.13. For f : dÑ b and a Ď d we write f2a :“ tfpxq : x P au
(the pointwise image of a under f).

(In other mathematical fields, this is sometimes denoted as fpaq. We don’t
do that here.)
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Definition 2.18. A binary relation ď on a set a is a partial order iff ď
is

• reflexive, i.e. x ď x,

• antisymmetric (sometimes this is also called symmetric), i.e. x ď
y ^ x ď y ùñ x “ y, and

• transitive, i.e. x ď y ^ y ď z ùñ x ď z.

If additionally @x, y. px ď y_ y ď xq, ď is called a linear order (or total
order).

Definition 2.19. Let pa,ďq be a partial order. Let b Ď a. We say that x
is a maximal element of b iff

x P b^␣Dy P b. py ą xq.

We say that x is the maximum of b, x “ maxpbq, iff

x P b^ @y P b. y ď x.

In a similar way we define minimal elements and the minimum of b.
We say that x is an upper bound of b if @y P b. px ě yq. Similarly lower
bounds are defined.

We say x “ suppbq if x is the minimum of the set of upper bounds of b.
(This does not necessarily exist.) Similarly infpbq is defined.

Remark: 2.19.14. Note that in a partial order, a maximal element is not
necessarily a maximum. However for linear orders these notions coincide.

Definition 2.20. Let pa,ďaq and pb,ďbq be two partial orders. Then a
function f : aÑ b is called order-preserving iff

@x, y P a. px ďa yq ðñ fpxq ďb fpyq.

An order-preserving bijection is called an isomorphism. We write pa,ďa

q – pb,ďbq if they are isomorphic.

Definition 2.21. Let pa,ďq be a partial order. Then pa,ďq is a well-
order, iff

@b Ď a. b ‰ H ùñ minpbq exists.
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Fact 2.21.15. Let pa,ďq be a well-order, then pa,ďq is total.

Proof. For x, y P a consider tx, yu. Then minptx, yuq ď x, y.

Lemma 2.22. Let pa,ďq be a well-order. Let f : a Ñ a be an order-
preserving map. Then fpxq ě x for all x P a.

Proof. Consider x0 :“ minptx P a|fpxq ă xuq.

Lemma 2.23. If pa,ďq is a well-order and f : pa,ďq Ø pa,ďq is an iso-
morphism, then f is the identity.

Proof. By the last lemma, we know that fpxq ě x and f´1pxq ě x.

Lemma 2.24. Suppose pa,ďaq and pb,ďbq are well-orderings such that
pa,ďaq – pb,ďbq. Then there is a unique isomorphism f : aÑ b.

Proof. Let f, g be isomorphisms and consider g´1 ˝ f : pa,ďaq
–
ÝÑ pa,ďaq. We

have already shown that g´1 ˝ f must be the identity, so g “ f .

Definition 2.25. If pa,ďq is a partial order and if x P a, then write pa,ďq|x
for pty P a|y ď xu,ď Xty P a|y ď xu2q.

Abuse of Notation: 2.25.16. For a partial order pa,ďaq we sometimes
just write a.

Theorem 2.26. Let pa,ďaq and pb,ďbq be well-orders. Then exactly one
of the following three holds:

(i) a – b,

(ii) Dx P b. a – b|x,

(iii) Dx P a. a|x – b.

Proof. Let us define a relation r Ď aˆ b as follows: Let px, yq P r iff a|x – b|y.
By the previous lemma, for each x P a, there is at most one y P b such that
px, yq P r and vice versa, so r is an injective function from a subset of a to a
subset of b.

Claim 1. r is order-preserving:
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Subproof. If x ăa x1, then consider the unique y1 such that a|x1 – b|y1 . The
isomorphism restricts to a|x – b|y for some y ăb y

1. ■

Claim 2. domprq “ a_ ranprq “ b.

Subproof. Suppose that domprq Ĺ a and ranprq Ĺ b.

Let x :“ minpazdomprqq and y :“ minpbz ranprqq. Then pa,ďaq|x – pb,ďbq|y.
But now px, yq P r which is a contradiction. ■

[Lecture 06, 2023-11-06]

Theorem 2.27 (Zorn). Let pa,ďq be a partial order with a ‰ H. Assume
that for all b Ď a with b ‰ H and b linearly ordered, b has an upper bound.
Then a has a maximal element.

Proof of Theorem 2.27. Fix pa,ďq as in the hypothesis. Let A :“ ttpb, xq : x P
bu : b Ď a, b ‰ Hu. Note that A is a set (use separation on PpPpaq ˆ

Ť

Ppaqq).
Note further that if b1 ‰ b2, then tpb1, xq : x P b1u and tpb2, xq : x P b2u are
disjoint. Hence the Axiom of Choice (2.9) gives us a choice function f on A,
i.e. @b P PpaqztHu. pfpbq P bq.

Now define a binary relation ď˚: We let W denote the set of all well-orderings
ď1 of subsets b Ď a, such that for all u, v P b if u ď1 v then u ď v and for all
u P b and

Bď
1

u :“ tw P a : w is an ď-upper bound of tv P b : v ď1 uuu

then Bď
1

u ‰ H and fpBď
1

u q “ u.

Claim 2.27.1. If ď1,ď2PW , then ď1Ďď2 or ď2Ďď1.

Subproof. Let ď1P W be a well-ordering of b Ď a and let ď2P W be a well-
ordering on c Ď a. We know that wlog. pb,ď1q – pc,ď2q or Dv P c. pb,ď1q –

pc,ď2q|v. Let g : bÑ c or g : bÑ c|v be a witness. We want to show that g “ id.
Suppose that g ‰ id. Let u0 P b be ď1-minimal such that gpu0q ‰ u0. Writing
g :“ g|twPb:wă1u0u, then pb,ď1q|u0

– pc,ď2q|gpu0q and g is in fact the identity on
tw P b|w ď1 u0u but this means tw P b|w ă1 u0u “ tw P c|w ă2 gpu0qu and

Bď
1

u0
“ Bď

2

gpu0q
‰ H. Then u0 “ fpBď

1

u0
q “ fpBď

2

gpu0q
q “ gpu0q. Thus g is the

identity. ■

Given the claim, we can now see that
Ť

W is a well-order ď˚˚ of a. Let
B “ tw P a|w is a ď-upper bound of bu (this is not empty by the hypothesis).
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Suppose that b does not have a maximum. Then B X b “ H. Now fpBq “ u0

and let
ď˚˚“ď˚ Ytpu, u0q|u P bu Y tpu0, u0qu.

Then B “ Bď
˚˚

u0
. So ď˚˚PW , but now u0 P b. So b must have a maximum. Why does

this prove the
lemma?

Remark 2.27.17. Over ZF the Axiom of Choice (2.9) and Zorn’s Lemma
(2.27) are equivalent.

Corollary 2.28 (Hausdorff’s maximality principle). Let a ‰ H. Let A Ď
Ppaq be such that @B Ď A, if x Ď y _ y Ď x for all x, y P B, then there is
some z P A such that x Ď z for all x P B. Then A contains a Ď-maximal
element.

Remark 2.28.18 (Cultural enrichment). Other assertions which are equiv-
alent to the Axiom of Choice (2.9):

• Every infinite family of non-empty sets xai : i P Iy has non-empty
product, i.e.

ź

iPI

ai ‰ H.

• Every set can be well-ordered.
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2.1 The Ordinals

Goal. We want to define nice representatives of the equivalence classes of well-
orders.

Recall that (Inf) states the existence of an inductive set x. We can hence form
the smallest inductive set

ω :“
č

tx : x is inductiveu

Note that ω exists, as it is a subset of the inductive set given by (Inf). We call
ω the set of natural numbers.

Notation 2.28.19. We write 0 for H, and y ` 1 for y Y tyu.

With this notation the (Inf) is equivalent to

Dx0. p0 P x0 ^ @n. pn P x0 ùñ n` 1 P x0qq.

We have the following principle of induction:

Lemma 2.29. Let A Ď ω such that 0 P A and for each y P A, we have
that y ` 1 P A. Then A “ ω.

Proof. Clearly A is an inductive set, hence ω Ď A.

Definition 2.30. A set x is transitive, iff @y P x. y Ď x.

Definition 2.31. A set x is called an ordinal (or ordinal number) iff x
is transitive and for all y, z P x, we have that y “ z, y P z or y Q z.

Clearly, the P-relation is a well-order on an ordinal x.

Remark 2.31.20. This definition is due to John von Neumann.

Lemma 2.32. Each natural number (i.e. element of ω) is an ordinal.

Proof. We use Induction (2.29). Clearly H is an ordinal. Now let α be an
ordinal. We need to show that α ` 1 is an ordinal. It is transitive, since α is
transitive and α Ď pα` 1q.

Let x, y P pα` 1q. If x, y P α, we know that x “ y _ x P y _ x Q y since α is an
ordinal. Suppose x “ α. Then either y “ x or y P α “ x.
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Lemma 2.33. ω is an ordinal.

Proof. ω is transitive:

Let y P ω. Let us show by Induction (2.29), that y Ď ω. For y “ H this is clear.

Suppose that y P ω with y Ď ω. But now tyu Ď ω, so y ` 1 “ y Y tyu Ď ω.

ω is well-ordered by P:

We do a nested induction. First let

φpy, zq :“ y P z _ y Q z _ y “ z.

We want to show:

(a) φp0, 0q

(b) @z P ω. φp0, zq ùñ φp0, z ` 1q.

(c) @y P ω. pp@z1 P ω. φpy, z1qq ùñ p@z P ω. φpy ` 1, zqqq.

(a) and (b) are trivial. Fix y P ω and suppose that @z1 P ω. φpy, z1q. We want
to show that @z P ω. φpy ` 1, zq.

We already know that @z P ω. φp0, zq holds by (b). In particular, φp0, y ` 1q
holds, so φpy` 1, 0q is true, since φ is symmetric. Now if φpy` 1, zq is true, we
want to show φpy ` 1, z ` 1q is true as well. We have

py ` 1 P zq _ py ` 1 “ zq _ py ` 1 Q zq

by assumption.

• If y ` 1 P z _ y ` 1 “ z, then clearly y ` 1 P z ` 1.

• If y ` 1 Q z, then either z “ y or z P y.

– In the first case, z ` 1 “ y ` 1.

– Suppose that z P y. Then by the induction hypothesis φpy, z ` 1q
holds. If y P z ` 1, then ty, zu would violate (Fund). If y “ z ` 1,
then z ` 1 P y ` 1. If z ` 1 P y, then z ` 1 P y ` 1 as well.

[Lecture 07, 2023-11-09]

Notation 2.33.21. From now on, we will write α, β, . . . for ordinals.

Lemma 2.34. (a) 0 is an ordinal, and if α is an ordinal, so is α` 1.

(b) If α is an ordinal and x P α, then x is an ordinal.

(c) If α, β are ordinals and α Ď β, then α “ β or α P β.
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(d) If α and β are ordinals, then α P β, α “ β or α Q β.

Proof of Lemma 2.34. We have already proved (a) before.

(b) Fix x P α. Then x Ď α. So if y, z P x, then y P z _ y “ z _ y Q z. Let y P x.
We need to see y Ď x. Let z P y.

Claim 2.34.1. z P x

Subproof. As α is transitive, we have that z, y, x P α. Thus z P x_z “ x_z Q x.

z “ x contradicts (Fund): Consider tx, yu. Then xX tx, yu is non empty, as it
contains y. Furthermore x P y X tx, yu

z Q x also contradicts (Fund): If x P z, then z Q x Q y Q z Q x Q . . .. tx, y, zu
yields a contradiction, as y P xX tx, y, zu, z P y X tx, y, zu, x P z X tx, y, zu.

So z P x as desired. ■

(c) Say α Ĺ β. Pick ξ P βzα such that η P α for every η P ξ X β. (This exists
by (Fund)). We want to see that ξ “ α. We have ξ Ď α by the choice of ξ. On
the other hand α Ď ξ: Let η P α Ď β. We have that η P ξ _ η “ ξ _ η Q ξ. If
ξ P η, then since η P α, we get ξ P α contradicting the choice of ξ. If ξ “ η, the
ξ “ η P α, which also is a contradiction. Thus η P ξ.

This yields α P β, hence α is an ordinal.

(d) By (c) if α and β are ordinals, then α Ď β ðñ pα “ β _ α P βq. We
need tho see that if α, β are ordinals, then α Ď β or β Ď α. Suppose there are
ordinals α, β such that this is not the case.

Pick such an α.

Let α0 P αY tαu be such that there is some β with ␣pβ Ď α0 _ α0 Ď βq for for
all γ P α0, @β.pβ Ď γ _ γ Ď βq. Pick β0 such that

␣pβ0 Ď α0 _ α0 Ď β0q .

Consider α0 Y β0.

Claim 2.34.2. α0 Y β0 is an ordinal.

Subproof. α0 Y β0 is clearly transitive. Let γ, δ P α0 Y β0. We claim that
γ P δ _ γ “ δ _ γ P δ. This can only fail if γ P α0 and δ P β0 (or the other way
around). But then γ P δ _ γ “ δ _ δ P γ by the choice of α0. ■

Claim 2.34.3. α0 “ α0 Y β0 or β0 “ α0 Y β0.
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Subproof. If that is not the case, then α0 P α0 Y β0 and β0 P α0 Y β0. α0 P α0

violates (Fund). Hence α0 P β0. By the same argument, β0 P α0. But this
violates (Fund), as α0 P β0 P α0. ■

Lemma 2.35. Let X be a set of ordinals, X ‰ H. Then
Ş

X and
Ť

X
are ordinals.

Proof. Easy.

It is actually the case that
Ş

X P X: Pick α P X such that α Ď β for all β P X.
This exists by (Fund) and since all ordinals are comparable. Then α “

Ş

X.

Notation 2.35.22. We write minpXq for
Ş

X and suppXq for
Ť

X.

It need not be the case that
Ť

X P X, for example
Ť

ω “ ω.

Definition 2.36. An ordinal α is called a successor ordinal, iff α “

β Y tβu for some β P α. Otherwise α is called a limit ordinal.

Observe. Note that α is a limit ordinal iff for all β P α, β ` 1 P α: If there
is β P α such that β ` 1 R α, then either α “ β ` 1 (i.e. α is a successor) or
α P β ` 1, in which case β P α P β Y tβu .

Also if α is a successor, then by definition there is some β P α, with β ` 1 “ α,
so β ` 1 R α.

Notation 2.36.23. If α, β are ordinals, we write α ă β for α P β (equiva-
lently α Ĺ β). We also write α ď β for α P β _ α “ β (i.e. α Ď β).

Example 2.37. Limit ordinals:

• 0,

• ω,

• ω ` ω “ suppω Y tω, ω ` 1, . . .uq,a ω ` ω ` ω, ω ` ω ` ω ` ω, . . .

Successor ordinals:

• 1 “ t0u, 2 “ t0, 1u, 3, . . .

• ω ` 1 “ ω Y tωu, ω ` 2, . . .,

aTo show that this exists, we need the recursion theorem and replacement.

[Lecture 08, 2023-11-13]
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2.2 Classes

It is often very handy to work in a class theory rather than in set theory.

To formulate a class theory, we start out with a first order language with two
types of variables, sets (denoted by lower case letters) and classes (denoted by
capital letters), as well as one binary relation symbol P for membership.

Bernays-Gödel class theory (BG) has the following axioms:

Axiom 2.38 (Extensionality).

@x. @y. px “ y ðñ p@z. pz P x ðñ z P yqq .

Axiom 2.39 (Foundation).

@x. px ‰ H ùñ Dy P x. y X x “ Hq.

Axiom 2.40 (Pairing).

@x. @y. Dz. z “ tx, yu.

Axiom 2.41 (Union).

@x. Dy. y “
ď

x.

Axiom 2.42 (Power Set).

@x. Dy. y “ Ppxq.

Axiom 2.43 (Infinity).

Dx. pH P x^ p@y P x. y Y tyu P xqq.

Together with the following axioms for classes:

Axiom 2.44 (Extensionality for classes).

@X. @Y. p@x. px P X ðñ x P Y q ùñ X “ Y q .

Axiom 2.45. Every set is a class:

@x. DX. x “ X.
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Axiom 2.46. Every element of a class is a set:

@X. DY. pX P Y Ñ Dx. x “ Xq.

Axiom 2.47 (Replacement). If F is a function and a is a set, then F 2a is
a set.

Here a (class) function is a class consisting of pairs px, yq, such that for every x
there is at most one y with px, yq P F . Furthermore F 2a :“ ty : Dx P a. px, yq P
F u.

Remark 2.47.24. Note that we didn’t need to use an axiom schema, (Rep)
is a single axiom.

Axiom 2.48 (Comprehension).

@X1. . . .@Xk. DY. p@x. x P Y ðñ φpx,X1, . . . , Xkqq

where φpx,X1, . . . , Xkq is a formula which contains exactly X1, . . . , Xk, x
as free variables, and φ does not have quantifiers ranging over classes.a

aIf one removes the restriction regarding quantifiers, another theory, called Morse-
Kelly set theory, is obtained.

notation:
H,X

(The following was actually done in lecture 9, but has been moved here for
clarity.)

BGC (in German often NBG1) is defined to be BG together with the additional
axiom:

Axiom 2.49 (Choice).

DF. pF is a function^ @x ‰ H.F pxq P xq.

Fact 2.49.25. BGC is conservative over ZFC, i.e. for all formulae φ in the
language of set theory (only set variables) we have that if BGC $ φ then
ZFC $ φ.

We cannot prove this fact at this point, as the proof requires forcing. The
converse is easy however, i.e. if ZFC $ φ then BGC $ φ.

Notation 2.49.26. From now on, objects denoted by capital letters are
(potentially proper) classes.

1Neumann-Bernays-Gödel
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2.3 Induction and Recursion

Definition 2.50. A binary relation R on a set X, i.e. R Ď XˆX, is called
well-founded iff for all H ‰ Y Ď X there is some x P Y such that for no
y P Y.py, xq P R.

Example 2.51. (a) pN,ăq is well-founded.

(b) Let M be a set, and let P |M :“ tpx, yq : x, y P M ^ x P yu. (Fund) is
equivalent to saying that this is a well-founded relation for every M .

Lemma 2.52. In ZFC´(Fund), the following are equivalent:

• (Fund),

• There is no sequence xxn : n ă ωy such that xn`1 P xn for all n ă ω.

Proof. Suppose such sequence exists. Then txn : n ă ωu2 violates (Fund).

For the other direction let M ‰ H be some set. Suppose that (Fund) does not
hold for M .

Using (C), we construct an infinite sequence x0 Q x1 Q x2 Q . . . of elements of
M .

More formally, for each x PM let Ax :“ ty PM : y P xu. Suppose that Ax ‰ H

for all x P M . Using (C) we get a function for xAx : x P My,3 i.e. a function
f : M Ñ M such that fpxq P Ax for x P M . Now fix x P M . We want to
produce a function g : ω ÑM such that

• gp0q “ x,

• gpn` 1q “ fpgpnqq P Agpnq.

Let

G “ tg : Dn P ω.

g is a function with domain n and range ĎM , such that

gp0q “ x^ @m P ω. pm` 1 P dompgq ùñ gpm` 1q “ fpgpmqqqu.

G exists as it can be obtained by (Aus) from ăωM . By induction, for every n P ω,
there is a g P G with dompgq P n ` 1: This holds for n “ 0, as tp0, xqu P G. If
g P G with dompgq “ n` 1, then gY tpn` 1, fpgpnqqqu P G. Also by induction,
for every n P ω, there is a unique g with dompgq “ n` 1.

Now let g “
Ť

G. Also let gp0q “ x and gpn` 1q “ fpgpnqq for all n P ω.

2This exists as by definition the sequence pxnq is a function f : ω Ñ V and this set is the
image of f .

3Actually we only need the axiom of dependent choice, a weaker form of the Axiom of
Choice (2.9). We’ll discuss this later.
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Lemma 2.53 (Dependent Choice). Suppose thatM ‰ H and R is a binary
relation on M such that for all x P M , Ax :“ ty P M : py, xq P Ru is not
empty.

Then for every x PM there exists a function g : ω ÑM such that gp0q “ x
and gpn` 1q P Agpnq for all n ă ω.

Proof. We showed a special case of this in the proof of Lemma 2.52.

Remark 2.53.27. In ZF this is a weaker form of (C).

The construction of g in the previous proof was a special case of a construction
on the proof of the recursion theorem:

[Lecture 09, 2023-11-16]

Definition 2.54. Let R be a binary relation. R is called well-founded
iff for all classes X, there is an R-least y such that there is no z P X with
pz, yq P R.

Theorem 2.55 (Induction (again, but now for classes)). Suppose that R
is a well-founded relation. Let X be a class such that for all sets x,

ty : py, xq P Ru Ď X ùñ x P X.

Then X contains all sets.

Proof. Assume otherwise. Consider Y “ tx : x R Xu ‰ H. By hypothesis, there
is some x P Y such that py, xq R R for all y P Y . In other words, if py, xq P R,
then x R Y , i.e. x P X. Thus ty : py, xq P Ru Ď X. Hence x P X .

An alternative way of formulating this is

Theorem 2.56. Suppose R is a well-founded binary relation on A, i.e. R Ď
AˆA. Suppose for all A Ď A is such that for all x P X,

ty P A : py, xq P Ru Ď A ùñ x P A.

Then A “ A.

Definition 2.57. Let R be a binary relation. R is called set-like iff for
all x, ty : py, xq P Ru is a set.
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Theorem 2.58. LetR be a well-founded and set-like relation onA (i.e.R Ď
AˆA).

Let D be a class of triples such that for all u, x there is exactly one y with
pu, x, yq P D (basically pu, xq ÞÑ y is a function).

Then there is a unique function f on A such that for all x P A,

pF |tyPA:py,xqPRu, x, F pxqq P D,

i.e. F pxq is computed from F |tyPA:py,xqPRu.

Proof. Uniqueness:

Let F, F 1 be two such functions. Suppose that A “ tx P A : F pxq ‰ F 1pxqu ‰ H.
As R is well-founded, there is some x P A such that y R A for all y P A, py, xq P R.
I.e. F pyq “ F 1pyq for all y P A, py, xq P R.

But then F pxq is the unique y with pF |tz : pz,xqPRu, x, yq P D, in particular it is
the same as F 1pxq 

Existence:

Let us call a (set) function f good, if

• dompfq Ď A,

• if x P dompfq and y P A, py, xq P R, then y P dompfq and

• for all x P dompfq :

pf |tyPA:py,xqPRu, x, fpxqq P D.

By the proof of uniqueness, we have that all good functions are coherent,
i.e. fpxq “ f 1pxq for good functions f, f 1 and all x P dompfqXdompf 1q. We may
now let F “

Ť

tf : f is goodu, this exists by comprehension.

If x P dompF q and y P A with py, xq P R, then y P dompF q and

pF |ty:py,xqPRu, x, F pxqq P D.

We need to show that dompF q “ A. This holds by induction: Suppose for a
contradiction that AzdompF q ‰ H. Then there exists an R-least element x in
this set, i.e.x R dompF q, but y P dompF q for all py, xq P R. For each y P A with
py, xq P R, pick some good function fy with y P dompfyq Since R is set-like, we
have that f “

Ť

y fy is a good function. But then f Y px, zq, where z is unique
such that pf |ty:py,xqPRu, x, zq P D, is good  .

[Lecture 10, ]
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2.3.1 Applications of induction and recursion

Fact 2.58.28. For every set x there is a transitive set t such that x P t.

Proof. Take R “P. We want a function F with domain ω such that F p0q “ txu
and F pn` 1q “

Ť

F pnq. Once we have such a function, txuY
Ť

ranpF q is a set
as desired. To get this F using the Recursion Theorem (2.58), pick D such that

pH, 0, txuq P D

and
pf, n` 1,

ď ď

ranpfqq P D.

The Recursion Theorem (2.58) then gives a function such that

F p0q “ txu,

F pn` 1q “
ď ď

ranpF |n`1q

“
ď ď

ttxu, x,
ď

x, . . . ,
ďn´1

x
looomooon

F pnq

u “
ď

F pnq,

i.e. F pn` 1q “
Ť

F pnq.

Notation 2.58.29. Let OR denote the class of all ordinals and V the class
of all sets.

Lemma 2.59. There is a function F : OR Ñ V such that F pαq “
Ť

tPpF pβqq :
β ă αu.

Proof. Use the Recursion Theorem (2.58) with R “P and pw, x, yq P D iff

y “
ď

tPpyq : y P ranpwqu.

This function has the following properties:

F p0q “
ď

H “ H,

F p1q “
ď

tPpHqu “
ď

ttHuu “ tHu,

F p2q “
ď

tPpHq,PptHuqu “
ď

ttHu, tH, tHuuu “ tH, tHuu,

. . .

It is easy to prove by induction:

(a) Every F pαq is transitive.

(b) F pαq Ď F pβq for all α ď β.
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(c) F pα` 1q “ PpF pαqq for all α P OR.

(d) F pλq “
Ť

tF pβq : β ă λu for λ P OR a limit.

Notation 2.59.30. Usually, one writes Vα for F pαq. They are called the
rank initial segments of V .

Lemma 2.60. If x is any set, then there is some α P OR such that x P Vα,
i.e. V “

Ť

tVα : α P ORu.

Proof. We use induction on the well-founded P-relation. Let A “
Ť

tVα : α P
ORu. We need to show that A “ V . By induction it suffices to prove that for
every x P V , if ty : y P xu Ď A, then x P A. The hypothesis says that for all
y P x, there is some α with y P Vα. Write αy for the least such α. By (Rep),
tαy : y P xu is a set and we may let α “ suptαy : y P xu ě αy for all y P x.
Then y P Vαy

Ď Vα for all y P x.

In other words x Ď Vα, hence x P Vα`1.

Lemma 2.61 (Transitive collapse/Mostowski collapse). Let R be a
binary set-like relation on a class A. Then R is well-founded iff there is a
transitive class B such that

pB, P |Bq – pA,Rq,

i.e. there is an isomorphism F , that is a function F : B Ñ A with x P
y ðñ pF pxq, F pyqq P R for x, y P B.

Proof. “ ðù ” Suppose that R is ill-founded (i.e. not well-founded). Then there
is some pyn : n ă ωq such that yn P A and pyn`1, ynq P R for all n ă ω. But
then if F is an isomorphism as above,

F´1pYn`1q P F
´1pYnq

for all n ă ω  

“ ùñ ” Suppose that R is well-founded. We want a transitive class B and a
function F : B Ø A such that

x P y ðñ pF pxq, F pyqq P R.

Equivalently G : AØ B with px, yq P R iff Gpxq P Gpyq for all x, y P A.

In other words, Gpyq “ tGpxq : px, yq P Ru. Such a function G and class B exist
by the Recursion Theorem (2.58).
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As a consequence of the Mostowski Collapse (2.61), we get that if ă is a well-
order on a set a then there is some transitive set b with pb, P |bq – pa,ăq.

Lemma 2.62 (Rank function). Let R be a well-founded and set-like
binary relation on a class A. Then there is a function F : A Ñ OR, such
that for all x, y P A

px, yq P R ùñ F pxq ă F pyq.

Proof. By the Recursion Theorem (2.58), there is F such that

F pyq “ suptF pxq ` 1 : px, yq P Ru.

This function is as desired.

This does not skip any ordinals, as F pyq is the least ordinal ą F pxq for all
px, yq P R. Thus ranpF q is transitive. So either ranpF q “ OR or ranpF q P OR.
This F is called the rank function for pA,Rq.

Notation 2.62.31.
rkRpxq “ }x}R :“ F pxq,

and
rankpRq :“ ranpF q.

In the special case that R is a linear order on A, hence a well-order, rankpRq
is called the order type of R (or of pA,Rq), written otppRq.

[Lecture 11, 2023-11-23]

2.4 Cardinals

Definition 2.63. Let a be any set. The cardinality of a denoted by a,
|a| or cardpaq, is the smallest ordinal α such that there is some bijection
f : αÑ a.

An ordinal α is called a cardinal, iff there is some set a with |a| “ α
(equivalently, |α| “ α).

We often write κ, λ, . . . for cardinals.

Lemma 2.64. For every cardinal κ, there is come cardinal λ ą κ.

Proof. Consider the powerset of κ. We know that there is no surjection κ ↠
Ppκq. Hence κ ă |2κ|.
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Definition 2.65. For each cardinal κ, κ` denotes the least cardinal λ ą κ.

Warning 2.66. This has nothing to do with the ordinal successor of κ.

Lemma 2.67. Let X be any set of cardinals. Then supX is a cardinal.

Proof. If there is some κ P X with λ ď κ for all λ P X, then κ “ suppXq is a
cardinal.

Let us now assume that for all κ P X there is some λ P X with λ ą κ. Suppose
that suppXq is not a cardinal and write µ “ | suppXq|. Then µ P suppXq, since
suppXq is an ordinal. However suppXq is the least ordinal larger than all α P X,
so there is λ P X with λ ą µ. However, there exists µ ↠ suppXq, hence also
µ↠ λ (which is in contradiction to λ being a cardinal).

We may now use the Recursion Theorem (2.58) to define a sequence xℵα : α P
ORy with the following properties:

ℵ0 “ ω,

ℵα`1 “ pℵαq
`,

ℵλ “ suptℵα : α ă λu.

Each ℵα is a cardinal. Also, a trivial induction shows that α ď ℵα. In particular
|α| ď ℵα. Therefore the ℵα are all the infinite cardinals: If a is any infinite set,
then |a| ď ℵ|a|, so |a| “ ℵβ for some β ď |α|.

Notation 2.67.32. Sometimes we write ωα for ℵα (when viewing it as an
ordinal).

Notation 2.67.33. Let ab :“ tf : f is a function,dompfq “ a, ranpfq Ď
bu.

Definition 2.68 (Cardinal arithmetic). Let κ, λ be cardinals. Define

κ` λ :“ |t0u ˆ κY t1u ˆ λ|,

κ ¨ λ :“ |κˆ λ|,

κλ :“ | λκ|.

Warning 2.69. This is very different from ordinal arithmetic!
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Theorem 2.70 (Hessenberg). For all α we have

ℵα ¨ ℵα “ ℵα.

Corollary 2.71. For all α, β it is

ℵα ` ℵβ “ ℵα ¨ ℵβ “ maxtℵα,ℵβu.

Proof. Wlog. α ď β. Trivially ℵα ď ℵβ . It is also clear that

ℵβ ď ℵα ` ℵβ ď ℵα ¨ ℵβ ď ℵβ ¨ ℵβ “ ℵβ .

Proof of Theorem 2.70. Define a well-order ă˚ on ORˆOR by setting

pα, βq ă˚ pγ, δq

iff

• maxpα, βq ă maxpγ, δq or

• maxpα, βq “ maxpγ, δq and α ă γ or

• maxpα, βq “ maxpγ, δq and α “ γ and β ă δ.

It is clear that this is a well-order.

There is an isomorphism

pOR,ăq –Γ´1

pORˆOR,ă˚q.

Γ is called the Gödel pairing function.

Claim 2.70.1. For all α it is ranpΓ|ℵαˆℵαq “ ℵα, i.e.

ℵα “ tξ : Dη, η1 ă ℵα. ξ “ Γppη, η1qqu.

Subproof. We use induction of α. The claim is trivial for α “ 0. Now let α ą 0
and suppose the claim to be true for all β ă α. It is easy to see that

ranpΓ|ℵαˆℵαq Ě ℵα,

as otherwise Γ|ℵαˆℵα : ℵα ˆ ℵα Ñ η would be a bijection for some η ă ℵα, but
ℵα is a cardinal.

Suppose that ranpΓ|ℵαˆℵαq Ľ ℵα. Then there exist η, η1 ă ℵα with

Γppη, η1qq “ ℵα.
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So Γ|tpγ,δq:pγ,δqă˚pη,η1u is bijective onto ℵα. If pγ, δq ă˚ pη, η1q, then maxtγ, δu ď
maxtη, η1u. Say η ď η1 ă ℵα and let ℵβ “ |η

1|. There is a surjection

f : pη ` 1q
loomoon

ďℵβ

ˆpη1 ` 1q
looomooon

„ℵβ

↠ ℵα.

This gives rise to a surjection f˚ : ℵβ ˆ ℵβ Ñ ℵα. The inductive hypothesis
then produces a surjection f˚ : ℵβ Ñ ℵα . ■

However, exponentiation of cardinals is far from trivial:

Observe. 2κ “ |Ppκq|, since κ
t0, 1u Ø Ppκq.

Hence by Cantor 2κ ě κ`.

This is basically all we can say.

The continuum hypothesis states that 2ℵ0 “ ℵ1.
[Lecture 12, 2023-11-27]

2.5 Ordinal arithmetic

We define `, ¨ and exponentiation for ordinals as follows:

Fix an ordinal β. We recursively define

β ` 0 :“ β

β ` pα` 1q :“ pβ ` αq ` 1,

β ` λ :“ sup
αăλ

β ` α for limit ordinals λ

(Recall that α` 1 “ αY tαu was already defined.)

β ¨ 0 :“ 0,

β ¨ pα` 1q :“ β ¨ α` β,

β ¨ λ :“ sup
αăλ

β ¨ α for limit ordinals λ

and

β0 :“ 1,

βα`1 :“ βα ¨ β,

βλ :“ sup
αăλ

βα for limit ordinals λ.
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Example 2.72.

• 2` 2 “ 4,

• 196883` 1 “ 196884,

• 1` ω “ supnăω 1` n “ ω ‰ ω ` 1,

• 2 ¨ ω “ supnăω 2 ¨ n “ ω,

• ω ¨ 2 “ ω ¨ 1` ω “ ω ` ω.

Warning 2.73. Cardinal arithmetic and ordinal arithmetic are very differ-
ent! The symbols are the same, but usually we will distinguish between the
two by the symbols used for variables (i.e. α, β, ω, ω1 are viewed primarily
as ordinals and κ, λ,ℵα as cardinals).

We will very rarely use ordinal arithmetic.

2.6 Cofinality

Definition 2.74. Let α, β be ordinals. We say that f : α Ñ β is cofinal
iff for all ξ ă β, there is some η ă α such that fpηq ě ξ.

Remark 2.74.34. If β is a limit ordinal, this is equivalent to

@ξ ă β. Dη ă α. fpηq ą ξ.

Example 2.75. (a) Look at ω ` ω.

f : ω ÝÑ ω ` ω

n ÞÝÑ ω ` n

is cofinal.

(b) Look at ℵω. Then

f : ω ÝÑ ℵω

n ÞÝÑ ℵn

is cofinal.

Definition 2.76. Let β be an ordinal. The cofinality of β, denoted cfpβq,
is the least ordinal α such that there exists a cofinal f : αÑ β.
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Example 2.77. • cfpℵωq “ ω. In fact cfpℵλq ď λ for limit ordinals
λ ‰ 0 (consider α ÞÑ ℵα).

• cfpℵω`ωq “ ω.

Lemma 2.78. For any ordinal β, cfpβq is a cardinal.

Proof. Let f : αÑ β be cofinal. Then f̃ : |α| Ñ β, the composition with αØ |α|
is cofinal as well and |α| ď α.

Question 2.78.35. How does one imagine ordinals with cofinality ą ω?

No idea.

Definition 2.79. An ordinal β is regular iff cfpβq “ β. Otherwise β is
called singular.

In particular, a regular ordinal is always a cardinal.

Lemma 2.80. Let β be an ordinal Then cfpβq is a regular cardinal, i.e.

cfpcfpβqq “ cfpβq.

Proof. Suppose not. Let f : cfpβq Ñ β be cofinal and g : cfpcfpβqq Ñ cfpβq.

Consider

h : cfpcfpβqq ÝÑ β

η ÞÝÑ suptfpξq : ξ ď gpηqu ă β.

Clearly this is cofinal.

Warning 2.81. Note that in general, a composition of cofinal maps is not
necessarily cofinal.

Theorem 2.82. Let κ ą ℵ0. Then κ` is regular.

Proof. Suppose that cfpκ`q ă κ`. Then cfpκ`q ď κ, i.e. there is a cofinal
function f : κÑ κ`. By the axiom of choice, there is a function g with domain
κ, such that gpηq : κ↠ fpηq is onto. Now define

h : κˆ κ ÝÑ κ`

pη, ξq ÞÝÑ gpηqpξq.

Clearly this is surjective, but |κˆ κ| ă κ`, by Theorem 2.70.
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• ℵ0,ℵ1,ℵ2, . . . are regular,

• ℵω is singular,

• ℵω`1,ℵω`2, . . . are regular,

• ℵω`ω is singular,

• ℵω`ω`1, . . . are regular,

• ℵω`ω`ω is singular,

• . . .

• ℵω1
is singular,

• ℵω1`1, . . . is regular,

• ℵω2
is singular.

Question 2.82.36 (Hausdorff). Is there a regular limit cardinal?

Maybe. This is independent of ZFC, cf. Definition 2.107.

Theorem 2.83 (Hausdorff).

ℵℵβ

α`1 “ ℵℵβ
α ¨ ℵα`1.

Proof. Recall that

ℵℵβ

α`1 “ |
ℵβℵα`1|.

• First case: β ě α` 1. Note that for all γ ď β we have

ℵℵβ
γ ď ℵℵβ

β ď
`

2ℵβ
˘ℵβ

“ 2ℵβ ¨ℵβ “ 2ℵβ ď ℵℵβ
γ .

So in this case ℵℵβ
α “ 2ℵβ and ℵℵβ

α`1 “ 2ℵβ . Thus

ℵℵβ

α`1 “ 2ℵβ “ ℵℵβ
α “ ℵℵβ

α ¨ ℵα`1.

• Second case: Suppose β ă α` 1. By case hypothesis and because ℵα`1 is
regular, no f : ℵβ Ñ ℵα`1 is unbounded. So

ℵβℵα`1 “
ď

ξăℵα`1

ℵβξ

for each ξ ă ℵα`1, |ξ| ď ℵα, hence

|
ℵβξ| ď ℵℵβ

α

for each ξ ă ℵα`1. Therefore,

ℵℵβ

α`1 ď ℵα`1 ¨ ℵ
ℵβ
α ď ℵℵβ

α`1.
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[Lecture 13, 2023-11-30]

Remark 2.83.37 (“Constructive” approach to ω1 ). There are many well-
orders on ω. Let W be the set of all such well-orders. For R,S P W ,
write R ď S iff R is isomorphic to an initial segment of S. Consider
W
„, where R „ S : ðñ R ď S ^ S ď R. Define ď on W

„ by
rRs ď rSs : ðñ R ď S. Clearly this is well-defined and ă is a well-order

on W
„: Suppose that tRn : n P ωu Ď W is such that Rn`1 ă Rn. Then

there exist ni P ω such that Ri – R0|tx:xăR0
niu and these form a ăR0

strictly decreasing sequence.

So pW „q is a well-ordered set. Every well-order on a countable set is

isomorphic to pω,Rq for some rRs PW „.

Moreover if R PW , then

pω;Rq – ptrSs PW „ : rSs ă rRsu
looooooooooooooomooooooooooooooon

I

;ă |Iq,

where the isomorphism is given by

n ÞÝÑ rR|tm:pm,nqPRus.

This also shows that every rRs PW „ has only countably manyă-predecessors.

This then also shows that pW „,ăq itself is not a well-order on a countable
set.

Thus otppW „,ăq “ ω1.

Notation 2.83.38. Let I ‰ H and let tκi : i P Iu be a set of cardinals.

Then
ÿ

iPI

κi :“

ˇ

ˇ

ˇ

ˇ

ˇ

ď

iPI

pκi ˆ tiuq

ˇ

ˇ

ˇ

ˇ

ˇ

and
ź

iPI

:“

ˇ

ˇ

ˇ

ˇ

ˇ

ą

iPI

κi

ˇ

ˇ

ˇ

ˇ

ˇ

,

where

ą

iPI

Ai :“ tf : f is a function,dompfq “ I,@i. fpiq P Aiu.
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Remark 2.83.39. (C) is equivalent to @i P I. Ai ‰ H ùñ
Ś

iPI Ai ‰ H.

Theorem 2.84 (Kőnig). Let I ‰ H. Let tκi : i P Iu, tλi : i P Iu be sets
of cardinals such that κi ă λi for all i P I.

Then
ÿ

iPI

κi ă
ź

iPI

λi.

Proof. Consider a function F :
Ť

iPIpκiˆtiuq Ñ
Ś

iPI λi. We want to show that
F is not surjective.

For i P I, let ξi be the least ξ ă λi such that for all η ă κi

F ppη, iqqpiq
looooomooooon

Pλi

‰ ξ.

Such ξ exists, since κi ă λi.

Let f P
Ś

iPI λi be defined by i ÞÑ ξi.

Then f R ranpF q.

Corollary 2.85. For infinite cardinals κ, it is cfp2κq ą κ.

Proof. If 2κ is a successor cardinal, then cfp2κq “ 2κ ą κ, since successor
cardinals are regular.

Suppose cfp2κq ď κ is a limit cardinal. Then there is some cofinal f : κ Ñ 2κ.
Write κi “ fpiq (replacing fpiq by |fpiq|` we may assume that every κi is a
cardinal).

For i P κ, write λi “ 2κ. By Kőnig’s Theorem (2.84),

suptκi : i ă κu ď
ÿ

iPκ

κi ă
ź

iPκ

λi “ p2
κq

κ
“ 2κ¨κ “ 2κ

and f is not cofinal.

Fact 2.85.40. Properties of the function κ ÞÑ 2κ.

• µ ă κ ùñ 2µ ď 2κ (it is independent of ZFC whether or not this is
strictly increasing).

• cfp2κq ě κ`.

This is “all” you can prove in ZFC.
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The next goal is to show the following: (However the method might be more
interesting than the result)

Theorem 2.86 (Silver). If 2ℵα “ ℵα`1 for all α ă ω1, then 2ℵω1 “ ℵω1`1.

Relevant concepts to prove this theorem:

Definition 2.87. Let α be a limit ordinal.

• We say that A Ď α is unbounded (in α), iff for all β ă α, there is
some γ P A such that β ă γ.

• We say that A Ď α is closed, iff it is closed with respect to the order
topology on α, i.e. for all β ă α,

suppAX βq P AY t0u.

• A is club (closed unbounded) iff it is closed and unbounded.

The interesting case is that α is a regular uncountable cardinal.

Fact 2.87.41. A Ď α being unbounded is equivalent to f : β Ñ α being

cofinal, where pβ, Pq
f
– pA, Pq.

[Lecture 14, 2023-12-04]

Abuse of Notation 2.87.42. Sometimes we say club instead of club in
κ.

Example 2.88. Let κ be a regular uncountable cardinal.

• κ is a club in κ.

• tξ ` 1 : ξ ă κu is unbounded in κ, but not closed.

• For each α ă κ, the set α ` 1 “ tξ : ξ ď αu is closed but not
unbounded in κ.

• tξ ă κ : ξ is a limit ordinalu is club in κ.

Lemma 2.89. Let κ be regular and uncountable. Let α ă κ and let
xCβ : β ă αy be a sequence of subsets of κ which are all club in κ. Then

č

βăα

Cβ

is club in κ.
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Warning 2.90. This is false for α “ κ: Let Cβ :“ tξ : ξ ą βu. Clearly
this is club but

Ş

βăκ Cβ “ H.

Proof of Lemma 2.89. First let α “ 2. Let C,D Ď κ be club. C XD is trivially
closed:

Let β ă κ. Suppose that pC XDq X β is unbounded in β, so C X β and D X β
are both unbounded in β, so β P C XD.

C XD is unbounded:

Take some γ ă κ. Let γ0 “ γ and inductively define γn : If n is even, let
γn :“ minCzpγn´1 ` 1q, otherwise γn :“ minDzpγn´1 ` 1q.

Let ξ “ suptγn : n ă ωu. Then ξ “ suptγ2n`2 : n ă ωu P D and ξ P C by the
same argument, so ξ P C XD (here it is important, that cfpκq ą ω) and ξ ą γ.

The case α ą 2 is similar: The intersection is closed by exactly the same
argument.4

Let’s prove that
Ş

tCβ : β ă αu is unbounded in κ.

We will define a sequence xγi : i ď α ¨ ωy5 as follows:

Let γ0 :“ γ. Choose

γα¨n`β`1 “ minCβzpγα¨n`β ` 1q

and at limits choose the supremum.

Let ξ “ supiăα¨ω γi “ supiăω γα¨n`β`1 P
Ş

βăα Cβ , where we have used that.
cfpκq ą α ¨ ω.

Definition 2.91. F Ď Ppaq is a filter iff

(a) X,Y P F ùñ X X Y P F ,

(b) X P F ^X Ď Y Ď κ ùñ Y P F ,

(c) H R F ,a κ P F .

Let α ď κ. We call F ă α-closed iff for all γ ă α and tXβ : β ă γu Ď F
then

Ş

tXβ : β ă γu P F .

aSome authors don’t require H R F , but that is a degenerate case anyway, since
H P F ðñ F “ Ppaq.

Intuitively, a filter is a collection of “big” subsets of a.

4“It is even more closed.”
5Ordinal multiplication, i.e. α ¨ ω “ supnăω α ` . . . ` α

loooooomoooooon

n times

.
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Definition 2.92. Let κ be regular and uncountable. The club filter is
defined as

Fκ :“ tX Ď κ : D club C Ď κ. C Ď Xu.

Clearly this is a filter.

We have shown (assuming (C) to choose contained clubs):

Theorem 2.93. If κ is regular and uncountable. Then Fκ is a ă κ-closed
filter.

Proof. Clearly H R Fκ, κ P Fκ, and A P Fκ, A Ď B P κ ùñ B P Fκ. In
Lemma 2.89 showed that the intersection of ă κ many clubs is club.

Definition 2.94. Let xAβ : β ă αy be a sequence of sets. The diagonal
intersection, is defined to be

∆
βăα

Aβ :“ tξ ă α : ξ P
č

tAβ : β ă ξuu “
č

βăα

pr0, βs YAβq

Remark: 2.94.43. Note that if A is closed, so is r0, αs YA. Since the in-
tersection of arbitrarily many closed sets is closed, we get that the diagonal
intersection of closed sets is closed.

Lemma 2.95. Let κ be a regular, uncountable cardinal. If xCβ : β ă κy
is a sequence of club subsets of κ, then ∆βăκ Cβ contains a club.

Proof of Lemma 2.95. Let us fix xCβ : β ă αy. Write Dβ :“
Ş

tCγ : γ ď βu for
β ă κ. Each Dβ is a club, Dβ Ď Cβ and Dβ Ě Dβ1 for β ď β1 ă κ.

It suffices to show that ∆βăκDβ contains a club.

Claim 2.95.1. ∆βăκDβ is closed in κ.

Subproof. Cf. Remark: 2.94.43.

■

Claim 2.95.2. ∆βăκDβ is unbounded in κ.

Subproof. Fix γ ă κ. We need to find δ ą γ with δ P∆βăκDβ .

Define xγn : n ă ωy as follows: γ0 :“ γ and

γn`1 :“ minDγn
zpγn ` 1q
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We have δ :“ supnăω γn P κ by cofinality of κ.

We need to show that δ P Dγ for all γ ă δ.

If γ ă δ, then γ ď γn for some n ă ω. For m ě n, γm`1 P Dγm
Ď Dγn

Ď Dγ .
So Dγ X δ is unbounded in δ, hence δ P Dγ . ■

Remark: 2.95.44. ∆βăκ Cβ actually is a club, since ∆βăκ Cβ is closed,

again cf. Remark: 2.94.43.

Definition 2.96. Let κ be regular and uncountable. S Ď κ is called
stationary (in κ) iff C X S ‰ H for every club C Ď κ.

Remark: 2.96.45 (https://mathoverflow.net/q/37503). Informally, club
sets and stationary sets can be viewed as large sets of a measure space of
measure 1. Clubs behave similarly to sets of measure 1 and stationary sets
are analogous to sets of positive measure:

• Every club is stationary,

• the intersection of two clubs is a club,

• the intersection of a club and a stationary set is stationary,

• there exist disjoint stationary sets.

Example 2.97. • Every D Ď κ which is club in κ is stationary in κ.

• There exist disjoint stationary sets:a Let κ “ ω2. Let S0 :“ tξ ă κ :
cfpξq “ ωu and S1 :“ tξ ă κ : cfpξq “ ω1u. Clearly these are disjoint.
They are both stationary: Let C Ď κ be a club. Let pξi : i ď ω1q

be defined as follows: ξ0 :“ minC, ξi :“ minpCz supjăi ξjq. For
i ď ω1 we have that ξi “ supjăi ξj . In particular ξω P S0 X C and
ξω1

P S1 X C.

aNote that clubs can never be disjoint, since their intersection is a club.

We will show later that if κ is a regular uncountable cardinal, then every sta-
tionary S Ď κ can be written as S “

Ť

iăκ Si, where the Si are stationary and
pairwise disjoint.

[Lecture 15, 2023-12-07]

Theorem 2.98 (Fodor). Let κ be a regular and uncountable cardinal. Let
S Ď κ be stationary and let f : S Ñ κ be regressive in the following sense:
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fpαq ă α for all α P S.

Then there exists a stationary subset T Ď S and some ν ă κ such that
fpαq “ ν for all α P T .

Proof. Let S, f be given. For ν ă κ set Sν :“ tα P S : fpαq “ νu. We aim
to show that one of the Sν is stationary. Suppose otherwise. Then for every
ν there exists a club Cν such that Sν X Cν “ H.6 Let C “ ∆νăκ Cν . By
Lemma 2.95 C is a club. So we may pick some α P C X S. In particular α P Cν

for all ν ă α. Hence fpαq ‰ ν for all ν ă α, so fpαq ě α. But f is regressive  

2.7 Some model theory and a second proof of Fodor’s The-
orem

Recall the following:

Definition 2.99. A substructure X Ď Vθ make this
more general.
Explain why
Vθ is a model

is an elementary substruc-
ture of Vθ, denoted X ă Vθ,a iff for all formulae φ of the language of set
theory and for all x1, . . . , xk P X,

pX; P |Xq |ù φpx1, . . . , xkq ðñ pVθ; P |Vθ
q |ù φpx1, . . . , xkq.

amore formally pX, Pq ă pVθq

Remark 2.99.46. Löwenheim-Skolem allows us to find elementary sub-
structures of arbitrary sizes. How do we do this? Let φ be a formula. A
Skolem-function over Vθ for φ is a function

f : kVθ Ñ Vθ,

where k is the number of free variables of Dv. φ and for all x1, . . . , xk P Vθ,
if pVθ, Pq |ù Dv. φpv, x1, . . . , xkq then pVθ, Pq |ù φpfpx1, . . . , xkq, x1, . . . , xkq.

Using (C) such Skolem-functions can be easily found for all formulae.

There is a sufficient criterion for X Ď Vθ to be an elementary substructure of
Vθ.

Lemma 2.100 (Tarski-Vaught Test). Let X Ď Vθ. For each formula φ, let
fφ be a Skolem function over Vθ for φ. If for every φ and for all x1, . . . , xk P
X (where k is the number of free variables of Dv. φ) fφpx1, . . . , xkq P X,
then X ă Vθ.

Let’s do a second proof of Fodor’s Theorem (2.98).

6Here we use (C) to choose the Cν uniformly.
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Proof of Theorem 2.98. Fix θ ą κ and look at Vθ.

Fix S Ď κ stationary and f : S Ñ κ regressive.

For each formula φ fix a Skolem function fφ over Vθ for φ. Let pXξ : ξ ď κq be
a sequence of elementary substructures of Vθ defined as follows: Let X0 be the
least X such that S, f P X and X is closed under fφ. Note that X0 is countable.

For ξ ă κ let Xξ`1 be the least X Ď Vθ such that Xξ Ď X, minpκzXξq P X and
X is closed under all fφ. For limits λ ď κ let

Xλ :“
ď

ξăλ

Xξ.

Note that |Xξ| “ |Xξ`1| but the size may increase at limits. It is easy to see
inductively that |Xξ| ă κ for every ξ ă κ, while Xξ Ĺ Xξ1 for all ξ ă ξ1 ď κ.

Also ξ Ď Xξ for all ξ ď κ.

Claim 2.98.1. There is a club C Ď κ such that Xξ X κ “ ξ for all ξ P C.

Proof of Claim 2.98.1. Write C “ tξ ă κ : Xξ X κ “ ξu. Trivially C is closed.
Let us show that C is unbounded in κ. Let ζ ă κ. Let us define a strictly
increasing sequence xξn : n ă ωy as follows. Set ξ0 :“ ζ. Suppose ξn has
been chosen. Look at Xξn X κ. Since |Xξn X κ| ă κ, suppXξn X κq ă κ. Set
ξn`1 :“ suppXξn X κq ` 1. Set ξ :“ supnăω ξn. Clearly ζ ă ξ.

Claim 2.98.1.1. ξ P C, i.e. Xξ X κ “ ξ.

Proof of Claim 2.98.1.1. If η ă ξ, then η ă ξn for some n and then η P ξn Ď
Xξn Ď Xξ.

Now let η P Xξ X κ. Then η P Xξn for some n ă ω, so η ă ξn`1 ă ξ, hence
Xξ X κ Ď ξ.

Now let α P S X C, i.e. Xα ă Vθ and α “ Xα X κ. f P Xα and f is regressive,
so fpαq ă α. Write ν “ fpαq. Let T “ tξ P S : fpξq “ νu. We have T P Xα, as
T is definable from S, f, ν P Xα.

Claim 2.98.2. T is stationary.

Subproof. Otherwise there is a club D Ď κ such that D X T “ H, i.e.

Vθ |ù DD. D club in κ^D X T “ H

hence
Xα |ù DD. D club in κ^D X T “ H.
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So there is D P Xα such that

Xα |ù D is club in κ^D X T “ H,

hence
Vθ |ù D is club in κ^D X T “ H.

In other words, there is some club D P Xα with D X T “ H.

We have α P T as α P S and fpαq “ ν. Let us show that α P D, which gives a
contradiction. For α P D it suffices to show that DX α is unbounded in α. Let
ξ ă α. As D is unbounded in κ, Dη ą ξ. η P D, so

Vθ |ù Dη ą ξ. η P D,

hence
Xα |ù Dη ą ξ. η P D.

Hence there is some η P Xα with η P D. This means that ξ ă η
loomoon

PD

ă α. ■

[Lecture 16, 2023-12-11]

Recall Fodor’s Theorem (2.98).

Question 2.100.47. What happens if S is nonstationary?

Let S Ď κ be nonstationary, κ uncounable and regular. Then there is a club
C Ď κ with C X S “ H. Let us define f : S Ñ κ in the following way:

If α P S and C X α ‰ H, then maxpC X αq ă α.

Define

fpαq :“

#

0 : C X α “ H,

maxpC X αq : C X α ‰ H.

For all α ą 0, we have that fpαq ă α. If γ P ranpfq then fpαq “ γ implies either
γ “ 0 and α ă minpCq or γ P C and γ ă α ă γ1 where γ1 “ minpCzpγ ` 1qq.
Thus for all γ, there is only an interval of ordinals α P S where fpαq “ γ.

Recall that F Ď Ppκq is a filter if X,Y P F ùñ X X Y P F , X P F,X Ď Y Ď
κ ùñ Y P F and H R F, κ P F .

Definition 2.101. A filter F is an ultrafilter iff for all X Ď κ either
X P F or κzX P F .

Example 2.102. Examples of filters:

(a) Let κ ě ℵ0 and let F “ tX Ď κ : κzX is finiteu. This is called the
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Fréchet filter or cofinal filter. It is not an ultrafilter (consider for
example the even and odd numbersa).

(b) Let κ be uncountable and regular. Then Fκ :“ tX Ď κ : DC Ď

κ club in κ.C Ď Xu.

awe consider limit ordinals to be even

Question 2.102.48. Is Fκ an ultrafilter?

This is certainly not the case if κ ě ℵ2, because then S0 :“ tα ă κ : cfpαq “ ωu
and S1 :“ tα ă κ : cfpαq “ ω1u are both stationary and clearly disjoint. So
neither S0 nor S1 Ď κzS0 contains a club.

For κ ă ℵ1 this argument does not work, since there is only one cofinality.

Theorem 2.103 (Solovay). Let κ be regular and uncountable. If S Ď κ is
stationary, there is a sequence xSi : i ă κy of pairwise disjoint stationary
subsets of κ such that S “

Ť

Si.

Corollary 2.104. Fℵ1
is not an ultrafilter.

Proof. Apply Solovay’s Theorem (2.103) to S “ ℵ1. Let ℵ1 “ A Y B where A
and B are both stationary and disjoint. Then use the argument from above.

Proof of Theorem 2.103. 7 We will only prove this for ℵ1. Fix S Ď ℵ1 stationary.

For each 0 ă α ă ω1, either α is a successor ordinal or α is a limit ordinal and
cfpαq “ ω.

Let S˚ :“ tα P Szt0u : α is a limit ordinalu. S˚ is still stationary: Let C Ď ω1

be a club, then D “ tα P Czt0u : α is a limit ordinalu is still a club, so

S˚ X C “ S˚ XD “ S XD ‰ H.

Let
xxγαn : n ă ωy : α P S˚y

be such that xγαn : n ă ωy is cofinal in α.

Claim 2.103.1. There exists n ă ω such that for all δ ă ω1 the set

tα P S˚ : γαn ą δu

is stationary.

7“This is one of the arguments where it is certainly worth it to look at it again.”
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Subproof. Otherwise for all n ă ω, there is a δ such that tα P S˚ : γαn ą δu is
nonstationary. Let δn be the least such δ. Let Cn be a club disjoint from

tα P S˚ : γαn ą δnu,

i.e. if α P S˚ X Cn, then γαn ď δn. Let δ˚ :“ supnăω δn.

Let C “
Ş

năω Cn. Then C is a club. We must have that if α P S˚ X C then
γαn ď δ˚ for all n.

Let C 1 :“ Czpδ˚ ` 1q. C 1 is still club. As S˚ is stationary, we may pick some
α P S˚ X C 1. But then γαn ą δ˚ for n large enough as xγαn : n ă ωy is cofinal in
α  . ■

Let n ă ω be as in Claim 2.103.1. Consider

f : S˚ ÝÑ ω1

α ÞÝÑ γαn .

Clearly this is regressive.

We will now define a strictly increasing sequence xδi : i ă ω1y as follows:

Let δ0 “ 0.

For 0 ă i ă ω1 suppose that δj , j ă i have been defined. Let δ :“ psupjăi δjq`1.
By Claim 2.103.1 (rather, by the choice of n), we have that tα P S˚ : γαn ą δu is
stationary. Hence by Fodor there is some stationary T Ď S˚ and some δ1 such
that for all α P T we have γαn “ δ1.

Write δi “ δ1 and Ti “ T .

By construction, all the Ti are stationary. Since the δi are strictly increasing
and since γαn “ δi for all α P Ti, we have that the Ti are disjoint.

Now let

Si :“

#

Ti : i ą 0,

T0 Y pSz
Ť

ją0 Tjq : i “ 0.

Then xSi : i ă ω1y is as desired.

We now want to do another application of Fodor’s Theorem (2.98). Recall that
2κ ą κ, in fact cfp2κq ą κ by Kőnig’s Theorem (2.84) (cf. Corollary 2.85).

Trivially, if κ ď λ then 2κ ď 2λ. This is in some sense the only thing we can
prove about successor cardinals. However we can say something about singular
cardinals:

Theorem 2.105 (Silver). Let κ be a singular cardinal of uncountable co-
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finality. Assume that 2λ “ λ` for all (infinite) cardinals λ ă κ. Then
2κ “ κ`.

Definition 2.106. GCH, the generalized continuum hypothesis is the
statement that 2λ “ λ` holds for all infinite cardinals λ,

Recall that CH says that 2ℵ0 “ ℵ1. So GCH ùñ CH.

Silver’s Theorem (2.105) says that if GCH is true below κ, then it is true at κ.

The proof of Silver’s Theorem (2.105) is quite elementary, so we will do it now,
but the statement can only be fully appreciated later.

[Lecture 17, 2023-12-14]

We now want to prove Silver’s Theorem (2.105).

Remark 2.106.49. The hypothesis of Silver’s Theorem (2.105) is consis-
tent with ZFC.

We will only prove Silver’s Theorem (2.105) in the special case that κ “ ℵω1

(see Silver’s Theorem (case of ℵω1
) (2.86)). The general proof differs only in

notation.

Remark 2.106.50. It is important that the cofinality is uncountable. For
example it is consistent with ZFC that 2ℵn “ ℵn`1 for all n ă ω but at the
same time 2ℵω “ ℵω`2.

Proof of Theorem 2.86. We need to count the number of X Ď ℵω1 . Let us fix
xfλ : λ ă κ an infinite cardinaly such that fλ : Ppλq Ñ λ` is bijective for each
λ ă κ.

For X Ď ℵω1
define

fX : ω1 ÝÑ ℵω1

α ÞÝÑ fℵαpX X ℵαq.

Claim 2.86.1. For X,Y Ď ℵω1 it is X ‰ Y ðñ fX ‰ fY .

Subproof. X ‰ Y holds iff X X ℵα ‰ Y X ℵα for some α ă ω1. But then
fXpαq ‰ fY pαq. ■

For X,Y Ď ℵω1 write X ď Y iff

tα ă ω1 : fXpαq ď fY pαqu

is stationary.

Claim 2.86.2. For all X,Y Ď ℵω1
, X ď Y or Y ď X.
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Subproof. Suppose that X ę Y and Y ę X. Then there are clubs C,D Ď ω1

such that
C X tα ă ω1 : fXpαq ď fY pαqu “ H

and
D X tα ă ω1 : fY pαq ď fXpαqu “ H.

Note that C XD is a club. Take some α P C XD. But then fXpαq ď fY pαq or
fY pαq ď fXpαq  ■

Claim 2.86.3. . Let X Ď ℵω1
. Then

|tY Ď ℵω1
: Y ď Xu| ď ℵω1

.

Subproof. Write A :“ tY Ď Xω1
: Y ď Xu. Suppose |A| ě ℵω1`1. For each

Y P A we have that
SY :“ tα : fY pαq ď fXpαqu

is a stationary subset of ω1. Since by assumption 2ℵ1 “ ℵ2, there are at most
ℵ2 such SY .

Suppose that for each S Ď ω1,

|tY P A : SY “ Su| ă ℵω1`1.

Then A is the union of ď ℵ2 many sets of size ă ℵω1`1. Thus this is a contra-
diction since ℵω1`1 is regular.

So there exists a stationary S Ď ω1 such that

A1 “ tY Ď ℵω1 : SY “ Su

has cardinality ℵω1`1. We have

fY pαq ď fXpαq “ fℵαpX X ℵαq ă ℵα`1

for all Y P A1, α P S.

Let xgα : α P Sy be such that gα : ℵα ↠ fXpαq ` 1 is a surjection for all α P S.

Then for each Y P A1 define

fY : S ÝÑ ℵω1

α ÞÝÑ mintξ : gαpξq “ fY pαqu.

Let D be the set of all limit ordinals ă ω1. Then S XD is a stationary set: If
C is a club, then C XD is a club, hence pS XDq X C “ S X pD X Cq ‰ H.

Now to each Y P A we may associate a regressive function

hY : S XD ÝÑ ω1

α ÞÝÑ mintβ ă α : fY pαq ă ℵβu.
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hY is regressive, so by Fodor’s Theorem (2.98) there is a stationary TY Ď SXD
on which hY is constant.

By an argument as before, there is a stationary T Ď S XD such that

|A2| “ ℵω1`1,

where A2 :“ tY P A1 : TY “ T u.

Let β ă ω1 be such that for all Y P A2 and for all α P T , hY pαq “ β. Then
fY pαq ă ℵβ for all Y P A2 and α P T .

There are at most ℵℵ1

β many functions T Ñ ℵβ , but

ℵℵ1

β ď 2ℵβ ¨ℵ1

“ ℵβ`1 ¨ ℵ2

ă ℵω1 .

Suppose that for each function f̃ : T Ñ ℵβ there are ă ℵω1`1 many Y P A2 with

fY X T “ f̃ .

Then A2 is the union of ă ℵω1
many sets each of size ă ℵω1`1  . Hence for

some f̃ : T Ñ ℵβ ,
|A3| “ ℵω1`1,

where A3 “ tY P A2 : fY |T “ f̃u.

Let Y, Y 1 P A3 and α P T . Then

fY pαq “ fY 1pαq,

hence
fℵα
pY X ℵαq “ fY pαq “ fY 1pαq “ fℵα

pY 1 X ℵαq,

i.e. Y X ℵα “ Y 1 X ℵα. Since T is cofinal in ω1, it follows that Y “ Y 1. So
|A3| ď 1 ■

Let us now define a sequence xXi : i ă ℵω1`1y of subsets of ℵω1`1 as follows:

Suppose xXj : j ă iy were already chosen. Consider

tY Ď ℵω1
: Dj ă i. Y ď Xju “

ď

jăi

tY Ď ℵω1
: Y ď Xju.

This set has cardinality ď ℵω1
by Claim 2.86.3. Let Xi Ď ℵω1

be such that
Xi ę Xj for all j ă i.

The set

P :“ tY Ď ℵω1
: Di ă ℵω1`1. Y ď Xiu “

ď

iăℵω1`1

tY Ď ℵω1
: Y ď Xiu
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has size ď ℵω1`1 (in fact the size is exactly ℵω1`1).

On the other hand P “ Ppℵω1
q because if X Ď ℵω1

is such that X ę Xi for all
i ă ℵω1`1, then Xi ď X for all i ă ℵω1`1, so such a set X does not exist by
Claim 2.86.3.

[Lecture 18, 2023-12-18]

Definition 2.107. • A cardinal κ is called weakly inaccessible iff κ
is uncountable,a regular and @λ ă κ. λ` ă κ.

• A cardinal κ is (strongly) inaccessible iff κ is uncountable, regular
and @λ ă κ. 2λ ă κ.

adropping this we would get that ℵ0 is inaccessible

Remark 2.107.51. Since 2λ ě λ`, strongly inaccessible cardinals are
weakly inaccessible.

If GCH holds, the notions coincide.

Theorem 2.108. If κ is inaccessible, then Vκ |ù ZFC.a

aMore formally pVκ, P |Vκ q |ù ZFC.

Proof. Since κ is regular, (Rep) works. Since 2λ ă κ, (Pow) works. The other
axioms are trivial.

Corollary 2.109. ZFC does not prove the existence of inaccessible cardi-
nals, unless ZFC is inconsistent.

Proof. If ZFC is consistent, it can not prove that it is consistent. In particular,
it can not prove the existence of a model of ZFC.

Definition 2.110 (Ulam). A cardinal κ ą ℵ0 is measurable iff there is
an ultrafilter U on κ, such that U is not principala and ă κ-closed,i.e. if
θ ă κ and tXi : i ă θu Ď U , then

Ş

iăθXi P U .

ai.e. tξu R U for all ξ ă κ

Goal. We want to prove that if κ is measurable, then κ is inaccessible and there
are κ many inaccessible cardinals below κ (i.e. κ is the κth inaccessible).

Theorem 2.111. The following are equivalent:
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1. κ is a measurable cardinal.

2. There is an elementary embeddinga j : V Ñ M with M transitive
such that j|κ “ id, jpκq ‰ κ.

aRecall: j : V Ñ M is an elementary embedding iff j2V “ tjpxq : x P V u ă M ,
i.e. for all formulae φ and x1, . . . , xk P V , V |ù φpx1, . . . , xuq ðñ M |ù

φpjpx1q, . . . , jpxuqq.

Proof. 2. ùñ 1.: Fix j : V Ñ M . Let U “ tX Ď κ : κ P jpXqu. We need to
show that U is an ultrafilter:

• Let X,Y P U . Then κ P jpXq X jpY q. We have M |ù jpX X Y q “
jpXqXjpY q, and thus jpXXY q “ jpXqXjpY q. It follows that XXY P U .

• Let X P U and X Ď Y Ď κ. Then κ P jpXq Ď jpY q by the same argument,
so Y P U .

• We have jpHq “ H (again M |ù jpHq is empty), hence H R U .

• κ P U follows from κ P jpκq. This is shown as follows:

Claim 1. For every ordinal α, jpαq is an ordinal such that jpαq ě α.

Subproof. α P OR can be written as

@x P α. @y P x. y P α^ @x P α. @y P α. px P y _ x “ y _ y P xq.

So if α is an ordinal, then M |ù “jpαq is an ordinal” in the sense above.
Therefore jpαq really is an ordinal.

If the claim fails, we can pick the least α such that jpαq ă α. Then
M |ù jpjpαqq ă jpαq, i.e. jpjpαqq ă jpαq contradicting the minimality of
α. ■

Therefore as jpκq ‰ κ, we have jpκq ą κ, i.e. κ P jpκq.

• U is an ultrafilter: Let X Ď κ. Then κ P jpκq “ jpX Y pκzXqq “
jpXq Y jpκzXq. So X P U or κzX P U .

Let θ ă κ and tXi : i ă θu Ď U . Then κ P jpXiq for all i ă θ, hence

κ P
č

iăθ

jpXiq “ j

˜

č

iăθ

Xi

¸

P U.

This holds since jpθq “ θ (as θ ă κ), so jpxXi : i ă θyq “ xjpXiq : i ă θy.

Also if ξ ă κ, then jptξuq “ tξu so κ R jptξuq and tξu R U .

1. ùñ 2. Fix U . Let κV be the class of all function from κ to V . For
f, g P κV define f „ g : ðñ tξ ă κ : fpξq “ gpξqu P U . This is an
equivalence relation since U is a filter. Write rf s “ tg P κV : g „ f ^
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g P Vα for the least α such that there is some h P Vα with h „ fu.8 For any
two such equivalence classes rf s, rgs define

rf sP̃rgs : ðñ tξ ă κ : fpξq P gpξqu P U.

This is independent of the choice of the representatives, so it is well-defined.
Now write F “ trf s : f P κV u and look at pF , P̃q.

The key to the construction is  Loś’s Theorem (2.112) (see below). Given  Loś’s
Theorem (2.112), we may define an elementary embedding j : pV, Pq Ñ pF , P̃q as
follows:

Let jpxq “ rcxs, where cx : κÑ txu is the constant function with value x.

Then

pV, Pq |ù φpx1, . . . , xkq ðñ tξ ă κ : pV, Pq |ù φpcx1pαq, . . . , cxk
pαqqu P U

 Loś
ðñ pF , P̃q |ù φpjpx1q, . . . , jpxkqq.

Let us show that pF , P̃q is well-founded. Otherwise there is xfn : n ă ωy such
that fn P

κV and rfn`1sP̃rfns for all n ă ω.

Then Xn :“ tξ ă κ : fn`1pξq P fnpξqu P U , so
Ş

Xn P U . Let ξ0 P
Ş

Xn. Then
f0pξ0q Q f1pξ0q Q f2pξ0q Q . . .  .

Note that P̃ is set-like, therefore by the Mostowski Collapse (2.61) there is some

transitive M with pF , P̃q
σ
– pM, Pq.

We can now define an elementary embedding j : V ÑM by j :“ σ ˝ j.

It remains to show that α ă κ ùñ jpαq “ α. This can be done by induction:
Fix α. We already know jpαq ě α. Suppose β P jpαq. Then β “ σprf sq for
some f and σprf sq P σprcαsq, i.e. rf sP̃rcαs. Thus tξ ă κ : fpξq P cαpξq

loomoon

α

u P U .

Hence there is some δ ă α such that

Xδ :“ tξ ă κ : fpξq “ δu P U,

as otherwise @δ ă α. κzXδ P U , i.e. H “ p
Ş

δăα κzXδq X X P U . We get
rf s “ rcδs, so β “ σprf sq “ σprcδsq “ jpδq “ δ, where for the last equality we
have applied the induction hypothesis. So jpαq ď α.

For all η ă κ, we have η “ σprcηsq ă σprcidsq ă σprcκsq, so jpκq ą κ.

8This is know as Scott’s Trick. Note that by defining equivalence classes in the usual way
(i.e. without this trick), one ends up with proper classes: For f : κ Ñ V , we can for example
change fp0q to be an arbitrary Vα and get another element of rf s.

2 ZFC 51



Theorem 2.112 ( Loś). For all formulae φ and for all f1, . . . , fk P
κV ,

pF , P̃q |ù φprf1s, . . . , rfksq ðñ tξ ă κ : pV, Pq |ù φpf1pξq, . . . , fkpξqqu P U.

Proof. Induction on the complexity of φ.

[Lecture 19, 2024-01-11]

Beginning with this lecture, the material is no longer relevant for the exam.

Recall that Dx P y. φ abbreviates Dx. x P y ^ φ and @x P y. φ abbreviates
@x. x P y Ñ φ.

Definition 2.113 (Arithmetical Hierarchy). Let φ be a LP-formula. We
say that φ is ∆0 (or Σ0 or Π0) iff it is in the smallest set Γ of formulas
such that

(1) Γ contains all atomic formulas (x P y,x “ y).

(2) If φ,ψ P Γ, then so are ␣φ and φ^ ψ.a

(3) If φ P Γ, then pDx P y. φq, p@x P y. φq P Γ.

If φpx0, . . . , xmq P Σn, then p@x0. . . .@xm. φpx0, . . . , xmqq P Πn`1. If
ZFC |ù φØ ψ and φ P Σn, then ψ P Σn.

If φpx0, . . . , xmq P Πn, then pDx0. . . . Dxm. φpx0, . . . , xmq P Σn`1. If ZFC |ù
φØ ψ and φ P Πn, then ψ P Πn.

∆n :“ Σn XΠn.

aIt follows that φ _ ψ, φ Ñ ψ and φ Ø ψ are also in Γ.

Notation 2.113.52. Assume that M is transitive and φ is sentence. Then

M |ù φ

means that pM, P |M q |ù φ.

If a0, . . . , an P M and φpx0, . . . , xnq is a LP-formula, then we say M |ù

φpa0, . . . , anq iff M satisfies φpx0, . . . , xnq for the assignment xi ÞÑ ai.

Lemma 2.114. Let M be transitive, φ P ∆0 and a0, . . . , an P M . Then
M |ù φpa0, . . . , anq iff V |ù φpa0, . . . , anq.

Proof. Clearly M |ù ai P aj ðñ V |ù ai P aj and M |ù ai “ aj ðñ V |ù

ai “ aj , i.e. the lemma holds for atomic φ.

It is clear that if M |ù φi ðñ V |ù φi, i “ 1, 2, then also M |ù ␣φi ðñ

V |ù ␣φi and M |ù φ1 ^ φ2 ðñ V |ù φ1 ^ φ2.
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Assume that the lemma holds for φ. Then it also holds for Dai P aj . φ: We have
that ai P aj is atomic and by the assumption that the lemma holds for φ so
since M is transitive, a witness can be transferred from V to M and vice versa.
The case of @ai P aj . φ can be treated similarly.

A similar arguments yields upwards absoluteness for Σ1-formulas and down-
wards absoluteness for Π1-formulas:

Lemma 2.115. LetM be transitive. Let φpx0, . . . , xnq P LP and a0, . . . , an P
M . Then

• If φ is Σ1, then

M |ù φpa0, . . . , anq ùñ V |ù φpa0, . . . , anq.

• If φ is Π1, then

V |ù φpa0, . . . , anq ùñ M |ù φpa0, . . . , anq.

Definition 2.116. Assume that T is a theory and φ P LP a formula We
say that φ is ∆T

1 iff there are formulas ψ, τ such that ψ P Σ1, τ P Π1 and

T $ φØ ψ Ø τ.

Again by a similar argument we get:

Lemma 2.117. Let M be a transitive model of a theory T . Let φ be a
∆T

1 formula and a0, . . . , an P M . Then M |ù φpa0, . . . , anq ðñ V |ù

φpa0, . . . , anq.

Lemma 2.118. Let φ denote the statement “R is a well-founded relation”.
Then φ P ∆ZFC´

1 .

Proof. φ is equivalent to

• R is a relation (∆0) and

• @b. bX ranpRq “ H_ Dx P b. “x is R-minimal”.

We only need to care about the second point. This is equivalent (using (C)!) to
the statement that there is no

f : ω Ñ dompRq Y ranpRq such that @n ă ω. fpn` 1qRfpnq,

which can be written as a Π1-formula. With the help of ranks, we can also write
it as a Σ1-formula:

Dr : OR Ñ dompRqYranpRq. @x P dompRqYranpRq. rpxq “ tsupprpyq`1q : yRxu.
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So φ P ∆ZFC´

1 .

Lemma 2.119. Assume that M is transitive. Then

(1) M |ù (Ext).

(2) M |ù (Fund).

(3) If ω PM , then M |ù (Inf).

(4) If M is closed under px, yq ÞÑ tx, yu, then M |ù (Pair).

(5) If M is closed under x ÞÑ
Ť

x, then M |ù (Union).

Proof. (1) Let x, y P M such that M |ù @t. t P x ðñ t P y. Since M
is transitive V |ù @t. t P x ðñ t P y. Since V |ù Ext, we can apply
V |ù x “ y ðñ M |ù x “ y.

(2) We need to show M |ù @y ‰ H. Dx P y. x X y “ H. Let y P M . Since
V |ù (Fund), V |ù Dx P y. xX y “ H. Note that this is a ∆0-formula, hence
M |ù Dx P y. xX y “ H.

(3) By assumption ω PM . Since M is transitive, we get ω ĎM . Hence ω is a
witness for (Inf).

(4) Trivial.

(5) Trivial.

3 Forcing

Recall that a structure P “ pP,ďq is a partially ordered set (poset) if ď is
reflexive, symmetric and transitive.

Definition 3.1. A non-empty poset P “ pP,ďq is called a forcing notion.
The elements of P are called conditions. If q ď p we say that q is stronger
than p.a D Ď P is called dense iff @p P P. Dq P D. q ď p.

Let p P P,D Ď P . Then D is dense below p iff @P Q q ď p. Dr P D. r ď q.

G Ď P is called a filter iff

(1) @p, q P G. Dr P G. r ď p^ r ď q.

(2) pp P G^ p ď qq ùñ q P G.

For p, q P P we say that p and q are compatible, p||q, iff Dr P P. r ď
p^ r ď q. Otherwise they are incompatible, p K q.
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Let D be a family of dense subsets of P and G a filter. We say that G is
D-generic iff @D P D. GXD ‰ H.

ai.e. it carries more information.

Lemma 3.2. Let P “ pP,ďq be a poset, D a countable family of dense
subsets of P and p P P . Then there exists a D-generic filter G Ď P such
that p P G.

Proof. Fix p as above. Let xDn : n ă ωy be an enumeration of D. Let p0 ď p be
such that p0 P D0. If pn is given, let pn`1 ď pn be such that pn`1 P Dn`1. This
is possible since D is a collection of dense sets. Define G :“ tq P P : Dn. pn ď qu.

G is a filter: Let r, q P G. Let nr, nq ă ω such that pnr
ď r and pnq

ď q. Let
m “ maxtnr, nqu. Then pm is a common extension.

Clearly G is D-generic.

[Lecture 20, 2024-01-15]

Idea. We want to add a new object that satisfies certain condition. The ele-
ments of the forcing notion correspond to approximations of this object.

A filter picks some information which we want to be true. Being a filter ensures
that this information does not contradict itself.

Definition 3.3. Assume that M is a transitive model of ZFC, and P PM
a poset. G Ď P is said to be M-generic for P if whenever D Ď P is dense
and in M , then GXD ‰ H.

Remark 3.3.53. That is the same as being tD Ď P dense : D P Mu-
generic with generic defined as in Definition 3.1.

Definition 3.4 (Cohen Forcing). Let P be the set of finite partial function
p from ω to 2, i.e. P “ 2ăω.

The order on P is described by q ď p : ðñ q Ě p. P is called the Cohen
forcing.

Fact 3.4.54. Assume X Ď 2ω is countable, Then there is x P 2ωzX.

Of course we already know that, but let’s use it to test our machinery:

Proof. Assume that X “ txn : n P ωu is an enumeration of X. Let Dn “ tp P
P : Di P dompPq. xnpiq ‰ ppiqu. This makes sure that we get a “new” element
not belonging to X.
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Claim 1. Dn is dense in P.

Subproof. Assume q P P. Let i “ 1`maxpdompqqq. Note that i R dompqq. Let
p “ q Y tpi, 1´ xnpiqqu. Then p P Dn. ■

Let Ei “ tp P P : i P dompPqu. This makes sure that our “new” element is
defined everywhere.

Claim 2. @i ă ω. Ei Ď P is dense.

Subproof. Assume q P P. If i P dompqq pick p “ q P Ei. If i R dompqq, let
p “ q Y tpi, 0qu P Ei. ■

Let D “ tDn : n ă ωu Y tEi : i ă ωu. This is a countable subset of dense sets.
By Lemma 3.2 there is a D-generic filter G. Let y “

Ť

G. Note that y is a
function, since any two elements of G are compatible.

Note that the “new” element did already exists, so we used forcing language to
find it but didn’t actually do anything.

Lemma 3.5. Let M be a transitive model of ZFC and let P “ pP,ďq PM .

Let D Ď P, D PM , p P P. Then

(1) P is a partial order iff M |ù “P is a partial order”.

(2) D is dense in P iff M |ù “D is dense in P”.

(3) D is dense below p iff M |ù “D is dense below p” (this only makes
sense if p PM).

Proof. All the definitions are ∆0, so we can apply Lemma 2.114.

Definition 3.6. Assume that M is a transitive model of ZFC and P PM is
a poset. G Ď P is called a P-generic filter over M or M-generic filter
for P if

@D PM. ppD Ď P is denseq ùñ GXD ‰ Hq.

Corollary 3.7. If M is a countable transitive model of ZFC, P P M is a
poset and p P P, then there is an M -generic filter G Ď P with p P G.

Remark 3.7.55. The filter usually exists outside of M . M itself does not
think that M is countable, since M |ù ZFC. But from the outside, we see
that M is countable, so we can find a filter.
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Definition 3.8. Assume that P is a poset. P is said to be atomless if for
all p P P there are q, r P P such that

(1) q ď p, r ď p,

(2) qKr.

Example 3.9. The Cohen Forcing (3.4) is atomless.

Usually we are only interested in atomless partial orders.

Lemma 3.10. Assume that M is a transitive model of ZFC, P P M an
atomless poset and let G Ď P be M -generic for P. Then G RM .

Proof. Towards a contradiction assume G P M . Define D :“ PzG. We’ll show
that D Ď P is dense, which is a contradiction, since G was assumed to be M -
generic. Let q P P and let r, s be two extensions of q such that rKs. These exist
because P is atomless. Since G is a filter, it can contain at most one of tr, su,
wlog. s R G. In particular, s P D and s ď q. Hence D is dense in P.

Lemma 3.11. Assume that M is a transitive model of ZFC, P P M a
poset, G Ď P an M -generic filter and p P G.

If D is dense below p, then GXD ‰ H.

Proof. Let E “ D Y tq P P : qKpu. E Ď P is dense: Let r P P.

• If r||p let s ď r, p. Since D is dense below p, there exists s P D such that
s ď s. Since D Ď E, s P E.

• If rKp, then it is obvious that r P E.

Since E PM , GX E ‰ H.

GX pD Y tq P P : qKpuq ‰ H

ùñ pGXDq Y pGX tq P P : qKpuq
looooooooooomooooooooooon

H

‰ H

Definition 3.12. Assume that P is a poset.

(1) A Ď P is said to be an antichain iff for all p ‰ q in A, pKq.

(2) An antichain A Ď P is a maximal antichain iff @r P P, there exists
a P P such that p||r.
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(3) X Ď P is said to be open if @p P X. @q ď p. q P X.

Remark 3.12.56. Note that if A is a maximal antichain in P, then it is
maximal in ptA Ď P : A is an antichainu,Ďq. Using (C), every antichain
can be extend to a maximal antichain.

The statement “A is an antichain” is ∆0.

Note that “every antichain of P is countable” is not necessarily absolute
between transitive models of ZFC.

Lemma 3.13. Assume that M is a transitive model of ZFC, P PM a poset
and G Ď P a filter. Then the following are equivalent:

(1) G is P-generic over M .

(2) GXA ‰ H for every maximal antichain A PM .

(3) GXD ‰ H for every dense open D PM with D Ď P

We’ll prove this next time.
[Lecture 21, 2024-01-18]

Goal. We want to show that certain statements are consistent with ZFC (or
ZF), for instance CH.

We start with a model M of ZFC. Usually we want M to be transitive.

We want to enlarge M to get a bigger model, where our desired statement holds,
i.e. add more reals to violate CH.

However we need to do this in a somewhat controlled way, so we can’t just do
it the way one builds field extensions. In particular, when trying to violate CH
we need to make sure that we don’t collapse cardinals.

Remark 3.13.57. The idea behind forcing is clever. Unfortunately an
easy “how could I have come up with this myself”-approach does not seem
to exist.

Remark 3.13.58. How can a countable transitive model M even exist?

M believes some statements that are wrong from the outside perspective.
For example there exists ℵM

1 P M such that M |ù x “ ℵ1. ℵM
1 is indeed

an ordinal (since being an ordinal is a Σ0-statement). However ℵM
1 is

countable, since M is countable and transitive. This is fine. (Note that
“ℵM

1 is uncountable” is a Π1-statement.)

Idea (The method of forcing). Start with M , a countable transitive model of
ZFC and let P P M be a partial order, where p ď q means that p has “more
information” than q.
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A filter g Ď P is P-generic over M iff g XD ‰ H for all dense D Ď P, D PM .

Next steps:

(1) Define the forcing extension M rgs.

(2) Show that M rgs |ù ZFC.

(3) Determine other facts about (the theory of) M rgs. This depends on the
partial order P we chose in the beginning (and maybe M).

Example 3.14 (Prototypical example). Let P “ 2ăω, p ď q : ðñ p Ě q
be Cohen forcing, often denoted C.

Let M be a countable transitive model of ZFC. Since the definition of C is
simple enough, C PM . Let g be C-generic over M .

Claim 1. For each n P ω, the set Dn :“ tp P C : n P domppqu is dense.

Subproof. This is trivial. ■

Claim 2. Dn PM .

Subproof. The definition of Dn is absolute. ■

Claim 3. If p, q P g XDn, then ppnq “ qpnq.

Subproof. g is a filter, so p and q are compatible. p, q P Dn makes sure
that ppnq and qpnq are defined. ■

Let x “
Ť

g. By Claim 3, x P 2ďω. By Claim 1 and Claim 2, we have
g XDn ‰ H for all n ă ω, hence n P dompxq for all n ă ω. So x P 2ω.

Claim 4. Let z P 2ω, z P M . Then Dz “ tp P C : Dn P domppq. ppnq ‰
zpnqu is dense.

Subproof. Trivial. ■

Claim 5. Dz PM for all z P 2ăω with z PM . Therefore, gXDz ‰ H for
all z P M , z : 2ăω. Hence x ‰ z for all z P M , z P 2ăω. In other words
x RM .

The new real x does not do too much damage to M when adding it.a (Some
reals would completely kill the model.)
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Now let α be an ordinal in M . Let

Cpαq :“ tp : p is a function with domain α,

ppξq P C for all ξ ă α,

tξ ă α : ppξq ‰ Hu is finiteu

(α many copies of C with finite support).

For p, q P Cpαq define p ď q : ðñ @ξ ă α. ppξq Ě qpξq. We have Cpαq PM

Let g be Cpαq-generic over M . Let xξ “
Ť

tppξq : p P gu for ξ ă α. xξ P 2ω:
For each n ă ω and ξ ă α,

Dn,ξ :“ tp P Cpαq : n P dompppξqqu PM

and Dn,ξ is dense.

Claim 6. For all ξ, η ă α, ξ ‰ η,

Dξ,η :“ tp P Cpαq : Dn P dompppξqq X dompppηqq. ppξqpnq ‰ ppηqpnqu

we have that Dξ,η PM and is Dξ,η dense.

Therefore if ξ ‰ η, xξ ‰ xη.

Currently this is not very exciting, since we only showed that for a count-
able transitive model M , there is a countable set of reals not contained in
M . The interesting point will be, that we can actually add these reals to
M .

aWe still need to make this precise.

Next we want to define M rgs.

[Lecture 22, 2024-01-22]

Warning: 3.14.59. Forcing will not be relevant for the exam. Because of
a lack of time, this is more of an outlook than a thorough presentation of
the material.

For the rest of the section, let us fix a transitive model M of ZFC a partial order
P and an M -generic filter g.

Definition 3.15 (P-names). For an ordinal α PMa, let MP
α, the P-names

in M of rank ď α, be defined as follows:

τ PMP
α : ðñ τ PM ^ τ Ď Pˆ

ď

tMP
β : β ă αu,

i.e. the elements of τ PMP
α are of the form pp, σq, where p P P and σ PMP

β

3 FORCING 60



for some β ă α.

Finally MP “
Ť

tMP
α : α PMu.

aRecall that OrdM “ OrdXM .

Let R be the relation on MP defined by σRτ iff Dp P P. pp, σq P τ . If τ P
MP and pp, σq P τ , then σ P tp, σu P pp, σq P τ , so the relation R is well
founded.

Definition 3.16. Let τ P MP
α. Then τg, the g-interpretation of τ , is

defined to be
tσg : Dp P g. pp, σq P τu.

Definition 3.17. M rgs, the forcing extension of M given by g, is

tτg : τ PMPu.

Lemma 3.18. M rgs is transitive.

Proof. Trivial!

Lemma 3.19. M Y tgu ĎM rgs.

Proof. For all x PM we need to find a name x̌ such that x̌g “ x.

We can recursively (along P) define

x̌ “ tpp, y̌q : p P P^ y P xu.

By induction, x̌ PM for all x PM .

Claim 1. x̌g “ x.

Subproof. Recall that P ‰ H. Inductively, we get

x̌g “ ty̌g : Dp P g. pp, y̌q P x̌u
induction
“ ty : Dp P g. pp, y̌q P x̌u

definition of x̌
“ ty : y P xu “ x.

■

So M ĎM rgs.

We also need a name for g. Let 9g:“ tpp, p̌q : p P Pu.
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Indeed

9gg “ tp̌g : Dp P g. pp, p̌q P 9gu

“ tp : p P gu “ g.

Lemma 3.20. M rgs |ù (Ext), (Fund), (Inf), (Pair), (Union).

Proof. • (Ext):

The formula @x. @y. pp@z P x. z P y^@z P y. z P xq Ñ x “ yq is Π1, hence
it is true in M rgs by Lemma 2.115.

• (Fund): Again,

@x. pDy P x. y “ y Ñ Dy P x. @z P y. z R xq

is Π1.

• (Inf) can be written as

Dx. p‰P x^ @y P x.y Y tyu P x
loooooooooooooooomoooooooooooooooon

Σ0

q.

We have ω PM ĎM rgs, so M rgs |ù (Inf).

• (Pair): Let us assume x, y P M rgs, say x “ τg and y “ σg. Let
π “ tpp, τq : p P Pu Y tpp, σq : p P Pu P MP. Then πg “ tτg, σgu “ tx, yu,
so tx, yu P M rgs. As a LP-statement, z “ tx, yu is Σ0, so M rgs |ù
“tx, yu is the pair of x and y”. Hence M rgs |ù (Pair).

• (Union): Similar to (Pair).

Still missing are

• (Pow),

• (Aus),

• (Rep),

• (C).

Definition 3.21 (Forcing relation). Let M be a countable transitive
model of ZFC and let P P M be a partial order. Let p P P and let φ be a
LP-formula.

Let τ1, . . . , τk PM
P be names.
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We say that p forces φpτ1, . . . , τkq,

p ,P
M φpτ1, . . . , τkq,

if for all h Ď P which are P-generic over M with p P h,

M rhs |ù φpτh1 , . . . , τ
h
k q.

Theorem 3.22. Fix an LP-formula φ. Then the relation

R “ tpp, τ1, . . . , τk : p ,P
M φpτ1, . . . , τkqu

is definable over M (in the parameter P).

Proof. Omitted.

Theorem 3.23 (Forcing Theorem). Let M , P, g, be as above, let φ be
a formula, and let τ1, . . . , τk PM

P. Then the following are equivalent:

(1) M rgs |ù φpτg1 , . . . , τ
g
k q.

(2) There is some p P g with

p ,P
M φpτ1, . . . , τkq.

Proof. Omitted.

Theorem 3.24. M rgs |ù ZFC.

Proof. We have already shown a part of this in Lemma 3.20.

Let us show that M rgs |ù (Aus), the rest is similar and left as an exercise.9

Let φ be a formula, let a, x1, . . . , xk PM rgs. We need to see

M rgs |ù Dy. y “ tz P a : φpz, x1, . . . , xkqu.

If suffices to show that there is some y P M rgs with y “ tz P a : M rgs |ù
φpz, x1, . . . , xkqu.

For this, let us construct a name for y. Let a “ τg, xi “ σg
i .

Let
π “ tpp, ρq : Dp ą p. pp, ρq P τ ^ p ,P

M φpρ, σ1, . . . , σkqu.

We have π PM , since the relation ,P
M can be defined in M .

9or done next semester in Logic IV!
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Let z P a such that M rgs |ù φpz, x1, . . . , xnq. We have z “ ρg for some ρ and
there is p P g with pp, ρq P π. Now M rgs “ φpρg, σg

1 , . . . σ
g
kq.

Let p1 ,P
M φpρ, σ1, . . . , σkq, where p1 P g. We have p1, p P g, so there is some

p ď p1, p with p P g. Then pp, ρq P π, so ρg P πg.

This shows that

tz P a : M rgs |ù φpz, x1, . . . , xkqu Ď πg.

The other inclusion is easy.

[Lecture 23, 2024-01-25]

Goal. We want to construct a model of ZFC such that 2ℵ0 ě ℵ2.

Let M be a countable transitive model of ZFC. Suppose that M |ù CH (other-
wise we are done).

Let α “ ωM
2 .

Let Cpαq :“ tp : p : αÑ C is a function such that tξ ă α : ppξq ‰ Hu is finiteu,
ordered by p ďCpαq q iff ppξq ďC qpξq for all ξ ă α.

Recall that C is the set of finite sequences of natural numbers ordered by p ďC q
iff p Ě q.

Let g be Cpαq-generic over M . For ξ ă α let xξ “
Ť

tppξq : p P gu. We have
already seen that xξ : ω Ñ ω is a function and xξ ‰ xη for ξ ‰ η.

We have M rgs |ù ZFC.10 As g PM rgs, we have xxξ : ξ ă αy PM rgs. Therefore
M rgs |ù “2ℵ0 ě α”. Also α “ ωM

2 . However the proof is not finished yet, since
we need to make sure, that M rgs does not collapse cardinals.

We only have M rgs |ù 2ℵ0 ě ℵM
2 , i.e. we need to see ℵMrgs

2 “ ℵM
2 .

Claim 7. Every cardinal of M is still a cardinal of M rgs.

This suffices, because then ℵM
0 “ ℵMrgs

0 , ℵM
1 “ ℵMrgs

1 , ℵM
2 “ ℵMrgs

2 , . . .

Definition 3.25. Let pP,ďq be a partial order. We say that P has the
countable chain condition (c.c.c.)a iff there is no uncountable an-
tichain, i.e. every uncountable V Ď P contains compatible p ‰ q.

ait should really be the “countable antichain condition”

We shall prove:

Claim 8. For all β, Cpβq has the c.c.c.

10We only handwaved this step.
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Claim 9. If P PM and M |ù “ P has the c.c.c.” and h is generic over M , then
all M -cardinals are still M rhs cardinals. 11

Proof of Claim 9. Suppose not. Let κ be minimal such thatM |ù “κ is a cardinal”,
but M rhs |ù “κ is not a cardinal”. Then κ “ pλ`qM for some unique M -
cardinal λ ă κ. By minimality, λ is also an M rhs-cardinal.

Let f PM rhs be such that M rhs |ù “f is a surjection from λ onto κ”. There is
a name τ PMP with τh “ f .

We then have some p P h with p ,P
M “τ is a surjection from λ̌ onto κ̌”.

Let ξ ă λ. Consider Xξ :“ tη ă κ : Dq ďP p. q , τpξ̌q “ η̌u PM .

Xξ is countable in M by the following argument (in M): For every η P Xξ, let
qη ď p be such that qξ ,

P
M τpξ̌q “ η̌. The set tqη : η P Xξu is an antichain

as for η1 ‰ η2 we have that qηi
, τpξ̌q “ η̌i, so they are not compatible. So

tqη : η P Xξu is countable by the c.c.c. Thus Xξ is countable.

Therefore we may define a function in M

F : λˆ ω ÝÑ κ

such that for all ξ ă λ
tF pξ, nq : n ă ωu “ Xξ.

F is surjective since f is surjective: For η ă κ, there is some ξ ă λ such that
M rhs |ù “fpξq “ η”, there is some q P h with q ,P

M τpξ̌q “ η̌. Pick q ď q, p.
This shows η P Xξ hence η “ F pξ, nq for some n. But |λ ˆ ω| “ |λ| “ λ, so in
M there is a surjection F 1 : λÑ κ, but κ is a cardinal in M  .

Proof of Claim 8. Omitted.

11Being a cardinal is Π1, so Mrhs cardinals are always M cardinals.
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