Logic II

Lecturer
Ralf Schindler

Assistant
Mirko Bartsch

Notes
Mirko Bartsch, Josia Pietsch

Version git: 9956de5
compiled: March 20, 2024 22:20

These are my notes on the lecture Logic II taught by Ralf SchindLer in winter 23/24 at the University Münster.

Many thanks to Fakhar Ahmad, Mirko Bartsch and Shiguma Kawamoto for providing notes for lectures I was unable attend!

If you find errors or want to improve something, please send me a message: lecturenotes@jrpie.de.

Warning 0.1. This is not an official script.
These notes follow the way the material was presented in the lecture rather closely. Additions (e.g. from exercise sheets) and slight modifications have been marked with \dagger.

Cut off for the exam is Christmas.

Contents

1 Naive set theory 3
2 ZFC 8
2.1 The Ordinals 17
2.2 Classes 21
2.3 Induction and Recursion 23
2.3.1 Applications of induction and recursion 26
2.4 Cardinals 28
2.5 Ordinal arithmetic 31
2.6 Cofinality 32
2.7 Some model theory and a second proof of Fodor's Theorem 41
3 Forcing 54
Index 66

Literature

- Schindler, Set theory
- K. Kunen
- T. Jech
- A. Kanamori, The higher infinite

Outline

- Set theory
- Naive set theory
- ZFC
- Ordinals and Cardinals
- Models of set theory (in particular forcing)
- Independence of CH.

1 Naive set theory

Definition 1.1. Let $A \neq \varnothing, B$ be arbitrary sets. We write $A \leqslant B(A$ is not bigger than B) iff there is an injection $f: A \hookrightarrow B$.

Lemma 1.2. If $A \leqslant B$, then there is a surjection $g: B \rightarrow A$.
Proof. Fix $f: A \hookrightarrow B$. If f is also surjective, then $f^{-1}: B \rightarrow A$ is also a bijection. Otherwise define g by choosing an arbitrary $x_{0} \in B$ and let

$$
g(y):= \begin{cases}x & : f(x)=y \\ x_{0} & : \text { if there is no such } x .\end{cases}
$$

Lemma 1.3. If there is a surjection $f: A \rightarrow B$, then $B \leqslant A$.
Proof. For every $x \in B$ choose one of its preimages under f. This is basically equivalent to AC .

Definition 1.4. For sets A, B write $A<B$ iff $A \leqslant B \wedge B \notin A$.

Theorem 1.5 (Cantor). $\mathbb{N}<\mathbb{R}$.
Proof (Cantor's original proof). Clearly $\mathbb{N} \leqslant \mathbb{R}$. Take some function $f: \mathbb{N} \rightarrow \mathbb{R}$
Define a sequence $\left(\left[a_{n}, b_{n}\right], n \in \mathbb{N}\right)$ of nonempty closed nested intervals, i.e. $a_{n} \leqslant$ $a_{n+1}<b_{n+1} \leqslant b_{n}$ as follows: Set $a_{0}:=0, b_{0}:=1$, and a_{n+1}, b_{n+1} such that $x_{n} \notin\left[a_{n+1}, b_{n+1}\right]$. Then $\bigcap_{n \in \mathbb{N}}\left[a_{n}, b_{n}\right] \neq \varnothing$ since \mathbb{R} is complete. Thus f is not surjective.

Notation 1.5.1. For a set $A, \mathbb{P}(A)$ denotes the power set of A, i.e. the set of all subsets of A.

Theorem 1.6. For all sets $A, A<\mathbb{P}(A)$.

Proof. Clearly $A \leqslant \mathbb{P}(A)$ since $A \ni a \mapsto\{a\} \in \mathbb{P}(A)$ is an injection.
Let $f: A \rightarrow \mathbb{P}(A)$, we want to show that this is not surjective. Let $c:=\{x \in$ $A \mid x \notin f(x)\} \in \mathbb{P}(A)$. Suppose that $f\left(x_{0}\right)=c$. Then both $x_{0} \in c$ and $x_{0} \notin c$ lead to a contradiction.

Definition 1.7. For sets A, B write $A \sim B$ for $A \leqslant B$ and $B \leqslant A$.

Theorem 1.8 (Schröder-Bernstein). Let A, B be any sets. If $A \sim B$, there is a bijection $h: A \rightarrow B$.

Proof. Let $f: A \hookrightarrow B$ and $g: B \hookrightarrow A$ be injective. We need to define a bijection $h: A \rightarrow B$. For each $x \in A$ we define $N(x) \in \mathbb{N} \cup\{\infty\}$ and the maximal "preimage sequence" $\left(x_{n}: n<N(x)\right)$ as follows: $x_{0}:=x$, if $n+1<N$ and n is even, then $x_{n}:=g\left(x_{n+1}\right)$, if it is odd, $x_{n}:=f\left(x_{n+1}\right)$ and either $N=\infty$ or x_{N-1} has no preimage under f if $N-1$ is even, resp. g if $N-1$ is odd.
Similarly for each $y \in B$ an $M=M(y) \in \mathbb{N} \cup\{\infty\}$ and the maximal preimage sequence ($y_{n}: n<M$) can be defined.
Let $A^{\text {odd }}:=\{x \in A: N(x)$ is an odd natural number $\}, A^{\text {even }}:=\{x \in A:$ $N(x)$ is an even natural number $\}, A^{\infty}:=\{x \in A: N(x)=\infty\}$ and similarly for B.

Now define

$$
\begin{aligned}
& h: A \longrightarrow B \\
& x \longmapsto \begin{cases}f(x) & : x \in A^{\text {odd }} \cup A^{\infty}, \\
g^{-1}(x) & : x \in A^{\text {even }} .\end{cases}
\end{aligned}
$$

It is clear that this is bijective.

Definition 1.9. The continuum hypothesis (CH) says that there is no
 set A such that $\mathbb{N}<A<\mathbb{R}$, i.e. every uncountable subset $A \subseteq \mathbb{R}$ is in bijection with \mathbb{R}.

CH is equivalent to the statement that there is no set $A \subseteq \mathbb{R}$ which is uncountable $(\mathbb{N}<A)$ and there is no bijection $A \leftrightarrow \mathbb{R}$.

What we'll do next: Define open and closed subsets of \mathbb{R}. Show CH for open and closed sets.
[Lecture 02, 2023-10-19]

Definition 1.10. A set $O \subseteq \mathbb{R}$ is called open in \mathbb{R} iff it is the union of a set of open intervals.
A set $A \subseteq \mathbb{R}$ is called closed in \mathbb{R} iff it is the complement of an open set.

Remark 1.10.2. - If $\varnothing \neq O \stackrel{\text { open }}{\subseteq} \mathbb{R}$ then $O \sim \mathbb{R}$.

- If $O \subseteq \mathbb{R}$ is open, then O is the union of open intervals with rational endpoints, since \mathbb{Q} is dense.
$\operatorname{Remark}^{\dagger}$ 1.10.3. $\{O \subseteq \mathbb{R}\} \sim 2^{\aleph_{0}}<\mathcal{P}(\mathbb{R})$.

Definition 1.11. We call $x \in \mathbb{R}$ an accumulation point of A iff for all $a<x<b$ there is some $y \in A, y \in(a, b), y \neq x$. We write A^{\prime} for the set of all accumulation points of A.

Example 1.12. $\left\{\left.\frac{1}{n+1} \right\rvert\, n \in \mathbb{N}\right\}^{\prime}=\{0\}$.

Lemma 1.13. A set $A \subseteq \mathbb{R}$ is closed iff $A^{\prime} \subseteq A$.
Proof of Lemma 1.13. " \Longrightarrow " Let A be closed. Suppose that $x \in A^{\prime} \backslash A$. Then there exists $(a, b) \ni x$ disjoint from A. Hence $x \notin A^{\prime}$ ұ
$" \Longleftarrow "$ Suppose $A^{\prime} \subseteq A$.
Claim 1.13.1. $A \subseteq \mathbb{R}$ is closed iff all Cauchy sequences in A converge in A.
Subproof. Let A be closed and $\left\langle x_{n}: n \in \omega\right\rangle$ a Cauchy sequence in A. Suppose that $x=\lim _{n \rightarrow \infty} x_{n} \notin A$. Then there is $(a, b) \ni x$ disjoint from A. However $x_{n} \in(a, b)$ for almost all $n \in \omega z$

On the other hand let A not be closed. Then there exists a witness $x \in \mathbb{R} \backslash A$ such that $A \cap(a, b) \neq \varnothing$ for all $(a, b) \ni x$. In particular, we may pick $x_{n} \in$ $\left(x-\frac{1}{n+1}, x+\frac{1}{n+1}\right) \cap A$ for all $n<\omega$.

Now if $A^{\prime} \subseteq A$ and A were not closed, there would be some Cauchy-sequence $\left(x_{n}\right)$ in A such that $\lim _{n \rightarrow \infty} x_{n} \notin A$. But then $x \in A^{\prime} \subseteq A_{\imath}$.

Definition 1.14. $P \subseteq \mathbb{R}$ (or, more generally, a subset of any topological space) is called perfect iff $P \neq \varnothing$ and $P=P^{\prime}$.

Example † 1.14.4. Note that being perfect depends on the surrounding topological space: For example, $[0,1] \cap \mathbb{Q}$ is perfect as a subset of \mathbb{Q}, but not perfect as a subset of \mathbb{R}.

We want to prove two things:

- If P is perfect, then $P \sim \mathbb{R}$.
- If A is closed and uncountable then A has a perfect subset. In particular $A \sim \mathbb{R}$.

Lemma 1.15. Let $P \subseteq \mathbb{R}$ be perfect. Then $P \sim \mathbb{R}$.

Proof. It suffices to find an injection $f: \mathbb{R} \hookrightarrow P$. We have $\underbrace{\{0,1\}^{\omega}}_{\text {infinite } 0-1 \text {-sequences }} \sim \mathbb{R}$, hence it suffices to construct $f:\{0,1\}^{\omega} \hookrightarrow P$.
In order to do that, we are going to construct some g : $\underbrace{\{0,1\}^{<\omega}}_{\text {finite } 0 \text {-1-sequences }} \rightarrow P$
with certain properties by recursion on the length of $s \in\{0,1\}<\omega$.
Let $g(\varnothing)$ be any point in P. Suppose that $g(s) \in P$ has been chosen for all s of length $\leqslant n$. For each $s \in\{0,1\}^{n}$ pick $g(s) \in\left(a_{s}, b_{s}\right)$ such that $\left(a_{s}, b_{s}\right) \cap\left(a_{s^{\prime}}, b_{s^{\prime}}\right)=$ \varnothing for all s, s^{\prime} of length $n, b_{s}-a_{s} \leqslant \frac{1}{n^{3}}$ and $\left(a_{\left.s\right|_{n-1}}, b_{\left.s\right|_{n-1}}\right) \subseteq\left(a_{s}, b_{s}\right)$.
For each such s pick $x_{s} \in\left(a_{s}, b_{s}\right) \cap P$ with $x_{s} \neq f(s)$. This is possible since $P \subseteq P^{\prime}$. Now set $g\left(s^{\frown}\right):=g(s)$ and $g\left(s^{\frown}\right):=g\left(x_{s}\right)$. This finishes the construction.

If $t \in\{0,1\}^{\omega}$, then $\left(g\left(\left.t\right|_{n}\right), n<\omega\right)$ is a Cauchy sequence.
By $P^{\prime} \subseteq P$ we get that this sequence converges to a point in P. Define $f(t)$ to be this point.

If $t \neq t^{\prime} \in\{0,1\}^{\omega}$, then there is some n such that $\left.t\right|_{n} \neq\left. t^{\prime}\right|_{n}$, hence $f(t) \in$ $\left[a_{\left.t\right|_{n}}, b_{\left.t\right|_{n}}\right]$ and $f\left(t^{\prime}\right) \in\left[a_{\left.t^{\prime}\right|_{n}}, b_{\left.t^{\prime}\right|_{n}}\right]$ which are disjoint. Thus $f(t) \neq f\left(t^{\prime}\right)$, i.e. f is injective.
[Lecture 03, 2023-10-23]
Theorem 1.16 (Cantor-Bendixson). If $A \subseteq \mathbb{R}$ is closed, it is either at most countable or else A contains a perfect set.

Corollary 1.17. If $A \subseteq \mathbb{R}$ is closed, then either $A \leqslant \mathbb{N}$ or $A \sim \mathbb{R}$.

Fact 1.17.5. $A^{\prime}=\{x \in \mathbb{R} \mid \forall a<x<b .(a, b) \cap A$ is at least countable $\}$.

Proof. \supseteq is clear. For \subseteq, fix $a<x<b$ and let us define ($y_{n}: n \in \omega$) as well as $\left(\left(a_{n}, b_{n}\right): n \in \omega\right)$. Set $a_{0}:=a, b_{0}:=b$. Having defined $\left(a_{n}, b_{n}\right)$, pick $x \neq y_{n} \in A \cap\left(a_{n}, b_{n}\right)$, Then pick $a_{n}<a_{n+1}<x<b_{n+1}<b_{n}$ such that $y_{n} \notin\left(a_{n+1}, b_{n+1}\right)$. Clearly $y_{n} \neq y_{n+1}$, hence $\left\{y_{n}: n \in \mathbb{N}\right\}$ is a countable subset of $A \cap(a, b)$.

Definition 1.18. Let $A \subseteq \mathbb{R}$. We say that $x \in \mathbb{R}$ is a condensation point of A iff for all $a<x<b,(a, b) \cap A$ is uncountable.

By the fact we just proved, all condensation points are accumulation points.
Proof of Theorem 1.16. Fix $A \subseteq \mathbb{R}$ closed. We want to see that A is at most countable or there is some perfect $P \subseteq A$. Let

$$
P:=\{x \in \mathbb{R} \mid x \text { is a condensation point of } A\} .
$$

Since A is closed, $P \subseteq A$.

Claim 1.16.1. $A \backslash P$ is at most countable.
Subproof. For each $x \in A \backslash P$, there is $a_{x}<x<b_{x}$ such that $\left(a_{x}, b_{x}\right) \cap A$ is at most countable. Since \mathbb{Q} is dense in \mathbb{R}, we may assume that $a_{x}, b_{x} \in \mathbb{Q}$.

Then

$$
A \backslash P=\bigcup_{x \in A \backslash P}\left(a_{x}, b_{x}\right) \cap A .
$$

\subseteq holds by the choice of a_{x} and b_{x}. For \supseteq let y be an element of the RHS. Then $y \in\left(a_{x_{0}}, b_{x_{0}}\right) \cap A$ for some x_{0}. As $\left(a_{x_{0}}, b_{x_{0}}\right) \cap A$ is at most countable, $y \notin P$.

Now we have that $A \backslash P$ is a union of at most countably many sets, each of which is at most countable.

Claim 1.16.2. If $P \neq \varnothing$, the P is perfect.
Subproof. $P \neq \varnothing: \checkmark$
$P \subseteq P^{\prime}$:
Let $x \in P$. Let $a<x<b$. We need to show that there is some $y \in(a, b) \cap P \backslash\{x\}$. Suppose that for all $y \in(a, b) \backslash\{x\}$ there is some $a_{y}<y<b_{y}$ with $\left(a_{y}, b_{y}\right) \cap A$ being at most countable. Wlog. $a_{y}, b_{y} \in \mathbb{Q}$. Then

$$
(a, b) \cap A=\{x\} \cup \bigcup_{\substack{y \in(a, b) \\ y \neq x}}\left[\left(a_{y}, b_{y}\right) \cap A\right]
$$

But then $(a, b) \cap A$ is at most countable contradicting $x \in P$.
$P^{\prime} \subseteq P$ (i.e. P is closed): Let $x \in P^{\prime}$. Then for $a<x<b$ the set $(a, b) \cap P$ always has a member y such that $y \neq x$. Since $y \in P$, we get that $(a, b) \cap A$ in uncountable, hence $x \in P$.

But now

$$
\begin{aligned}
& \text { perfect, unless }=\varnothing \overbrace{P}^{\varnothing} \cup \underbrace{(A \backslash P)}_{\text {at most countable }}
\end{aligned}
$$

\qquad

2 ZFC

ZFC stands for

- Zermelo's axioms (1905),
- Fraenkel's axioms,
- the Axiom of Choice (2.9).

Notation 2.0.6. We write $x \subseteq y$ as a shorthand for $\forall z .(z \in x \Longrightarrow z \in y)$.
We write $x=\varnothing$ for $\neg \exists y . y \in x$ and $x \cap y=\varnothing$ for $\neg \exists z .(z \in x \wedge z \in y)$.

We use $x=\{y, z\}$ for

$$
y \in x \wedge z \in x \wedge \forall a .(a \in x \Longrightarrow a=y \vee a=z)
$$

We write $z=x \cap y$ for

$$
\forall u .((u \in z) \Longrightarrow u \in x \wedge u \in y)
$$

$z=x \cup y$ for

$$
\forall u \cdot((u \in z) \Longleftrightarrow(u \in x \vee u \in y))
$$

$z=\bigcap x$ for

$$
\forall u \cdot((u \in z) \Longleftrightarrow(\forall v \cdot(v \in x \Longrightarrow u \in v)))
$$

$z=\bigcup x$ for

$$
\forall u .((u \in z) \Longleftrightarrow \exists v .(v \in x \wedge u \in v))
$$

and $z=x \backslash y$ for

$$
\forall u .((u \in z) \Longleftrightarrow(u \in x \wedge u \notin y))
$$

ZFC consists of the following axioms:

Axiom 2.1 (Extensionality).

$$
\forall x . \forall y \cdot(x=y \Longleftrightarrow \forall z .(z \in x \Longleftrightarrow z \in y))
$$

Equivalent statements using \subseteq :

$$
\forall x . \forall y .(x=y \Longleftrightarrow(x \subseteq y \wedge y \subseteq x))
$$

Axiom 2.2 (Foundation). Every set has an \in-minimal member:

$$
\forall x .(\exists a .(a \in x) \Longrightarrow \exists y . y \in x \wedge \neg \exists z \cdot(z \in y \wedge z \in x))
$$

Shorter:

$$
\forall x .(x \neq \varnothing \Longrightarrow \exists y \in x . x \cap y=\varnothing)
$$

Axiom 2.3 (Pairing).

$$
\forall x . \forall y . \exists z .(z=\{x, y\})
$$

Remark 2.3.7. Together with the axiom of pairing, the axiom of foundation implies that there can not be a set x such that $x \in x$: Suppose that $x \in x$. Then x is the only element of $\{x\}$, but $x \cap\{x\} \neq \varnothing$.

A similar argument shows that chains like $x_{0} \in x_{1} \in x_{2} \in x_{0}$ are ruled out as well.

Axiom 2.4 (Union).

$$
\forall x . \exists y .(y=\bigcup x)
$$

Axiom 2.5 (Power Set). We write $x=\mathcal{P}(y)$ for $\forall z .(z \in x \Longleftrightarrow z \subseteq x)$. The power set axiom states

$$
\forall x . \exists y . y=\mathcal{P}(x)
$$

Axiom 2.6 (Infinity). A set x is called inductive, iff $\varnothing \in x \wedge \forall y .(y \in$ $x \Longrightarrow y \cup\{y\} \in x)$.

The axiom of infinity says that there exists and inductive set.

Axiom Schema 2.7 (Separation). Let φ be some fixed fist order formula in \mathcal{L}_{\in} with free variables x, v_{1}, \ldots, v_{p}. Let b be a variable that is not free in φ. Then $(\mathrm{Aus})_{\varphi}$ states

$$
\forall v_{1} . \forall v_{p} . \forall a . \exists b . \forall x .\left(x \in b \Longrightarrow x \in a \wedge \varphi\left(x, v_{1}, v_{p}\right)\right)
$$

Let us write $b=\{x \in a \mid \varphi(x)\}$ for $\forall x .(x \in b \Longleftrightarrow x \in a \wedge f(x))$. Then (Aus) can be formulated as

$$
\forall a . \exists b .(b=\{x \in a \mid \varphi(x)\})
$$

Remark 2.7.8. (Aus) proves that

- $\forall a . \forall b . \exists c .(c=a \cap b)$,
- $\forall a . \forall b . \exists c .(c=a \backslash b)$,
- $\forall a . \exists b .(b=\bigcap a)$.

Axiom Schema 2.8 (Replacement (Fraenkel)). Let φ be some \mathcal{L}_{ϵ} formula with free variables x, y. Then

$$
\begin{aligned}
& \forall v_{1} \ldots \forall v_{p} \\
& {[(\forall x \exists!y . \varphi(x, y, \bar{v})) \rightarrow \forall a . \exists b . \forall y .(y \in b \leftrightarrow \exists x(x \in a \wedge \varphi(x, y, \bar{v}))]}
\end{aligned}
$$

Axiom 2.9 (Choice). Every family of pairwise disjoint non-empty sets
has a choice set:
$\forall x$.

$$
\begin{aligned}
& \left((\forall y \in x . y \neq \varnothing) \wedge\left(\forall y \in x . \forall y^{\prime} \in x .\left(y \neq y^{\prime} \Longrightarrow y \cap y^{\prime}=\varnothing\right)\right)\right) \\
& \Longrightarrow \exists z \cdot \forall y \in x . \exists u \cdot(z \cap y=\{u\})
\end{aligned}
$$

[Lecture 05, 2023-10-30]

Definition 2.10. Zermelo:

$$
Z:=(\text { Ext })+(\text { Fund })+(\text { Pair })+(\text { Union })+(\text { Pow })+(\text { Inf })+(\text { Aus })_{\varphi}
$$

Zermelo and Fraenkl:

$$
\begin{aligned}
& \mathrm{ZF}:=Z+(\operatorname{Rep})_{\varphi} \\
& \text { ZFC }:=\mathrm{ZF}+(\mathrm{C})
\end{aligned}
$$

Variants:

$$
\begin{aligned}
& \mathrm{ZFC}^{-}:=\mathrm{ZFC} \backslash(\text { Pow }) . \\
& \mathrm{ZFC}^{-\infty}:=\mathrm{ZFC} \backslash(\mathrm{Inf})
\end{aligned}
$$

Definition 2.11. For sets x, y we write (x, y) for $\{\{x\},\{x, y\}\}$.

Remark 2.11.9. Note that $(x, y)=(a, b) \Longleftrightarrow x=a \wedge y=b$. ZFC proves that (x, y) always exists.

Definition 2.12. For sets x_{1}, \ldots, x_{n+1} we write

$$
\left(x_{1}, \ldots, x_{n+1}\right):=\left(\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right)
$$

where we assume that $\left(x_{1}, \ldots, x_{n}\right)$ is already defined.

Definition 2.13. The cartesian product $a \times b$ of two sets a and b is defined to be $a \times b:=\{(x, y) \mid x \in a \wedge y \in b\}$.

Fact 2.13.10. $a \times b$ exists.

Proof. Use (Aus) over $\mathcal{P}(\mathcal{P}(a \cup b))$.

Definition 2.14. For a_{1}, \ldots, a_{n} we define

$$
a_{1} \times \ldots \times a_{n}:=\left(a_{1} \times \ldots \times a_{n-1}\right) \times a_{n}
$$

recursively.
For $a=a_{1}=\ldots=a_{n}$, we write a^{n} for $a_{1} \times \ldots \times a_{n}$.

Remark 2.14.11. The fact that ZFC can be used to encode all of mathematics, should not be overestimated. It is clumsy to do it that way. Nobody cares anymore. There are better foundations. What makes ZFC special is that it allows to investigate infinity.

Definition 2.15. An n-ary relation R is a subset of $a_{1} \times \ldots \times a_{n}$ for some sets a_{1}, \ldots, a_{n}.

For a binary relation R (i.e. $n=2$) we define

$$
\operatorname{dom}(R):=\{x \mid \exists y .(x, y) \in R\}
$$

and

$$
\operatorname{ran}(R):=\{y \mid \exists x .(x, y) \in R\}
$$

Definition 2.16. A binary relation R is a function iff

$$
\forall x \in \operatorname{dom}(R) . \exists y . \forall y^{\prime} .\left(y^{\prime}=y \Longleftrightarrow x R y^{\prime}\right) .
$$

A function f is a function from d to b iff $d=\operatorname{dom}(f)$ and $\operatorname{ran}(f) \subseteq b$.
We write $f: d \rightarrow b$. The set of all function from d to b is denoted by ${ }^{d} b$ or b^{d}.

Fact 2.16.12. Given sets d, b then ${ }^{d} b$ exists.

Proof. Apply again (Aus) over $\mathcal{P}(d \times b)$.

Definition 2.17. We all know how injective, surjective, bijective, ... are defined.

Notation 2.17.13. For $f: d \rightarrow b$ and $a \subseteq d$ we write $f^{\prime \prime} a:=\{f(x): x \in a\}$ (the pointwise image of a under f).
(In other mathematical fields, this is sometimes denoted as $f(a)$. We don't do that here.)

Definition 2.18. A binary relation \leqslant on a set a is a partial order iff \leqslant is

- reflexive, i.e. $x \leqslant x$,
- antisymmetric (sometimes this is also called symmetric), i.e. $x \leqslant$ $y \wedge x \leqslant y \Longrightarrow x=y$, and
- transitive, i.e. $x \leqslant y \wedge y \leqslant z \Longrightarrow x \leqslant z$.

If additionally $\forall x, y .(x \leqslant y \vee y \leqslant x)$, \leqslant is called a linear order (or total order).

Definition 2.19. Let (a, \leqslant) be a partial order. Let $b \subseteq a$. We say that x is a maximal element of b iff

$$
x \in b \wedge \neg \exists y \in b .(y>x)
$$

We say that x is the maximum of $b, x=\max (b)$, iff

$$
x \in b \wedge \forall y \in b . y \leqslant x
$$

In a similar way we define minimal elements and the minimum of b. We say that x is an upper bound of b if $\forall y \in b .(x \geqslant y)$. Similarly lower bounds are defined.

We say $x=\sup (b)$ if x is the minimum of the set of upper bounds of b. (This does not necessarily exist.) Similarly $\inf (b)$ is defined.

Remark † 2.19.14. Note that in a partial order, a maximal element is not necessarily a maximum. However for linear orders these notions coincide.

Definition 2.20. Let $\left(a, \leqslant_{a}\right)$ and $\left(b, \leqslant_{b}\right)$ be two partial orders. Then a function $f: a \rightarrow b$ is called order-preserving iff

$$
\forall x, y \in a .\left(x \leqslant_{a} y\right) \Longleftrightarrow f(x) \leqslant_{b} f(y)
$$

An order-preserving bijection is called an isomorphism. We write $(a, \leqslant a$ $) \cong\left(b, \leqslant_{b}\right)$ if they are isomorphic.

Definition 2.21. Let (a, \leqslant) be a partial order. Then (a, \leqslant) is a wellorder, iff

$$
\forall b \subseteq a . b \neq \varnothing \Longrightarrow \min (b) \text { exists. }
$$

Fact 2.21.15. Let (a, \leqslant) be a well-order, then (a, \leqslant) is total.

Proof. For $x, y \in a$ consider $\{x, y\}$. Then $\min (\{x, y\}) \leqslant x, y$.

Lemma 2.22. Let (a, \leqslant) be a well-order. Let $f: a \rightarrow a$ be an orderpreserving map. Then $f(x) \geqslant x$ for all $x \in a$.

Proof. Consider $x_{0}:=\min (\{x \in a \mid f(x)<x\})$.

Lemma 2.23. If (a, \leqslant) is a well-order and $f:(a, \leqslant) \leftrightarrow(a, \leqslant)$ is an isomorphism, then f is the identity.

Proof. By the last lemma, we know that $f(x) \geqslant x$ and $f^{-1}(x) \geqslant x$.

Lemma 2.24. Suppose $\left(a, \leqslant_{a}\right)$ and $\left(b, \leqslant_{b}\right)$ are well-orderings such that $\left(a, \leqslant_{a}\right) \cong\left(b, \leqslant_{b}\right)$. Then there is a unique isomorphism $f: a \rightarrow b$.

Proof. Let f, g be isomorphisms and consider $g^{-1} \circ f:\left(a, \leqslant_{a}\right) \stackrel{\cong}{\Longrightarrow}\left(a, \leqslant_{a}\right)$. We have already shown that $g^{-1} \circ f$ must be the identity, so $g=f$.

Definition 2.25. If (a, \leqslant) is a partial order and if $x \in a$, then write $\left.(a, \leqslant)\right|_{x}$ for $\left(\{y \in a \mid y \leqslant x\}, \leqslant \cap\{y \in a \mid y \leqslant x\}^{2}\right)$.

Abuse of Notation ${ }^{\dagger} \mathbf{2 . 2 5}$.16. For a partial order $\left(a, \leqslant_{a}\right)$ we sometimes just write a.

Theorem 2.26. Let $\left(a, \leqslant_{a}\right)$ and $\left(b, \leqslant_{b}\right)$ be well-orders. Then exactly one of the following three holds:
(i) $a \cong b$,
(ii) $\exists x \in b .\left.a \cong b\right|_{x}$,
(iii) $\exists x \in a .\left.a\right|_{x} \cong b$.

Proof. Let us define a relation $r \subseteq a \times b$ as follows: Let $(x, y) \in r$ iff $\left.\left.a\right|_{x} \cong b\right|_{y}$. By the previous lemma, for each $x \in a$, there is at most one $y \in b$ such that $(x, y) \in r$ and vice versa, so r is an injective function from a subset of a to a subset of b.

Claim 1. r is order-preserving:

Subproof. If $x<_{a} x^{\prime}$, then consider the unique y^{\prime} such that $\left.\left.a\right|_{x^{\prime}} \cong b\right|_{y^{\prime}}$. The isomorphism restricts to $\left.\left.a\right|_{x} \cong b\right|_{y}$ for some $y<_{b} y^{\prime}$.

Claim 2. $\operatorname{dom}(r)=a \vee \operatorname{ran}(r)=b$.
Subproof. Suppose that $\operatorname{dom}(r) \subsetneq a$ and $\operatorname{ran}(r) \subsetneq b$.
Let $x:=\min (a \backslash \operatorname{dom}(r))$ and $y:=\min (b \backslash \operatorname{ran}(r))$. Then $\left.\left.\left(a, \leqslant_{a}\right)\right|_{x} \cong\left(b, \leqslant_{b}\right)\right|_{y}$. But now $(x, y) \in r$ which is a contradiction.

Theorem 2.27 (Zorn). Let (a, \leqslant) be a partial order with $a \neq \varnothing$. Assume that for all $b \subseteq a$ with $b \neq \varnothing$ and b linearly ordered, b has an upper bound. Then a has a maximal element.

Proof of Theorem 2.27. Fix (a, \leqslant) as in the hypothesis. Let $A:=\{\{(b, x): x \in$ $b\}: b \subseteq a, b \neq \varnothing\}$. Note that A is a set (use separation on $\mathcal{P}(\mathcal{P}(a) \times \bigcup \mathcal{P}(a)))$. Note further that if $b_{1} \neq b_{2}$, then $\left\{\left(b_{1}, x\right): x \in b_{1}\right\}$ and $\left\{\left(b_{2}, x\right): x \in b_{2}\right\}$ are disjoint. Hence the Axiom of Choice (2.9) gives us a choice function f on A, i.e. $\forall b \in \mathcal{P}(a) \backslash\{\varnothing\}$. $(f(b) \in b)$.

Now define a binary relation \leqslant^{*} : We let W denote the set of all well-orderings \leqslant^{\prime} of subsets $b \subseteq a$, such that for all $u, v \in b$ if $u \leqslant^{\prime} v$ then $u \leqslant v$ and for all $u \in b$ and

$$
B_{u}^{\leqslant^{\prime}}:=\left\{w \in a: w \text { is an } \leqslant \text {-upper bound of }\left\{v \in b: v \leqslant \leqslant^{\prime} u\right\}\right\}
$$

then $B_{u}^{\leqslant^{\prime}} \neq \varnothing$ and $f\left(B_{u}^{\leqslant^{\prime}}\right)=u$.
Claim 2.27.1. If $\leqslant^{\prime}, \leqslant^{\prime \prime} \in W$, then $\leqslant^{\prime} \subseteq \leqslant^{\prime \prime}$ or $\leqslant^{\prime \prime} \subseteq \leqslant^{\prime}$.
Subproof. Let $\leqslant^{\prime} \in W$ be a well-ordering of $b \subseteq a$ and let $\leqslant^{\prime \prime} \in W$ be a wellordering on $c \subseteq a$. We know that wlog. $\left(b, \leqslant^{\prime}\right) \cong\left(c, \leqslant^{\prime \prime}\right)$ or $\exists v \in c .\left(b, \leqslant^{\prime}\right) \cong$ $\left.\left(c, \leqslant^{\prime \prime}\right)\right|_{v}$. Let $g: b \rightarrow c$ or $g:\left.b \rightarrow c\right|_{v}$ be a witness. We want to show that $g=\mathrm{id}$. Suppose that $g \neq \mathrm{id}$. Let $u_{0} \in b$ be \leqslant^{\prime}-minimal such that $g\left(u_{0}\right) \neq u_{0}$. Writing $\bar{g}:=\left.g\right|_{\left\{w \in b: w<^{\prime} u_{0}\right\}}$, then $\left.\left.\left(b, \leqslant^{\prime}\right)\right|_{u_{0}} \cong\left(c, \leqslant^{\prime \prime}\right)\right|_{g\left(u_{0}\right)}$ and \bar{g} is in fact the identity on $\left\{w \in b \mid w \leqslant^{\prime} u_{0}\right\}$ but this means $\left\{w \in b \mid w<^{\prime} u_{0}\right\}=\left\{w \in c \mid w<^{\prime \prime} g\left(u_{0}\right)\right\}$ and $B_{u_{0}}^{\leqslant^{\prime}}=B_{g\left(u_{0}\right)}^{\leqslant^{\prime \prime}} \neq \varnothing$. Then $u_{0}=f\left(B_{u_{0}}^{\leqslant^{\prime}}\right)=f\left(B_{g\left(u_{0}\right)}^{\leqslant^{\prime \prime}}\right)=g\left(u_{0}\right)$. Thus g is the identity.

Given the claim, we can now see that $\bigcup W$ is a well-order $\leqslant^{* *}$ of a. Let $B=\{w \in a \mid w$ is a \leqslant-upper bound of $b\}$ (this is not empty by the hypothesis).

Suppose that b does not have a maximum. Then $B \cap b=\varnothing$. Now $f(B)=u_{0}$ and let

$$
\leqslant^{* *}=\leqslant^{*} \cup\left\{\left(u, u_{0}\right) \mid u \in b\right\} \cup\left\{\left(u_{0}, u_{0}\right)\right\}
$$

Then $B=B_{u_{0}}^{s^{* *}}$. So $\leqslant^{* *} \in W$, but now $u_{0} \in b$. So b must have a maximum. \qquad Why does
this prove the
lemma?

Remark 2.27.17. Over ZF the Axiom of Choice (2.9) and Zorn's Lemma (2.27) are equivalent.

Corollary 2.28 (Hausdorff's maximality principle). Let $a \neq \varnothing$. Let $A \subseteq$ $\mathcal{P}(a)$ be such that $\forall B \subseteq A$, if $x \subseteq y \vee y \subseteq x$ for all $x, y \in B$, then there is some $z \in A$ such that $x \subseteq z$ for all $x \in B$. Then A contains a \subseteq-maximal element.

Remark 2.28.18 (Cultural enrichment). Other assertions which are equivalent to the Axiom of Choice (2.9):

- Every infinite family of non-empty sets $\left\langle a_{i}: i \in I\right\rangle$ has non-empty product, i.e.

$$
\prod_{i \in I} a_{i} \neq \varnothing
$$

- Every set can be well-ordered.

2.1 The Ordinals

Goal. We want to define nice representatives of the equivalence classes of wellorders.

Recall that (Inf) states the existence of an inductive set x. We can hence form the smallest inductive set

$$
\omega:=\bigcap\{x: x \text { is inductive }\}
$$

Note that ω exists, as it is a subset of the inductive set given by (Inf). We call ω the set of natural numbers.

Notation 2.28.19. We write 0 for \varnothing, and $y+1$ for $y \cup\{y\}$.
With this notation the (Inf) is equivalent to

$$
\exists x_{0} .\left(0 \in x_{0} \wedge \forall n .\left(n \in x_{0} \Longrightarrow n+1 \in x_{0}\right)\right) .
$$

We have the following principle of induction:
Lemma 2.29. Let $A \subseteq \omega$ such that $0 \in A$ and for each $y \in A$, we have that $y+1 \in A$. Then $A=\omega$.

Proof. Clearly A is an inductive set, hence $\omega \subseteq A$.

Definition 2.30. A set x is transitive, iff $\forall y \in x . y \subseteq x$.

Definition 2.31. A set x is called an ordinal (or ordinal number) iff x is transitive and for all $y, z \in x$, we have that $y=z, y \in z$ or $y \ni z$.

Clearly, the \in-relation is a well-order on an ordinal x.
Remark 2.31.20. This definition is due to John von Neumann.

Lemma 2.32. Each natural number (i.e. element of ω) is an ordinal.

Proof. We use Induction (2.29). Clearly \varnothing is an ordinal. Now let α be an ordinal. We need to show that $\alpha+1$ is an ordinal. It is transitive, since α is transitive and $\alpha \subseteq(\alpha+1)$.

Let $x, y \in(\alpha+1)$. If $x, y \in \alpha$, we know that $x=y \vee x \in y \vee x \ni y$ since α is an ordinal. Suppose $x=\alpha$. Then either $y=x$ or $y \in \alpha=x$.

Lemma 2.33. ω is an ordinal.
Proof. ω is transitive:
Let $y \in \omega$. Let us show by Induction (2.29), that $y \subseteq \omega$. For $y=\varnothing$ this is clear.
Suppose that $y \in \omega$ with $y \subseteq \omega$. But now $\{y\} \subseteq \omega$, so $y+1=y \cup\{y\} \subseteq \omega$.
ω is well-ordered by \in :
We do a nested induction. First let

$$
\varphi(y, z):=y \in z \vee y \ni z \vee y=z
$$

We want to show:
(a) $\varphi(0,0)$
(b) $\forall z \in \omega \cdot \varphi(0, z) \Longrightarrow \varphi(0, z+1)$.
(c) $\forall y \in \omega \cdot\left(\left(\forall z^{\prime} \in \omega \cdot \varphi\left(y, z^{\prime}\right)\right) \Longrightarrow(\forall z \in \omega \cdot \varphi(y+1, z))\right)$.
(a) and (b) are trivial. Fix $y \in \omega$ and suppose that $\forall z^{\prime} \in \omega \cdot \varphi\left(y, z^{\prime}\right)$. We want to show that $\forall z \in \omega . \varphi(y+1, z)$.

We already know that $\forall z \in \omega . \varphi(0, z)$ holds by (b). In particular, $\varphi(0, y+1)$ holds, so $\varphi(y+1,0)$ is true, since φ is symmetric. Now if $\varphi(y+1, z)$ is true, we want to show $\varphi(y+1, z+1)$ is true as well. We have

$$
(y+1 \in z) \vee(y+1=z) \vee(y+1 \ni z)
$$

by assumption.

- If $y+1 \in z \vee y+1=z$, then clearly $y+1 \in z+1$.
- If $y+1 \ni z$, then either $z=y$ or $z \in y$.
- In the first case, $z+1=y+1$.
- Suppose that $z \in y$. Then by the induction hypothesis $\varphi(y, z+1)$ holds. If $y \in z+1$, then $\{y, z\}$ would violate (Fund). If $y=z+1$, then $z+1 \in y+1$. If $z+1 \in y$, then $z+1 \in y+1$ as well.

Notation 2.33.21. From now on, we will write α, β, \ldots for ordinals.

Lemma 2.34. (a) 0 is an ordinal, and if α is an ordinal, so is $\alpha+1$.
(b) If α is an ordinal and $x \in \alpha$, then x is an ordinal.
(c) If α, β are ordinals and $\alpha \subseteq \beta$, then $\alpha=\beta$ or $\alpha \in \beta$.
(d) If α and β are ordinals, then $\alpha \in \beta, \alpha=\beta$ or $\alpha \ni \beta$.

Proof of Lemma 2.34. We have already proved (a) before.
(b) Fix $x \in \alpha$. Then $x \subseteq \alpha$. So if $y, z \in x$, then $y \in z \vee y=z \vee y \ni z$. Let $y \in x$. We need to see $y \subseteq x$. Let $z \in y$.

Claim 2.34.1. $z \in x$

Subproof. As α is transitive, we have that $z, y, x \in \alpha$. Thus $z \in x \vee z=x \vee z \ni x$. $z=x$ contradicts (Fund): Consider $\{x, y\}$. Then $x \cap\{x, y\}$ is non empty, as it contains y. Furthermore $x \in y \cap\{x, y\}$ $z \ni x$ also contradicts (Fund): If $x \in z$, then $z \ni x \ni y \ni z \ni x \ni \ldots .\{x, y, z\}$ yields a contradiction, as $y \in x \cap\{x, y, z\}, z \in y \cap\{x, y, z\}, x \in z \cap\{x, y, z\}$.
So $z \in x$ as desired.
(c) Say $\alpha \subsetneq \beta$. Pick $\xi \in \beta \backslash \alpha$ such that $\eta \in \alpha$ for every $\eta \in \xi \cap \beta$. (This exists by (Fund)). We want to see that $\xi=\alpha$. We have $\xi \subseteq \alpha$ by the choice of ξ. On the other hand $\alpha \subseteq \xi$: Let $\eta \in \alpha \subseteq \beta$. We have that $\eta \in \xi \vee \eta=\xi \vee \eta \ni \xi$. If $\xi \in \eta$, then since $\eta \in \alpha$, we get $\xi \in \alpha$ contradicting the choice of ξ. If $\xi=\eta$, the $\xi=\eta \in \alpha$, which also is a contradiction. Thus $\eta \in \xi$.

This yields $\alpha \in \beta$, hence α is an ordinal.
(d) By (c) if α and β are ordinals, then $\alpha \subseteq \beta \Longleftrightarrow(\alpha=\beta \vee \alpha \in \beta)$. We need tho see that if α, β are ordinals, then $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$. Suppose there are ordinals α, β such that this is not the case.
Pick such an α.
Let $\alpha_{0} \in \alpha \cup\{\alpha\}$ be such that there is some β with $\neg\left(\beta \subseteq \alpha_{0} \vee \alpha_{0} \subseteq \beta\right)$ for for all $\gamma \in \alpha_{0}, \forall \beta .(\beta \subseteq \gamma \vee \gamma \subseteq \beta)$. Pick β_{0} such that

$$
\neg\left(\beta_{0} \subseteq \alpha_{0} \vee \alpha_{0} \subseteq \beta_{0}\right)
$$

Consider $\alpha_{0} \cup \beta_{0}$.
Claim 2.34.2. $\alpha_{0} \cup \beta_{0}$ is an ordinal.
Subproof. $\alpha_{0} \cup \beta_{0}$ is clearly transitive. Let $\gamma, \delta \in \alpha_{0} \cup \beta_{0}$. We claim that $\gamma \in \delta \vee \gamma=\delta \vee \gamma \in \delta$. This can only fail if $\gamma \in \alpha_{0}$ and $\delta \in \beta_{0}$ (or the other way around). But then $\gamma \in \delta \vee \gamma=\delta \vee \delta \in \gamma$ by the choice of α_{0}.

Claim 2.34.3. $\alpha_{0}=\alpha_{0} \cup \beta_{0}$ or $\beta_{0}=\alpha_{0} \cup \beta_{0}$.

Subproof. If that is not the case, then $\alpha_{0} \in \alpha_{0} \cup \beta_{0}$ and $\beta_{0} \in \alpha_{0} \cup \beta_{0} . \alpha_{0} \in \alpha_{0}$ violates (Fund). Hence $\alpha_{0} \in \beta_{0}$. By the same argument, $\beta_{0} \in \alpha_{0}$. But this violates (Fund), as $\alpha_{0} \in \beta_{0} \in \alpha_{0}$.

Lemma 2.35. Let X be a set of ordinals, $X \neq \varnothing$. Then $\bigcap X$ and $\bigcup X$ are ordinals.

Proof. Easy.
It is actually the case that $\bigcap X \in X$: Pick $\alpha \in X$ such that $\alpha \subseteq \beta$ for all $\beta \in X$. This exists by (Fund) and since all ordinals are comparable. Then $\alpha=\bigcap X$.

Notation 2.35.22. We write $\min (X)$ for $\bigcap X$ and $\sup (X)$ for $\bigcup X$.
It need not be the case that $\bigcup X \in X$, for example $\bigcup \omega=\omega$.
Definition 2.36. An ordinal α is called a successor ordinal, iff $\alpha=$ $\beta \cup\{\beta\}$ for some $\beta \in \alpha$. Otherwise α is called a limit ordinal.

Observe. Note that α is a limit ordinal iff for all $\beta \in \alpha, \beta+1 \in \alpha$: If there is $\beta \in \alpha$ such that $\beta+1 \notin \alpha$, then either $\alpha=\beta+1$ (i.e. α is a successor) or $\alpha \in \beta+1$, in which case $\beta \in \alpha \in \beta \cup\{\beta\}\{$.
Also if α is a successor, then by definition there is some $\beta \in \alpha$, with $\beta+1=\alpha$, so $\beta+1 \notin \alpha$.

Notation 2.36.23. If α, β are ordinals, we write $\alpha<\beta$ for $\alpha \in \beta$ (equivalently $\alpha \subsetneq \beta$). We also write $\alpha \leqslant \beta$ for $\alpha \in \beta \vee \alpha=\beta$ (i.e. $\alpha \subseteq \beta$).

Example 2.37. Limit ordinals:

- 0 ,
- ω,
- $\omega+\omega=\sup (\omega \cup\{\omega, \omega+1, \ldots\}),{ }^{a} \omega+\omega+\omega, \omega+\omega+\omega+\omega, \ldots$

Successor ordinals:

- $1=\{0\}, 2=\{0,1\}, 3, \ldots$
- $\omega+1=\omega \cup\{\omega\}, \omega+2, \ldots$,

[^0]
2.2 Classes

It is often very handy to work in a class theory rather than in set theory.
To formulate a class theory, we start out with a first order language with two types of variables, sets (denoted by lower case letters) and classes (denoted by capital letters), as well as one binary relation symbol ϵ for membership.

Bernays-Gödel class theory (BG) has the following axioms:

Axiom 2.38 (Extensionality).

$$
\forall x . \forall y .(x=y \Longleftrightarrow(\forall z .(z \in x \Longleftrightarrow z \in y)) .
$$

Axiom 2.39 (Foundation).

$$
\forall x .(x \neq \varnothing \Longrightarrow \exists y \in x . y \cap x=\varnothing)
$$

Axiom 2.40 (Pairing).

$$
\forall x . \forall y . \exists z . z=\{x, y\}
$$

Axiom 2.41 (Union).

$$
\forall x . \exists y . y=\bigcup x .
$$

Axiom 2.42 (Power Set).

$$
\forall x . \exists y . y=\mathcal{P}(x)
$$

Axiom 2.43 (Infinity).

$$
\exists x .(\varnothing \in x \wedge(\forall y \in x . y \cup\{y\} \in x))
$$

Together with the following axioms for classes:
Axiom 2.44 (Extensionality for classes).

$$
\forall X . \forall Y .(\forall x .(x \in X \Longleftrightarrow x \in Y) \Longrightarrow X=Y) .
$$

Axiom 2.45. Every set is a class:

$$
\forall x . \exists X . x=X
$$

Axiom 2.46. Every element of a class is a set:

$$
\forall X . \exists Y .(X \in Y \rightarrow \exists x . x=X)
$$

Axiom 2.47 (Replacement). If F is a function and a is a set, then $F^{\prime \prime} a$ is a set.

Here a (class) function is a class consisting of pairs (x, y), such that for every x there is at most one y with $(x, y) \in F$. Furthermore $F^{\prime \prime} a:=\{y: \exists x \in a .(x, y) \in$ $F\}$.

Remark 2.47.24. Note that we didn't need to use an axiom schema, (Rep) is a single axiom.

Axiom 2.48 (Comprehension).

$$
\forall X_{1} . \ldots \forall X_{k} \cdot \exists Y .\left(\forall x . x \in Y \Longleftrightarrow \varphi\left(x, X_{1}, \ldots, X_{k}\right)\right)
$$

where $\varphi\left(x, X_{1}, \ldots, X_{k}\right)$ is a formula which contains exactly X_{1}, \ldots, X_{k}, x as free variables, and φ does not have quantifiers ranging over classes. ${ }^{a}$
${ }^{a}$ If one removes the restriction regarding quantifiers, another theory, called MorseKelly set theory, is obtained.
(The following was actually done in lecture 9, but has been moved here for clarity.)

BGC (in German often NBG^{1}) is defined to be BG together with the additional axiom:

Axiom 2.49 (Choice).

$$
\exists F .(F \text { is a function } \wedge \forall x \neq \varnothing \cdot F(x) \in x)
$$

Fact 2.49.25. BGC is conservative over ZFC, i.e. for all formulae φ in the language of set theory (only set variables) we have that if $\mathrm{BGC} \vdash \varphi$ then ZFC $\vdash \varphi$.

We cannot prove this fact at this point, as the proof requires forcing. The converse is easy however, i.e. if $\mathrm{ZFC} \vdash \varphi$ then $\mathrm{BGC} \vdash \varphi$.

Notation 2.49.26. From now on, objects denoted by capital letters are (potentially proper) classes.

[^1]
2.3 Induction and Recursion

Definition 2.50. A binary relation R on a set X, i.e. $R \subseteq X \times X$, is called well-founded iff for all $\varnothing \neq Y \subseteq X$ there is some $x \in Y$ such that for no $y \in Y .(y, x) \in R$.

Example 2.51. (a) ($\mathbb{N},<$) is well-founded.
(b) Let M be a set, and let $\left.\in\right|_{M}:=\{(x, y): x, y \in M \wedge x \in y\}$. (Fund) is equivalent to saying that this is a well-founded relation for every M.

Lemma 2.52. In ZFC -(Fund), the following are equivalent:

- (Fund),
- There is no sequence $\left\langle x_{n}: n<\omega\right\rangle$ such that $x_{n+1} \in x_{n}$ for all $n<\omega$.

Proof. Suppose such sequence exists. Then $\left\{x_{n}: n<\omega\right\}^{2}$ violates (Fund).
For the other direction let $M \neq \varnothing$ be some set. Suppose that (Fund) does not hold for M.

Using (C), we construct an infinite sequence $x_{0} \ni x_{1} \ni x_{2} \ni \ldots$ of elements of M.

More formally, for each $x \in M$ let $A_{x}:=\{y \in M: y \in x\}$. Suppose that $A_{x} \neq \varnothing$ for all $x \in M$. Using (C) we get a function for $\left\langle A_{x}: x \in M\right\rangle,{ }^{3}$ i.e. a function $f: M \rightarrow M$ such that $f(x) \in A_{x}$ for $x \in M$. Now fix $x \in M$. We want to produce a function $g: \omega \rightarrow M$ such that

- $g(0)=x$,
- $g(n+1)=f(g(n)) \in A_{g(n)}$.

Let

$$
G=\{\bar{g}: \exists n \in \omega .
$$

\bar{g} is a function with domain n and range $\subseteq M$, such that

$$
\bar{g}(0)=x \wedge \forall m \in \omega \cdot(m+1 \in \operatorname{dom}(\bar{g}) \Longrightarrow \bar{g}(m+1)=f(\bar{g}(m)))\} .
$$

G exists as it can be obtained by (Aus) from ${ }^{<\omega} M$. By induction, for every $n \in \omega$, there is a $\bar{g} \in G$ with $\operatorname{dom}(\bar{g}) \in n+1$: This holds for $n=0$, as $\{(0, x)\} \in G$. If $\bar{g} \in G$ with $\operatorname{dom}(\bar{g})=n+1$, then $\bar{g} \cup\{(n+1, f(\bar{g}(n)))\} \in G$. Also by induction, for every $n \in \omega$, there is a unique \bar{g} with $\operatorname{dom}(\bar{g})=n+1$.

Now let $g=\bigcup \bar{G}$. Also let $g(0)=x$ and $g(n+1)=f(g(n))$ for all $n \in \omega$.

[^2]Lemma 2.53 (Dependent Choice). Suppose that $M \neq \varnothing$ and R is a binary relation on M such that for all $x \in M, A_{x}:=\{y \in M:(y, x) \in R\}$ is not empty.
Then for every $x \in M$ there exists a function $g: \omega \rightarrow M$ such that $g(0)=x$ and $g(n+1) \in A_{g(n)}$ for all $n<\omega$.

Proof. We showed a special case of this in the proof of Lemma 2.52.

Remark 2.53.27. In ZF this is a weaker form of (C).
The construction of g in the previous proof was a special case of a construction on the proof of the recursion theorem:

Definition 2.54. Let R be a binary relation. R is called well-founded iff for all classes X, there is an R-least y such that there is no $z \in X$ with $(z, y) \in R$.

Theorem 2.55 (Induction (again, but now for classes)). Suppose that R is a well-founded relation. Let X be a class such that for all sets x,

$$
\{y:(y, x) \in R\} \subseteq X \Longrightarrow x \in X
$$

Then X contains all sets.
Proof. Assume otherwise. Consider $Y=\{x: x \notin X\} \neq \varnothing$. By hypothesis, there is some $x \in Y$ such that $(y, x) \notin R$ for all $y \in Y$. In other words, if $(y, x) \in R$, then $x \notin Y$, i.e. $x \in X$. Thus $\{y:(y, x) \in R\} \subseteq X$. Hence $x \in X$.

An alternative way of formulating this is
Theorem 2.56. Suppose R is a well-founded binary relation on A, i.e. $R \subseteq$ $A \times A$. Suppose for all $\bar{A} \subseteq A$ is such that for all $x \in X$,

$$
\{y \in A:(y, x) \in R\} \subseteq \bar{A} \Longrightarrow x \in \bar{A}
$$

Then $\bar{A}=A$.

Definition 2.57. Let R be a binary relation. R is called set-like iff for all $x,\{y:(y, x) \in R\}$ is a set.

Theorem 2.58. Let R be a well-founded and set-like relation on A (i.e. $R \subseteq$ $A \times A$).

Let D be a class of triples such that for all u, x there is exactly one y with $(u, x, y) \in D$ (basically $(u, x) \mapsto y$ is a function).
Then there is a unique function f on A such that for all $x \in A$,

$$
\left(\left.F\right|_{\{y \in A:(y, x) \in R\}}, x, F(x)\right) \in D
$$

i.e. $F(x)$ is computed from $\left.F\right|_{\{y \in A:(y, x) \in R\}}$.

Proof. Uniqueness:

Let F, F^{\prime} be two such functions. Suppose that $\bar{A}=\left\{x \in A: F(x) \neq F^{\prime}(x)\right\} \neq \varnothing$. As R is well-founded, there is some $x \in \bar{A}$ such that $y \notin \bar{A}$ for all $y \in A,(y, x) \in R$. I.e. $F(y)=F^{\prime}(y)$ for all $y \in A,(y, x) \in R$.

But then $F(x)$ is the unique y with $\left(\left.F\right|_{\{z:(z, x) \in R\}}, x, y\right) \in D$, in particular it is the same as $F^{\prime}(x)$ z

Existence:

Let us call a (set) function f good, if

- $\operatorname{dom}(f) \subseteq A$,
- if $x \in \operatorname{dom}(f)$ and $y \in A,(y, x) \in R$, then $y \in \operatorname{dom}(f)$ and
- for all $x \in \operatorname{dom}(f)$:

$$
\left(\left.f\right|_{\{y \in A:(y, x) \in R\}}, x, f(x)\right) \in D
$$

By the proof of uniqueness, we have that all good functions are coherent, i.e. $f(x)=f^{\prime}(x)$ for good functions f, f^{\prime} and all $x \in \operatorname{dom}(f) \cap \operatorname{dom}\left(f^{\prime}\right)$. We may now let $F=\bigcup\{f: f$ is good $\}$, this exists by comprehension.
If $x \in \operatorname{dom}(F)$ and $y \in A$ with $(y, x) \in R$, then $y \in \operatorname{dom}(F)$ and

$$
\left(\left.F\right|_{\{y:(y, x) \in R\}}, x, F(x)\right) \in D
$$

We need to show that $\operatorname{dom}(F)=A$. This holds by induction: Suppose for a contradiction that $A \backslash \operatorname{dom}(F) \neq \varnothing$. Then there exists an R-least element x in this set, i.e. $x \notin \operatorname{dom}(F)$, but $y \in \operatorname{dom}(F)$ for all $(y, x) \in R$. For each $y \in A$ with $(y, x) \in R$, pick some good function f_{y} with $y \in \operatorname{dom}\left(f_{y}\right)$ Since R is set-like, we have that $f=\bigcup_{y} f_{y}$ is a good function. But then $f \cup(x, z)$, where z is unique such that $\left(\left.f\right|_{\{y:(y, x) \in R\}}, x, z\right) \in D$, is good \downarrow.

2.3.1 Applications of induction and recursion

Fact 2.58.28. For every set x there is a transitive set t such that $x \in t$.

Proof. Take $R=\epsilon$. We want a function F with domain ω such that $F(0)=\{x\}$ and $F(n+1)=\bigcup F(n)$. Once we have such a function, $\{x\} \cup \bigcup \operatorname{ran}(F)$ is a set as desired. To get this F using the Recursion Theorem (2.58), pick D such that

$$
(\varnothing, 0,\{x\}) \in D
$$

and

$$
(f, n+1, \bigcup \bigcup \operatorname{ran}(f)) \in D
$$

The Recursion Theorem (2.58) then gives a function such that

$$
\begin{aligned}
F(0) & =\{x\} \\
F(n+1) & =\bigcup \bigcup \operatorname{ran}\left(\left.F\right|_{n+1}\right) \\
& =\bigcup \bigcup\{\{x\}, x, \bigcup x, \ldots, \underbrace{\bigcup^{n-1} x}_{F(n)}\}=\bigcup F(n),
\end{aligned}
$$

i.e. $F(n+1)=\bigcup F(n)$.

Notation 2.58.29. Let OR denote the class of all ordinals and V the class of all sets.

Lemma 2.59. There is a function $F: \mathrm{OR} \rightarrow V$ such that $F(\alpha)=\bigcup\{\mathcal{P}(F(\beta)):$ $\beta<\alpha\}$.

Proof. Use the Recursion Theorem (2.58) with $R=\in$ and $(w, x, y) \in D$ iff

$$
y=\bigcup\{\mathcal{P}(\bar{y}): \bar{y} \in \operatorname{ran}(w)\}
$$

This function has the following properties:

$$
\begin{aligned}
& F(0)=\bigcup \varnothing=\varnothing \\
& F(1)=\bigcup\{\mathcal{P}(\varnothing)\}=\bigcup\{\{\varnothing\}\}=\{\varnothing\} \\
& F(2)=\bigcup\{\mathcal{P}(\varnothing), \mathcal{P}(\{\varnothing\})\}=\bigcup\{\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}=\{\varnothing,\{\varnothing\}\}
\end{aligned}
$$

It is easy to prove by induction:
(a) Every $F(\alpha)$ is transitive.
(b) $F(\alpha) \subseteq F(\beta)$ for all $\alpha \leqslant \beta$.
(c) $F(\alpha+1)=\mathcal{P}(F(\alpha))$ for all $\alpha \in \mathrm{OR}$.
(d) $F(\lambda)=\bigcup\{F(\beta): \beta<\lambda\}$ for $\lambda \in \mathrm{OR}$ a limit.

Notation 2.59.30. Usually, one writes V_{α} for $F(\alpha)$. They are called the rank initial segments of V.

Lemma 2.60. If x is any set, then there is some $\alpha \in \mathrm{OR}$ such that $x \in V_{\alpha}$, i.e. $V=\bigcup\left\{V_{\alpha}: \alpha \in \mathrm{OR}\right\}$.

Proof. We use induction on the well-founded ϵ-relation. Let $A=\bigcup\left\{V_{\alpha}: \alpha \in\right.$ OR $\}$. We need to show that $A=V$. By induction it suffices to prove that for every $x \in V$, if $\{y: y \in x\} \subseteq A$, then $x \in A$. The hypothesis says that for all $y \in x$, there is some α with $y \in V_{\alpha}$. Write α_{y} for the least such α. By (Rep), $\left\{\alpha_{y}: y \in x\right\}$ is a set and we may let $\alpha=\sup \left\{\alpha_{y}: y \in x\right\} \geqslant \alpha_{y}$ for all $y \in x$. Then $y \in V_{\alpha_{y}} \subseteq V_{\alpha}$ for all $y \in x$.
In other words $x \subseteq V_{\alpha}$, hence $x \in V_{\alpha+1}$.

Lemma 2.61 (Transitive collapse/Mostowski collapse). Let R be a binary set-like relation on a class A. Then R is well-founded iff there is a transitive class B such that

$$
\left(B,\left.\in\right|_{B}\right) \cong(A, R),
$$

i.e. there is an isomorphism F, that is a function $F: B \rightarrow A$ with $x \in$ $y \Longleftrightarrow(F(x), F(y)) \in R$ for $x, y \in B$.

Proof. " \Longleftarrow " Suppose that R is ill-founded (i.e. not well-founded). Then there is some $\left(y_{n}: n<\omega\right)$ such that $y_{n} \in A$ and $\left(y_{n+1}, y_{n}\right) \in R$ for all $n<\omega$. But then if F is an isomorphism as above,

$$
F^{-1}\left(Y_{n+1}\right) \in F^{-1}\left(Y_{n}\right)
$$

for all $n<\omega$ k
" \Longrightarrow "Suppose that R is well-founded. We want a transitive class B and a function $F: B \leftrightarrow A$ such that

$$
x \in y \Longleftrightarrow(F(x), F(y)) \in R .
$$

Equivalently $G: A \leftrightarrow B$ with $(x, y) \in R$ iff $G(x) \in G(y)$ for all $x, y \in A$.
In other words, $G(y)=\{G(x):(x, y) \in R\}$. Such a function G and class B exist by the Recursion Theorem (2.58).

As a consequence of the Mostowski Collapse (2.61), we get that if $<$ is a wellorder on a set a then there is some transitive set b with $\left(b,\left.\in\right|_{b}\right) \cong(a,<)$.

Lemma 2.62 (Rank function). Let R be a well-founded and set-like binary relation on a class A. Then there is a function $F: A \rightarrow \mathrm{OR}$, such that for all $x, y \in A$

$$
(x, y) \in R \Longrightarrow F(x)<F(y)
$$

Proof. By the Recursion Theorem (2.58), there is F such that

$$
F(y)=\sup \{F(x)+1:(x, y) \in R\}
$$

This function is as desired.

This does not skip any ordinals, as $F(y)$ is the least ordinal $>F(x)$ for all $(x, y) \in R$. Thus $\operatorname{ran}(F)$ is transitive. So either $\operatorname{ran}(F)=$ OR or $\operatorname{ran}(F) \in$ OR. This F is called the rank function for (A, R).

Notation 2.62.31.

$$
\operatorname{rk}_{R}(x)=\|x\|_{R}:=F(x)
$$

and

$$
\operatorname{rank}(R):=\operatorname{ran}(F)
$$

In the special case that R is a linear order on A, hence a well-order, $\operatorname{rank}(R)$ is called the order type of R (or of (A, R)), written otp (R).
[Lecture 11, 2023-11-23]

2.4 Cardinals

Definition 2.63. Let a be any set. The cardinality of a denoted by $\overline{\bar{a}}$, $|a|$ or $\operatorname{card}(a)$, is the smallest ordinal α such that there is some bijection $f: \alpha \rightarrow a$.

An ordinal α is called a cardinal, iff there is some set a with $|a|=\alpha$ (equivalently, $|\alpha|=\alpha$).

We often write κ, λ, \ldots for cardinals.

Lemma 2.64. For every cardinal κ, there is come cardinal $\lambda>\kappa$.

Proof. Consider the powerset of κ. We know that there is no surjection $\kappa \rightarrow$ $\mathcal{P}(\kappa)$. Hence $\kappa<\left|2^{\kappa}\right|$.

Definition 2.65. For each cardinal κ, κ^{+}denotes the least cardinal $\lambda>\kappa$.

Warning 2.66. This has nothing to do with the ordinal successor of κ.

Lemma 2.67. Let X be any set of cardinals. Then $\sup X$ is a cardinal.

Proof. If there is some $\kappa \in X$ with $\lambda \leqslant \kappa$ for all $\lambda \in X$, then $\kappa=\sup (X)$ is a cardinal.

Let us now assume that for all $\kappa \in X$ there is some $\lambda \in X$ with $\lambda>\kappa$. Suppose that $\sup (X)$ is not a cardinal and write $\mu=|\sup (X)|$. Then $\mu \in \sup (X)$, since $\sup (X)$ is an ordinal. However $\sup (X)$ is the least ordinal larger than all $\alpha \in X$, so there is $\lambda \in X$ with $\lambda>\mu$. However, there exists $\mu \rightarrow \sup (X)$, hence also $\mu \rightarrow \lambda$ (which is in contradiction to λ being a cardinal).

We may now use the Recursion Theorem (2.58) to define a sequence $\left\langle\aleph_{\alpha}: \alpha \in\right.$ OR〉 with the following properties:

$$
\begin{aligned}
\aleph_{0} & =\omega \\
\aleph_{\alpha+1} & =\left(\aleph_{\alpha}\right)^{+} \\
\aleph_{\lambda} & =\sup \left\{\aleph_{\alpha}: \alpha<\lambda\right\}
\end{aligned}
$$

Each \aleph_{α} is a cardinal. Also, a trivial induction shows that $\alpha \leqslant \aleph_{\alpha}$. In particular $|\alpha| \leqslant \aleph_{\alpha}$. Therefore the \aleph_{α} are all the infinite cardinals: If a is any infinite set, then $|a| \leqslant \aleph_{|a|}$, so $|a|=\aleph_{\beta}$ for some $\beta \leqslant|\alpha|$.

Notation 2.67.32. Sometimes we write ω_{α} for \aleph_{α} (when viewing it as an ordinal).

Notation 2.67.33. Let ${ }^{a} b:=\{f: f$ is a function, $\operatorname{dom}(f)=a, \operatorname{ran}(f) \subseteq$ b\}.

Definition 2.68 (Cardinal arithmetic). Let κ, λ be cardinals. Define

$$
\begin{aligned}
\kappa+\lambda & :=|\{0\} \times \kappa \cup\{1\} \times \lambda|, \\
\kappa \cdot \lambda & :=|\kappa \times \lambda|, \\
\kappa^{\lambda} & :=\left|{ }^{\lambda} \kappa\right| .
\end{aligned}
$$

Warning 2.69. This is very different from ordinal arithmetic!

Theorem 2.70 (Hessenberg). For all α we have

$$
\aleph_{\alpha} \cdot \aleph_{\alpha}=\aleph_{\alpha}
$$

Corollary 2.71. For all α, β it is

$$
\aleph_{\alpha}+\aleph_{\beta}=\aleph_{\alpha} \cdot \aleph_{\beta}=\max \left\{\aleph_{\alpha}, \aleph_{\beta}\right\}
$$

Proof. Wlog. $\alpha \leqslant \beta$. Trivially $\aleph_{\alpha} \leqslant \aleph_{\beta}$. It is also clear that

$$
\aleph_{\beta} \leqslant \aleph_{\alpha}+\aleph_{\beta} \leqslant \aleph_{\alpha} \cdot \aleph_{\beta} \leqslant \aleph_{\beta} \cdot \aleph_{\beta}=\aleph_{\beta}
$$

Proof of Theorem 2.70. Define a well-order $<^{*}$ on OR \times OR by setting

$$
(\alpha, \beta)<^{*}(\gamma, \delta)
$$

iff

- $\max (\alpha, \beta)<\max (\gamma, \delta)$ or
- $\max (\alpha, \beta)=\max (\gamma, \delta)$ and $\alpha<\gamma$ or
- $\max (\alpha, \beta)=\max (\gamma, \delta)$ and $\alpha=\gamma$ and $\beta<\delta$.

It is clear that this is a well-order.
There is an isomorphism

$$
(\mathrm{OR},<) \cong \cong^{\Gamma^{-1}}\left(\mathrm{OR} \times \mathrm{OR},<^{*}\right)
$$

Γ is called the Gödel pairing function.
Claim 2.70.1. For all α it is $\operatorname{ran}\left(\left.\Gamma\right|_{\aleph_{\alpha} \times \aleph_{\alpha}}\right)=\aleph_{\alpha}$, i.e.

$$
\aleph_{\alpha}=\left\{\xi: \exists \eta, \eta^{\prime}<\aleph_{\alpha} \cdot \xi=\Gamma\left(\left(\eta, \eta^{\prime}\right)\right)\right\} .
$$

Subproof. We use induction of α. The claim is trivial for $\alpha=0$. Now let $\alpha>0$ and suppose the claim to be true for all $\beta<\alpha$. It is easy to see that

$$
\operatorname{ran}\left(\left.\Gamma\right|_{\aleph_{\alpha} \times \aleph_{\alpha}}\right) \supseteq \aleph_{\alpha},
$$

as otherwise $\left.\Gamma\right|_{\aleph_{\alpha} \times \aleph_{\alpha}}: \aleph_{\alpha} \times \aleph_{\alpha} \rightarrow \eta$ would be a bijection for some $\eta<\aleph_{\alpha}$, but \aleph_{α} is a cardinal.
Suppose that $\operatorname{ran}\left(\left.\Gamma\right|_{\aleph_{\alpha} \times \aleph_{\alpha}}\right) \supsetneq \aleph_{\alpha}$. Then there exist $\eta, \eta^{\prime}<\aleph_{\alpha}$ with

$$
\Gamma\left(\left(\eta, \eta^{\prime}\right)\right)=\aleph_{\alpha}
$$

So $\left.\Gamma\right|_{\left\{(\gamma, \delta):(\gamma, \delta)<*\left(\eta, \eta^{\prime}\right\}\right.}$ is bijective onto \aleph_{α}. If $(\gamma, \delta)<^{*}\left(\eta, \eta^{\prime}\right)$, then $\max \{\gamma, \delta\} \leqslant$ $\max \left\{\eta, \eta^{\prime}\right\}$. Say $\eta \leqslant \eta^{\prime}<\aleph_{\alpha}$ and let $\aleph_{\beta}=\left|\eta^{\prime}\right|$. There is a surjection

$$
f: \underbrace{(\eta+1)}_{\leqslant \aleph_{\beta}} \times \underbrace{\left(\eta^{\prime}+1\right)}_{\sim \aleph_{\beta}} \rightarrow \aleph_{\alpha}
$$

This gives rise to a surjection $f^{*}: \aleph_{\beta} \times \aleph_{\beta} \rightarrow \aleph_{\alpha}$. The inductive hypothesis then produces a surjection $f^{*}: \aleph_{\beta} \rightarrow \aleph_{\alpha}$.

However, exponentiation of cardinals is far from trivial:
Observe. $2^{\kappa}=|\mathcal{P}(\kappa)|$, since ${ }^{\kappa}\{0,1\} \leftrightarrow \mathcal{P}(\kappa)$.
Hence by Cantor $2^{\kappa} \geqslant \kappa^{+}$.
This is basically all we can say.
The continuum hypothesis states that $2^{\aleph_{0}}=\aleph_{1}$.

2.5 Ordinal arithmetic

We define + , and exponentiation for ordinals as follows:
Fix an ordinal β. We recursively define

$$
\begin{array}{ll}
\beta+0 & :=\beta \\
\beta+(\alpha+1) & :=(\beta+\alpha)+1, \\
\beta+\lambda & :=\sup _{\alpha<\lambda} \beta+\alpha \quad \text { for limit ordinals } \lambda
\end{array}
$$

(Recall that $\alpha+1=\alpha \cup\{\alpha\}$ was already defined.)

$$
\begin{array}{ll}
\beta \cdot 0 & :=0 \\
\beta \cdot(\alpha+1) & :=\beta \cdot \alpha+\beta \\
\beta \cdot \lambda & :=\sup _{\alpha<\lambda} \beta \cdot \alpha \quad \text { for limit ordinals } \lambda
\end{array}
$$

and

$$
\begin{aligned}
\beta^{0} & :=1 \\
\beta^{\alpha+1} & :=\beta^{\alpha} \cdot \beta \\
\beta^{\lambda} & :=\sup _{\alpha<\lambda} \beta^{\alpha} \text { for limit ordinals } \lambda .
\end{aligned}
$$

Example 2.72.

- $2+2=4$,
- $196883+1=196884$,
- $1+\omega=\sup _{n<\omega} 1+n=\omega \neq \omega+1$,
- $2 \cdot \omega=\sup _{n<\omega} 2 \cdot n=\omega$,
- $\omega \cdot 2=\omega \cdot 1+\omega=\omega+\omega$.

Warning 2.73. Cardinal arithmetic and ordinal arithmetic are very different! The symbols are the same, but usually we will distinguish between the two by the symbols used for variables (i.e. $\alpha, \beta, \omega, \omega_{1}$ are viewed primarily as ordinals and $\kappa, \lambda, \aleph_{\alpha}$ as cardinals).

We will very rarely use ordinal arithmetic.

2.6 Cofinality

Definition 2.74. Let α, β be ordinals. We say that $f: \alpha \rightarrow \beta$ is cofinal iff for all $\xi<\beta$, there is some $\eta<\alpha$ such that $f(\eta) \geqslant \xi$.

Remark 2.74.34. If β is a limit ordinal, this is equivalent to

$$
\forall \xi<\beta . \exists \eta<\alpha . f(\eta)>\xi
$$

Example 2.75. (a) Look at $\omega+\omega$.

$$
\begin{array}{r}
f: \omega \longrightarrow \omega+\omega \\
n \\
n
\end{array}>\omega+n
$$

is cofinal.
(b) Look at \aleph_{ω}. Then

$$
\begin{aligned}
f: \omega & \longrightarrow \aleph_{\omega} \\
n & \longmapsto \aleph_{n}
\end{aligned}
$$

is cofinal.

Definition 2.76. Let β be an ordinal. The cofinality of β, denoted $\operatorname{cf}(\beta)$, is the least ordinal α such that there exists a cofinal $f: \alpha \rightarrow \beta$.

Example 2.77. - $\operatorname{cf}\left(\aleph_{\omega}\right)=\omega$. In fact $\operatorname{cf}\left(\aleph_{\lambda}\right) \leqslant \lambda$ for limit ordinals $\lambda \neq 0\left(\right.$ consider $\left.\alpha \mapsto \aleph_{\alpha}\right)$.

- $\operatorname{cf}\left(\aleph_{\omega+\omega}\right)=\omega$.

Lemma 2.78. For any ordinal $\beta, \operatorname{cf}(\beta)$ is a cardinal.

Proof. Let $f: \alpha \rightarrow \beta$ be cofinal. Then $\tilde{f}:|\alpha| \rightarrow \beta$, the composition with $\alpha \leftrightarrow|\alpha|$ is cofinal as well and $|\alpha| \leqslant \alpha$.

Question 2.78.35. How does one imagine ordinals with cofinality $>\omega$?
No idea.

Definition 2.79. An ordinal β is regular $\operatorname{iff} \operatorname{cf}(\beta)=\beta$. Otherwise β is called singular.

In particular, a regular ordinal is always a cardinal.

Lemma 2.80. Let β be an ordinal Then $\operatorname{cf}(\beta)$ is a regular cardinal, i.e.

$$
\operatorname{cf}(\operatorname{cf}(\beta))=\operatorname{cf}(\beta)
$$

Proof. Suppose not. Let $f: \operatorname{cf}(\beta) \rightarrow \beta$ be cofinal and $g: \operatorname{cf}(\operatorname{cf}(\beta)) \rightarrow \operatorname{cf}(\beta)$.
Consider

$$
\begin{aligned}
h: \operatorname{cf}(\operatorname{cf}(\beta)) & \longrightarrow \beta \\
\eta & \longmapsto \sup \{f(\xi): \xi \leqslant g(\eta)\}<\beta .
\end{aligned}
$$

Clearly this is cofinal.

Warning 2.81. Note that in general, a composition of cofinal maps is not necessarily cofinal.

Theorem 2.82. Let $\kappa>\aleph_{0}$. Then κ^{+}is regular.

Proof. Suppose that $\operatorname{cf}\left(\kappa^{+}\right)<\kappa^{+}$. Then $\operatorname{cf}\left(\kappa^{+}\right) \leqslant \kappa$, i.e. there is a cofinal function $f: \kappa \rightarrow \kappa^{+}$. By the axiom of choice, there is a function g with domain κ, such that $g(\eta): \kappa \rightarrow f(\eta)$ is onto. Now define

$$
\begin{aligned}
h: \kappa \times \kappa & \longrightarrow \kappa^{+} \\
(\eta, \xi) & \longmapsto g(\eta)(\xi) .
\end{aligned}
$$

Clearly this is surjective, but $|\kappa \times \kappa|<\kappa^{+}$, by Theorem 2.70.

- $\aleph_{0}, \aleph_{1}, \aleph_{2}, \ldots$ are regular,
- \aleph_{ω} is singular,
- $\aleph_{\omega+1}, \aleph_{\omega+2}, \ldots$ are regular,
- $\aleph_{\omega+\omega}$ is singular,
- $\aleph_{\omega+\omega+1}, \ldots$ are regular,
- $\aleph_{\omega+\omega+\omega}$ is singular,
- ...
- $\aleph_{\omega_{1}}$ is singular,
- $\aleph_{\omega_{1}+1}, \ldots$ is regular,
- $\aleph_{\omega_{2}}$ is singular.

Question 2.82.36 (Hausdorff). Is there a regular limit cardinal?
Maybe. This is independent of ZFC, cf. Definition 2.107.
Theorem 2.83 (Hausdorff).

$$
\aleph_{\alpha+1}^{\aleph_{\beta}}=\aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}
$$

Proof. Recall that

$$
\aleph_{\alpha+1}^{\aleph_{\beta}}=\left|{ }^{\aleph_{\beta}} \aleph_{\alpha+1}\right| .
$$

- First case: $\beta \geqslant \alpha+1$. Note that for all $\gamma \leqslant \beta$ we have

$$
\aleph_{\gamma}^{\aleph_{\beta}} \leqslant \aleph_{\beta}^{\aleph_{\beta}} \leqslant\left(2^{\aleph_{\beta}}\right)^{\aleph_{\beta}}=2^{\aleph_{\beta} \cdot \aleph_{\beta}}=2^{\aleph_{\beta}} \leqslant \aleph_{\gamma}^{\aleph_{\beta}} .
$$

So in this case $\aleph_{\alpha}^{\aleph_{\beta}}=2^{\aleph_{\beta}}$ and $\aleph_{\alpha+1}^{\aleph_{\beta}}=2^{\aleph_{\beta}}$. Thus

$$
\aleph_{\alpha+1}^{\aleph_{\beta}}=2^{\aleph_{\beta}}=\aleph_{\alpha}^{\aleph_{\beta}}=\aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}
$$

- Second case: Suppose $\beta<\alpha+1$. By case hypothesis and because $\aleph_{\alpha+1}$ is regular, no $f: \aleph_{\beta} \rightarrow \aleph_{\alpha+1}$ is unbounded. So

$$
\aleph_{\beta} \aleph_{\alpha+1}=\bigcup_{\xi<\aleph_{\alpha+1}} \aleph_{\beta} \xi
$$

for each $\xi<\aleph_{\alpha+1},|\xi| \leqslant \aleph_{\alpha}$, hence

$$
\left|{ }^{\aleph_{\beta}} \xi\right| \leqslant \aleph_{\alpha}^{\aleph_{\beta}}
$$

for each $\xi<\aleph_{\alpha+1}$. Therefore,

$$
\aleph_{\alpha+1}^{\aleph_{\beta}} \leqslant \aleph_{\alpha+1} \cdot \aleph_{\alpha}^{\aleph_{\beta}} \leqslant \aleph_{\alpha+1}^{\aleph_{\beta}}
$$

Remark 2.83.37 ("Constructive" approach to ω_{1}). There are many wellorders on ω. Let W be the set of all such well-orders. For $R, S \in W$, write $R \leqslant S$ iff R is isomorphic to an initial segment of S. Consider W / \sim, where $R \sim S: \Longleftrightarrow R \leqslant S \wedge S \leqslant R$. Define \leqslant on W / \sim by $[R] \leqslant[S]: \Longleftrightarrow R \leqslant S$. Clearly this is well-defined and $<$ is a well-order on W / \sim : Suppose that $\left\{R_{n}: n \in \omega\right\} \subseteq W$ is such that $R_{n+1}<R_{n}$. Then there exist $n_{i} \in \omega$ such that $\left.R_{i} \cong R_{0}\right|_{\left\{x: x<R_{0} n_{i}\right\}}$ and these form a $<_{R_{0}}$ strictly decreasing sequence.
So (W / \sim) is a well-ordered set. Every well-order on a countable set is isomorphic to (ω, R) for some $[R] \in W / \sim$.

Moreover if $R \in W$, then

$$
(\omega ; R) \cong(\underbrace{\{[S] \in W / \sim:[S]<[R]\}}_{I} ;<\left.\right|_{I})
$$

where the isomorphism is given by

$$
n \longmapsto\left[\left.R\right|_{\{m:(m, n) \in R\}}\right] .
$$

This also shows that every $[R] \in W / \sim$ has only countably many <-predecessors. This then also shows that $(W / \sim,<)$ itself is not a well-order on a countable set.

Thus otp $(W / \sim,<)=\omega_{1}$.

Notation 2.83.38. Let $I \neq \varnothing$ and let $\left\{\kappa_{i}: i \in I\right\}$ be a set of cardinals.
Then

$$
\sum_{i \in I} \kappa_{i}:=\left|\bigcup_{i \in I}\left(\kappa_{i} \times\{i\}\right)\right|
$$

and

$$
\prod_{i \in I}:=\left|{\underset{i \in I}{ }} \kappa_{i}\right|
$$

where

$$
\underset{i \in I}{X} A_{i}:=\left\{f: f \text { is a function, } \operatorname{dom}(f)=I, \forall i . f(i) \in A_{i}\right\} .
$$

Remark 2.83.39. (C) is equivalent to $\forall i \in I . A_{i} \neq \varnothing \Longrightarrow \times_{i \in I} A_{i} \neq \varnothing$.

Theorem 2.84 (Kőnig). Let $I \neq \varnothing$. Let $\left\{\kappa_{i}: i \in I\right\},\left\{\lambda_{i}: i \in I\right\}$ be sets of cardinals such that $\kappa_{i}<\lambda_{i}$ for all $i \in I$.

Then

$$
\sum_{i \in I} \kappa_{i}<\prod_{i \in I} \lambda_{i}
$$

Proof. Consider a function $F: \bigcup_{i \in I}\left(\kappa_{i} \times\{i\}\right) \rightarrow X_{i \in I} \lambda_{i}$. We want to show that F is not surjective.
For $i \in I$, let ξ_{i} be the least $\xi<\lambda_{i}$ such that for all $\eta<\kappa_{i}$

$$
\underbrace{F((\eta, i))(i)}_{\in \lambda_{i}} \neq \xi
$$

Such ξ exists, since $\kappa_{i}<\lambda_{i}$.
Let $f \in \times_{i \in I} \lambda_{i}$ be defined by $i \mapsto \xi_{i}$.
Then $f \notin \operatorname{ran}(F)$.

Corollary 2.85. For infinite cardinals κ, it is $\operatorname{cf}\left(2^{\kappa}\right)>\kappa$.
Proof. If 2^{κ} is a successor cardinal, then $\operatorname{cf}\left(2^{\kappa}\right)=2^{\kappa}>\kappa$, since successor cardinals are regular.

Suppose $\operatorname{cf}\left(2^{\kappa}\right) \leqslant \kappa$ is a limit cardinal. Then there is some cofinal $f: \kappa \rightarrow 2^{\kappa}$. Write $\kappa_{i}=f(i)$ (replacing $f(i)$ by $|f(i)|^{+}$we may assume that every κ_{i} is a cardinal).
For $i \in \kappa$, write $\lambda_{i}=2^{\kappa}$. By Kőnig's Theorem (2.84),

$$
\sup \left\{\kappa_{i}: i<\kappa\right\} \leqslant \sum_{i \in \kappa} \kappa_{i}<\prod_{i \in \kappa} \lambda_{i}=\left(2^{\kappa}\right)^{\kappa}=2^{\kappa \cdot \kappa}=2^{\kappa}
$$

and f is not cofinal.

Fact 2.85.40. Properties of the function $\kappa \mapsto 2^{\kappa}$.

- $\mu<\kappa \Longrightarrow 2^{\mu} \leqslant 2^{\kappa}$ (it is independent of ZFC whether or not this is strictly increasing).
- $\operatorname{cf}\left(2^{\kappa}\right) \geqslant \kappa^{+}$.

This is "all" you can prove in ZFC.

The next goal is to show the following: (However the method might be more interesting than the result)

Theorem 2.86 (Silver). If $2^{\aleph_{\alpha}}=\aleph_{\alpha+1}$ for all $\alpha<\omega_{1}$, then $2^{\aleph_{\omega_{1}}}=\aleph_{\omega_{1}+1}$.
Relevant concepts to prove this theorem:
Definition 2.87. Let α be a limit ordinal.

- We say that $A \subseteq \alpha$ is unbounded (in α), iff for all $\beta<\alpha$, there is some $\gamma \in A$ such that $\beta<\gamma$.
- We say that $A \subseteq \alpha$ is closed, iff it is closed with respect to the order topology on α, i.e. for all $\beta<\alpha$,

$$
\sup (A \cap \beta) \in A \cup\{0\}
$$

- A is club (closed unbounded) iff it is closed and unbounded.

The interesting case is that α is a regular uncountable cardinal.
Fact 2.87.41. $A \subseteq \alpha$ being unbounded is equivalent to $f: \beta \rightarrow \alpha$ being cofinal, where $(\beta, \in) \stackrel{f}{\cong}(A, \in)$.
[Lecture 14, 2023-12-04]

Abuse of Notation 2.87.42. Sometimes we say club instead of club in κ.

Example 2.88. Let κ be a regular uncountable cardinal.

- κ is a club in κ.
- $\{\xi+1: \xi<\kappa\}$ is unbounded in κ, but not closed.
- For each $\alpha<\kappa$, the set $\alpha+1=\{\xi: \xi \leqslant \alpha\}$ is closed but not unbounded in κ.
- $\{\xi<\kappa: \xi$ is a limit ordinal $\}$ is club in κ.

Lemma 2.89. Let κ be regular and uncountable. Let $\alpha<\kappa$ and let $\left\langle C_{\beta}: \beta<\alpha\right\rangle$ be a sequence of subsets of κ which are all club in κ. Then

$$
\bigcap_{\beta<\alpha} C_{\beta}
$$

is club in κ.

Warning 2.90. This is false for $\alpha=\kappa$: Let $C_{\beta}:=\{\xi: \xi>\beta\}$. Clearly this is club but $\bigcap_{\beta<\kappa} C_{\beta}=\varnothing$.

Proof of Lemma 2.89. First let $\alpha=2$. Let $C, D \subseteq \kappa$ be club. $C \cap D$ is trivially closed:

Let $\beta<\kappa$. Suppose that $(C \cap D) \cap \beta$ is unbounded in β, so $C \cap \beta$ and $D \cap \beta$ are both unbounded in β, so $\beta \in C \cap D$.
$C \cap D$ is unbounded:
Take some $\gamma<\kappa$. Let $\gamma_{0}=\gamma$ and inductively define γ_{n} : If n is even, let $\gamma_{n}:=\min C \backslash\left(\gamma_{n-1}+1\right)$, otherwise $\gamma_{n}:=\min D \backslash\left(\gamma_{n-1}+1\right)$.

Let $\xi=\sup \left\{\gamma_{n}: n<\omega\right\}$. Then $\xi=\sup \left\{\gamma_{2 n+2}: n<\omega\right\} \in D$ and $\xi \in C$ by the same argument, so $\xi \in C \cap D$ (here it is important, that $\operatorname{cf}(\kappa)>\omega$) and $\xi>\gamma$.

The case $\alpha>2$ is similar: The intersection is closed by exactly the same argument. ${ }^{4}$
Let's prove that $\bigcap\left\{C_{\beta}: \beta<\alpha\right\}$ is unbounded in κ.
We will define a sequence $\left\langle\gamma_{i}: i \leqslant \alpha \cdot \omega\right\rangle^{5}$ as follows:
Let $\gamma_{0}:=\gamma$. Choose

$$
\gamma_{\alpha \cdot n+\beta+1}=\min C_{\beta} \backslash\left(\gamma_{\alpha \cdot n+\beta}+1\right)
$$

and at limits choose the supremum.
Let $\xi=\sup _{i<\alpha \cdot \omega} \gamma_{i}=\sup _{i<\omega} \gamma_{\alpha \cdot n+\beta+1} \in \bigcap_{\beta<\alpha} C_{\beta}$, where we have used that. $\operatorname{cf}(\kappa)>\alpha \cdot \omega$.

Definition 2.91. $F \subseteq \mathcal{P}(a)$ is a filter iff
(a) $X, Y \in F \Longrightarrow X \cap Y \in F$,
(b) $X \in F \wedge X \subseteq Y \subseteq \kappa \Longrightarrow Y \in F$,
(c) $\varnothing \notin F,{ }^{a} \kappa \in F$.

Let $\alpha \leqslant \kappa$. We call $F<\alpha$-closed iff for all $\gamma<\alpha$ and $\left\{X_{\beta}: \beta<\gamma\right\} \subseteq F$ then $\bigcap\left\{X_{\beta}: \beta<\gamma\right\} \in F$.

[^3]Intuitively, a filter is a collection of "big" subsets of a.

[^4]Definition 2.92. Let κ be regular and uncountable. The club filter is defined as

$$
\mathcal{F}_{\kappa}:=\{X \subseteq \kappa: \exists \operatorname{club} C \subseteq \kappa . C \subseteq X\}
$$

Clearly this is a filter.
We have shown (assuming (C) to choose contained clubs):
Theorem 2.93. If κ is regular and uncountable. Then \mathcal{F}_{κ} is a $<\kappa$-closed filter.

Proof. Clearly $\varnothing \notin \mathcal{F}_{\kappa}, \kappa \in \mathcal{F}_{\kappa}$, and $A \in \mathcal{F}_{\kappa}, A \subseteq B \in \kappa \Longrightarrow B \in \mathcal{F}_{\kappa}$. In Lemma 2.89 showed that the intersection of $<\kappa$ many clubs is club.

Definition 2.94. Let $\left\langle A_{\beta}: \beta<\alpha\right\rangle$ be a sequence of sets. The diagonal intersection, is defined to be

$$
\bigwedge_{\beta<\alpha} A_{\beta}:=\left\{\xi<\alpha: \xi \in \bigcap\left\{A_{\beta}: \beta<\xi\right\}\right\}=\bigcap_{\beta<\alpha}\left([0, \beta] \cup A_{\beta}\right)
$$

Remark † 2.94.43. Note that if A is closed, so is $[0, \alpha] \cup A$. Since the intersection of arbitrarily many closed sets is closed, we get that the diagonal intersection of closed sets is closed.

Lemma 2.95. Let κ be a regular, uncountable cardinal. If $\left\langle C_{\beta}: \beta<\kappa\right\rangle$ is a sequence of club subsets of κ, then $\Delta_{\beta<\kappa} C_{\beta}$ contains a club.

Proof of Lemma 2.95. Let us fix $\left\langle C_{\beta}: \beta<\alpha\right\rangle$. Write $D_{\beta}:=\bigcap\left\{C_{\gamma}: \gamma \leqslant \beta\right\}$ for $\beta<\kappa$. Each D_{β} is a club, $D_{\beta} \subseteq C_{\beta}$ and $D_{\beta} \supseteq D_{\beta^{\prime}}$ for $\beta \leqslant \beta^{\prime}<\kappa$.

It suffices to show that $\Delta_{\beta<\kappa} D_{\beta}$ contains a club.
Claim 2.95.1. $\Delta_{\beta<\kappa} D_{\beta}$ is closed in κ.

Subproof. Cf. Remark ${ }^{\dagger}$ 2.94.43.

Claim 2.95.2. $\Delta_{\beta<\kappa} D_{\beta}$ is unbounded in κ.
Subproof. Fix $\gamma<\kappa$. We need to find $\delta>\gamma$ with $\delta \in \Delta_{\beta<\kappa} D_{\beta}$.
Define $\left\langle\gamma_{n}: n<\omega\right\rangle$ as follows: $\gamma_{0}:=\gamma$ and

$$
\gamma_{n+1}:=\min D_{\gamma_{n}} \backslash\left(\gamma_{n}+1\right)
$$

We have $\delta:=\sup _{n<\omega} \gamma_{n} \in \kappa$ by cofinality of κ.
We need to show that $\delta \in D_{\bar{\gamma}}$ for all $\bar{\gamma}<\delta$.
If $\bar{\gamma}<\delta$, then $\bar{\gamma} \leqslant \gamma_{n}$ for some $n<\omega$. For $m \geqslant n, \gamma_{m+1} \in D_{\gamma_{m}} \subseteq D_{\gamma_{n}} \subseteq D_{\bar{\gamma}}$. So $D_{\bar{\gamma}} \cap \delta$ is unbounded in δ, hence $\delta \in D_{\bar{\gamma}}$.
$\operatorname{Remark}^{\dagger}$ 2.95.44. $\Delta_{\beta<\kappa} C_{\beta}$ actually is a club, since $\Delta_{\beta<\kappa} C_{\beta}$ is closed, again cf. Remark ${ }^{\dagger}$ 2.94.43.

Definition 2.96. Let κ be regular and uncountable. $S \subseteq \kappa$ is called stationary (in κ) iff $C \cap S \neq \varnothing$ for every club $C \subseteq \kappa$.

Remark † 2.96.45 (https://mathoverflow.net/q/37503). Informally, club sets and stationary sets can be viewed as large sets of a measure space of measure 1. Clubs behave similarly to sets of measure 1 and stationary sets are analogous to sets of positive measure:

- Every club is stationary,
- the intersection of two clubs is a club,
- the intersection of a club and a stationary set is stationary,
- there exist disjoint stationary sets.

Example 2.97. - Every $D \subseteq \kappa$ which is club in κ is stationary in κ.

- There exist disjoint stationary sets: ${ }^{a}$ Let $\kappa=\omega_{2}$. Let $S_{0}:=\{\xi<\kappa$: $\operatorname{cf}(\xi)=\omega\}$ and $S_{1}:=\left\{\xi<\kappa: \operatorname{cf}(\xi)=\omega_{1}\right\}$. Clearly these are disjoint. They are both stationary: Let $C \subseteq \kappa$ be a club. Let $\left(\xi_{i}: i \leqslant \omega_{1}\right)$ be defined as follows: $\xi_{0}:=\min C, \xi_{i}:=\min \left(C \backslash \sup _{j<i} \xi_{j}\right)$. For $i \leqslant \omega_{1}$ we have that $\xi_{i}=\sup _{j<i} \xi_{j}$. In particular $\xi_{\omega} \in S_{0} \cap C$ and $\xi_{\omega_{1}} \in S_{1} \cap C$.

[^5]We will show later that if κ is a regular uncountable cardinal, then every stationary $S \subseteq \kappa$ can be written as $S=\bigcup_{i<\kappa} S_{i}$, where the S_{i} are stationary and pairwise disjoint.

Theorem 2.98 (Fodor). Let κ be a regular and uncountable cardinal. Let $S \subseteq \kappa$ be stationary and let $f: S \rightarrow \kappa$ be regressive in the following sense:
$f(\alpha)<\alpha$ for all $\alpha \in S$.
Then there exists a stationary subset $T \subseteq S$ and some $\nu<\kappa$ such that $f(\alpha)=\nu$ for all $\alpha \in T$.

Proof. Let S, f be given. For $\nu<\kappa$ set $S_{\nu}:=\{\alpha \in S: f(\alpha)=\nu\}$. We aim to show that one of the S_{ν} is stationary. Suppose otherwise. Then for every ν there exists a club C_{ν} such that $S_{\nu} \cap C_{\nu}=\varnothing .{ }^{6}$ Let $C=\Delta_{\nu<\kappa} C_{\nu}$. By Lemma $2.95 C$ is a club. So we may pick some $\alpha \in C \cap S$. In particular $\alpha \in C_{\nu}$ for all $\nu<\alpha$. Hence $f(\alpha) \neq \nu$ for all $\nu<\alpha$, so $f(\alpha) \geqslant \alpha$. But f is regressive $\&$

2.7 Some model theory and a second proof of Fodor's Theorem

Recall the following:

Definition 2.99. A substructure $X \subseteq V_{\theta}$ is an elementary substructure of V_{θ}, denoted $X<V_{\theta},{ }^{a}$ iff for all formulae φ of the language of set theory and for all $x_{1}, \ldots, x_{k} \in X$,

$$
\left(X ;\left.\in\right|_{X}\right) \models \varphi\left(x_{1}, \ldots, x_{k}\right) \Longleftrightarrow\left(V_{\theta} ;\left.\in\right|_{V_{\theta}}\right) \models \varphi\left(x_{1}, \ldots, x_{k}\right) .
$$

$$
{ }^{a_{\text {more f formally }}(X, \epsilon)<\left(V_{\theta}\right), ~}
$$

Remark 2.99.46. Löwenheim-Skolem allows us to find elementary substructures of arbitrary sizes. How do we do this? Let φ be a formula. A Skolem-function over V_{θ} for φ is a function

$$
f:{ }^{k} V_{\theta} \rightarrow V_{\theta}
$$

where k is the number of free variables of $\exists v . \varphi$ and for all $x_{1}, \ldots, x_{k} \in V_{\theta}$, if $\left(V_{\theta}, \in\right) \models \exists v . \varphi\left(v, x_{1}, \ldots, x_{k}\right)$ then $\left(V_{\theta}, \in\right) \models \varphi\left(f\left(x_{1}, \ldots, x_{k}\right), x_{1}, \ldots, x_{k}\right)$.
Using (C) such Skolem-functions can be easily found for all formulae.
There is a sufficient criterion for $X \subseteq V_{\theta}$ to be an elementary substructure of V_{θ}.

Lemma 2.100 (Tarski-Vaught Test). Let $X \subseteq V_{\theta}$. For each formula φ, let f_{φ} be a Skolem function over V_{θ} for φ. If for every φ and for all $x_{1}, \ldots, x_{k} \in$ X (where k is the number of free variables of $\exists v . \varphi$) $f_{\varphi}\left(x_{1}, \ldots, x_{k}\right) \in X$, then $X<V_{\theta}$.

Let's do a second proof of Fodor's Theorem (2.98).

[^6]Proof of Theorem 2.98. Fix $\theta>\kappa$ and look at V_{θ}.
Fix $S \subseteq \kappa$ stationary and $f: S \rightarrow \kappa$ regressive.
For each formula φ fix a Skolem function f_{φ} over V_{θ} for φ. Let $\left(X_{\xi}: \xi \leqslant \kappa\right)$ be a sequence of elementary substructures of V_{θ} defined as follows: Let X_{0} be the least X such that $S, f \in X$ and X is closed under f_{φ}. Note that X_{0} is countable.

For $\xi<\kappa$ let $X_{\xi+1}$ be the least $X \subseteq V_{\theta}$ such that $X_{\xi} \subseteq X, \min \left(\kappa \backslash X_{\xi}\right) \in X$ and X is closed under all f_{φ}. For limits $\lambda \leqslant \kappa$ let

$$
X_{\lambda}:=\bigcup_{\xi<\lambda} X_{\xi}
$$

Note that $\left|X_{\xi}\right|=\left|X_{\xi+1}\right|$ but the size may increase at limits. It is easy to see inductively that $\left|X_{\xi}\right|<\kappa$ for every $\xi<\kappa$, while $X_{\xi} \subsetneq X_{\xi^{\prime}}$ for all $\xi<\xi^{\prime} \leqslant \kappa$.

Also $\xi \subseteq X_{\xi}$ for all $\xi \leqslant \kappa$.
Claim 2.98.1. There is a club $C \subseteq \kappa$ such that $X_{\xi} \cap \kappa=\xi$ for all $\xi \in C$.
Proof of Claim 2.98.1. Write $C=\left\{\xi<\kappa: X_{\xi} \cap \kappa=\xi\right\}$. Trivially C is closed. Let us show that C is unbounded in κ. Let $\zeta<\kappa$. Let us define a strictly increasing sequence $\left\langle\xi_{n}: n<\omega\right\rangle$ as follows. Set $\xi_{0}:=\zeta$. Suppose ξ_{n} has been chosen. Look at $X_{\xi_{n}} \cap \kappa$. Since $\left|X_{\xi_{n}} \cap \kappa\right|<\kappa$, $\sup \left(X_{\xi_{n}} \cap \kappa\right)<\kappa$. Set $\xi_{n+1}:=\sup \left(X_{\xi_{n}} \cap \kappa\right)+1$. Set $\xi:=\sup _{n<\omega} \xi_{n}$. Clearly $\zeta<\xi$.

Claim 2.98.1.1. $\xi \in C$, i.e. $X_{\xi} \cap \kappa=\xi$.
Proof of Claim 2.98.1.1. If $\eta<\xi$, then $\eta<\xi_{n}$ for some n and then $\eta \in \xi_{n} \subseteq$ $X_{\xi_{n}} \subseteq X_{\xi}$.

Now let $\eta \in X_{\xi} \cap \kappa$. Then $\eta \in X_{\xi_{n}}$ for some $n<\omega$, so $\eta<\xi_{n+1}<\xi$, hence $X_{\xi} \cap \kappa \subseteq \xi$.

Now let $\alpha \in S \cap C$, i.e. $X_{\alpha} \prec V_{\theta}$ and $\alpha=X_{\alpha} \cap \kappa$. $f \in X_{\alpha}$ and f is regressive, so $f(\alpha)<\alpha$. Write $\nu=f(\alpha)$. Let $T=\{\xi \in S: f(\xi)=\nu\}$. We have $T \in X_{\alpha}$, as T is definable from $S, f, \nu \in X_{\alpha}$.

Claim 2.98.2. T is stationary.

Subproof. Otherwise there is a club $D \subseteq \kappa$ such that $D \cap T=\varnothing$, i.e.

$$
V_{\theta} \models \exists D . D \text { club in } \kappa \wedge D \cap T=\varnothing
$$

hence

$$
X_{\alpha} \models \exists D . D \text { club in } \kappa \wedge D \cap T=\varnothing .
$$

So there is $D \in X_{\alpha}$ such that

$$
X_{\alpha} \models D \text { is club in } \kappa \wedge D \cap T=\varnothing
$$

hence

$$
V_{\theta} \models D \text { is club in } \kappa \wedge D \cap T=\varnothing .
$$

In other words, there is some club $D \in X_{\alpha}$ with $D \cap T=\varnothing$.
We have $\alpha \in T$ as $\alpha \in S$ and $f(\alpha)=\nu$. Let us show that $\alpha \in D$, which gives a contradiction. For $\alpha \in D$ it suffices to show that $D \cap \alpha$ is unbounded in α. Let $\xi<\alpha$. As D is unbounded in $\kappa, \exists \eta>\xi . \eta \in D$, so

$$
V_{\theta} \models \exists \eta>\xi . \eta \in D
$$

hence

$$
X_{\alpha} \models \exists \eta>\xi . \eta \in D
$$

Hence there is some $\eta \in X_{\alpha}$ with $\eta \in D$. This means that $\xi<\underbrace{\eta}_{\in D}<\alpha$.

Recall Fodor's Theorem (2.98).
Question 2.100.47. What happens if S is nonstationary?
Let $S \subseteq \kappa$ be nonstationary, κ uncounable and regular. Then there is a club $C \subseteq \kappa$ with $C \cap S=\varnothing$. Let us define $f: S \rightarrow \kappa$ in the following way:

If $\alpha \in S$ and $C \cap \alpha \neq \varnothing$, then $\max (C \cap \alpha)<\alpha$.
Define

$$
f(\alpha):= \begin{cases}0 & : C \cap \alpha=\varnothing \\ \max (C \cap \alpha) & : C \cap \alpha \neq \varnothing\end{cases}
$$

For all $\alpha>0$, we have that $f(\alpha)<\alpha$. If $\gamma \in \operatorname{ran}(f)$ then $f(\alpha)=\gamma$ implies either $\gamma=0$ and $\alpha<\min (C)$ or $\gamma \in C$ and $\gamma<\alpha<\gamma^{\prime}$ where $\gamma^{\prime}=\min (C \backslash(\gamma+1))$. Thus for all γ, there is only an interval of ordinals $\alpha \in S$ where $f(\alpha)=\gamma$.

Recall that $F \subseteq \mathcal{P}(\kappa)$ is a filter if $X, Y \in F \Longrightarrow X \cap Y \in F, X \in F, X \subseteq Y \subseteq$ $\kappa \Longrightarrow Y \in F$ and $\varnothing \notin F, \kappa \in F$.

Definition 2.101. A filter F is an ultrafilter iff for all $X \subseteq \kappa$ either $X \in F$ or $\kappa \backslash X \in F$.

Example 2.102. Examples of filters:
(a) Let $\kappa \geqslant \aleph_{0}$ and let $F=\{X \subseteq \kappa: \kappa \backslash X$ is finite $\}$. This is called the

Fréchet filter or cofinal filter. It is not an ultrafilter (consider for example the even and odd numbers ${ }^{a}$).
(b) Let κ be uncountable and regular. Then $\mathcal{F}_{\kappa}:=\{X \subseteq \kappa: \exists C \subseteq$ κ club in $\kappa . C \subseteq X\}$.

[^7]Question 2.102.48. Is \mathcal{F}_{κ} an ultrafilter?
This is certainly not the case if $\kappa \geqslant \aleph_{2}$, because then $S_{0}:=\{\alpha<\kappa: \operatorname{cf}(\alpha)=\omega\}$ and $S_{1}:=\left\{\alpha<\kappa: \operatorname{cf}(\alpha)=\omega_{1}\right\}$ are both stationary and clearly disjoint. So neither S_{0} nor $S_{1} \subseteq \kappa \backslash S_{0}$ contains a club.

For $\kappa<\aleph_{1}$ this argument does not work, since there is only one cofinality.
Theorem 2.103 (Solovay). Let κ be regular and uncountable. If $S \subseteq \kappa$ is stationary, there is a sequence $\left\langle S_{i}: i<\kappa\right\rangle$ of pairwise disjoint stationary subsets of κ such that $S=\bigcup S_{i}$.

Corollary 2.104. $\mathcal{F}_{\aleph_{1}}$ is not an ultrafilter.
Proof. Apply Solovay's Theorem (2.103) to $S=\aleph_{1}$. Let $\aleph_{1}=A \cup B$ where A and B are both stationary and disjoint. Then use the argument from above.

Proof of Theorem 2.103. ${ }^{7}$ We will only prove this for \aleph_{1}. Fix $S \subseteq \aleph_{1}$ stationary.
For each $0<\alpha<\omega_{1}$, either α is a successor ordinal or α is a limit ordinal and $\operatorname{cf}(\alpha)=\omega$.
Let $S^{*}:=\{\alpha \in S \backslash\{0\}: \alpha$ is a limit ordinal $\}$. S^{*} is still stationary: Let $C \subseteq \omega_{1}$ be a club, then $D=\{\alpha \in C \backslash\{0\}: \alpha$ is a limit ordinal $\}$ is still a club, so

$$
S^{*} \cap C=S^{*} \cap D=S \cap D \neq \varnothing
$$

Let

$$
\left\langle\left\langle\gamma_{n}^{\alpha}: n<\omega\right\rangle: \alpha \in S^{*}\right\rangle
$$

be such that $\left\langle\gamma_{n}^{\alpha}: n\langle\omega\rangle\right.$ is cofinal in α.
Claim 2.103.1. There exists $n<\omega$ such that for all $\delta<\omega_{1}$ the set

$$
\left\{\alpha \in S^{*}: \gamma_{n}^{\alpha}>\delta\right\}
$$

is stationary.

[^8]Subproof. Otherwise for all $n<\omega$, there is a δ such that $\left\{\alpha \in S^{*}: \gamma_{n}^{\alpha}>\delta\right\}$ is nonstationary. Let δ_{n} be the least such δ. Let C_{n} be a club disjoint from

$$
\left\{\alpha \in S^{*}: \gamma_{n}^{\alpha}>\delta_{n}\right\}
$$

i.e. if $\alpha \in S^{*} \cap C_{n}$, then $\gamma_{n}^{\alpha} \leqslant \delta_{n}$. Let $\delta^{*}:=\sup _{n<\omega} \delta_{n}$.

Let $C=\bigcap_{n<\omega} C_{n}$. Then C is a club. We must have that if $\alpha \in S^{*} \cap C$ then $\gamma_{n}^{\alpha} \leqslant \delta^{*}$ for all n.

Let $C^{\prime}:=C \backslash\left(\delta^{*}+1\right)$. C^{\prime} is still club. As S^{*} is stationary, we may pick some $\alpha \in S^{*} \cap C^{\prime}$. But then $\gamma_{n}^{\alpha}>\delta^{*}$ for n large enough as $\left\langle\gamma_{n}^{\alpha}: n<\omega\right\rangle$ is cofinal in α 亿.

Let $n<\omega$ be as in Claim 2.103.1. Consider

$$
\begin{aligned}
f: S^{*} & \longrightarrow \omega_{1} \\
\alpha & \longmapsto \gamma_{n}^{\alpha} .
\end{aligned}
$$

Clearly this is regressive.
We will now define a strictly increasing sequence $\left\langle\delta_{i}: i<\omega_{1}\right\rangle$ as follows:
Let $\delta_{0}=0$.
For $0<i<\omega_{1}$ suppose that $\delta_{j}, j<i$ have been defined. Let $\delta:=\left(\sup _{j<i} \delta_{j}\right)+1$. By Claim 2.103.1 (rather, by the choice of n), we have that $\left\{\alpha \in S^{*}: \gamma_{n}^{\alpha}>\delta\right\}$ is stationary. Hence by Fodor there is some stationary $T \subseteq S^{*}$ and some δ^{\prime} such that for all $\alpha \in T$ we have $\gamma_{n}^{\alpha}=\delta^{\prime}$.

Write $\delta_{i}=\delta^{\prime}$ and $T_{i}=T$.
By construction, all the T_{i} are stationary. Since the δ_{i} are strictly increasing and since $\gamma_{n}^{\alpha}=\delta_{i}$ for all $\alpha \in T_{i}$, we have that the T_{i} are disjoint.

Now let

$$
S_{i}:= \begin{cases}T_{i} & : i>0 \\ T_{0} \cup\left(S \backslash \bigcup_{j>0} T_{j}\right) & : i=0\end{cases}
$$

Then $\left\langle S_{i}: i<\omega_{1}\right\rangle$ is as desired.

We now want to do another application of Fodor's Theorem (2.98). Recall that $2^{\kappa}>\kappa$, in fact $\operatorname{cf}\left(2^{\kappa}\right)>\kappa$ by Kőnig's Theorem (2.84) (cf. Corollary 2.85).
Trivially, if $\kappa \leqslant \lambda$ then $2^{\kappa} \leqslant 2^{\lambda}$. This is in some sense the only thing we can prove about successor cardinals. However we can say something about singular cardinals:

Theorem 2.105 (Silver). Let κ be a singular cardinal of uncountable co-
finality. Assume that $2^{\lambda}=\lambda^{+}$for all (infinite) cardinals $\lambda<\kappa$. Then $2^{\kappa}=\kappa^{+}$.

Definition 2.106. GCH, the generalized continuum hypothesis is the statement that $2^{\lambda}=\lambda^{+}$holds for all infinite cardinals λ,

Recall that CH says that $2^{\aleph_{0}}=\aleph_{1}$. So GCH $\Longrightarrow \mathrm{CH}$.
Silver's Theorem (2.105) says that if GCH is true below κ, then it is true at κ.
The proof of Silver's Theorem (2.105) is quite elementary, so we will do it now, but the statement can only be fully appreciated later.
[Lecture 17, 2023-12-14]
We now want to prove Silver's Theorem (2.105).

Remark 2.106.49. The hypothesis of Silver's Theorem (2.105) is consistent with ZFC.

We will only prove Silver's Theorem (2.105) in the special case that $\kappa=\aleph_{\omega_{1}}$ (see Silver's Theorem (case of $\aleph_{\omega_{1}}$) (2.86)). The general proof differs only in notation.

Remark 2.106.50. It is important that the cofinality is uncountable. For example it is consistent with ZFC that $2^{\aleph_{n}}=\aleph_{n+1}$ for all $n<\omega$ but at the same time $2^{\aleph_{\omega}}=\aleph_{\omega+2}$.

Proof of Theorem 2.86. We need to count the number of $X \subseteq \aleph_{\omega_{1}}$. Let us fix $\left\langle f_{\lambda}: \lambda<\kappa\right.$ an infinite cardinal \rangle such that $f_{\lambda}: \mathcal{P}(\lambda) \rightarrow \lambda^{+}$is bijective for each $\lambda<\kappa$.

For $X \subseteq \aleph_{\omega_{1}}$ define

$$
\begin{aligned}
f_{X}: \omega_{1} & \longrightarrow \aleph_{\omega_{1}} \\
\alpha & \longmapsto f_{\aleph_{\alpha}}\left(X \cap \aleph_{\alpha}\right) .
\end{aligned}
$$

Claim 2.86.1. For $X, Y \subseteq \aleph_{\omega_{1}}$ it is $X \neq Y \Longleftrightarrow f_{X} \neq f_{Y}$.
Subproof. $X \neq Y$ holds iff $X \cap \aleph_{\alpha} \neq Y \cap \aleph_{\alpha}$ for some $\alpha<\omega_{1}$. But then $f_{X}(\alpha) \neq f_{Y}(\alpha)$.

For $X, Y \subseteq \aleph_{\omega_{1}}$ write $X \leqslant Y$ iff

$$
\left\{\alpha<\omega_{1}: f_{X}(\alpha) \leqslant f_{Y}(\alpha)\right\}
$$

is stationary.
Claim 2.86.2. For all $X, Y \subseteq \aleph_{\omega_{1}}, X \leqslant Y$ or $Y \leqslant X$.

Subproof. Suppose that $X \nVdash Y$ and $Y \$ X$. Then there are clubs $C, D \subseteq \omega_{1}$ such that

$$
C \cap\left\{\alpha<\omega_{1}: f_{X}(\alpha) \leqslant f_{Y}(\alpha)\right\}=\varnothing
$$

and

$$
D \cap\left\{\alpha<\omega_{1}: f_{Y}(\alpha) \leqslant f_{X}(\alpha)\right\}=\varnothing
$$

Note that $C \cap D$ is a club. Take some $\alpha \in C \cap D$. But then $f_{X}(\alpha) \leqslant f_{Y}(\alpha)$ or $f_{Y}(\alpha) \leqslant f_{X}(\alpha) \nless$

Claim 2.86.3. . Let $X \subseteq \aleph_{\omega_{1}}$. Then

$$
\left|\left\{Y \subseteq \aleph_{\omega_{1}}: Y \leqslant X\right\}\right| \leqslant \aleph_{\omega_{1}}
$$

Subproof. Write $A:=\left\{Y \subseteq X_{\omega_{1}}: Y \leqslant X\right\}$. Suppose $|A| \geqslant \aleph_{\omega_{1}+1}$. For each $Y \in A$ we have that

$$
S_{Y}:=\left\{\alpha: f_{Y}(\alpha) \leqslant f_{X}(\alpha)\right\}
$$

is a stationary subset of ω_{1}. Since by assumption $2^{\aleph_{1}}=\aleph_{2}$, there are at most \aleph_{2} such S_{Y}.
Suppose that for each $S \subseteq \omega_{1}$,

$$
\left|\left\{Y \in A: S_{Y}=S\right\}\right|<\aleph_{\omega_{1}+1}
$$

Then A is the union of $\leqslant \aleph_{2}$ many sets of size $<\aleph_{\omega_{1}+1}$. Thus this is a contradiction since $\aleph_{\omega_{1}+1}$ is regular.

So there exists a stationary $S \subseteq \omega_{1}$ such that

$$
A_{1}=\left\{Y \subseteq \aleph_{\omega_{1}}: S_{Y}=S\right\}
$$

has cardinality $\aleph_{\omega_{1}+1}$. We have

$$
f_{Y}(\alpha) \leqslant f_{X}(\alpha)=f_{\aleph_{\alpha}}\left(X \cap \aleph_{\alpha}\right)<\aleph_{\alpha+1}
$$

for all $Y \in A_{1}, \alpha \in S$.
Let $\left\langle g_{\alpha}: \alpha \in S\right\rangle$ be such that $g_{\alpha}: \aleph_{\alpha} \rightarrow f_{X}(\alpha)+1$ is a surjection for all $\alpha \in S$.
Then for each $Y \in A_{1}$ define

$$
\begin{aligned}
\bar{f}_{Y}: S & \longrightarrow \aleph_{\omega_{1}} \\
& \alpha \longmapsto \min \left\{\xi: g_{\alpha}(\xi)=f_{Y}(\alpha)\right\} .
\end{aligned}
$$

Let D be the set of all limit ordinals $<\omega_{1}$. Then $S \cap D$ is a stationary set: If C is a club, then $C \cap D$ is a club, hence $(S \cap D) \cap C=S \cap(D \cap C) \neq \varnothing$.

Now to each $Y \in A$ we may associate a regressive function

$$
\begin{aligned}
h_{Y}: S \cap D & \longrightarrow \omega_{1} \\
\alpha & \longmapsto \min \left\{\beta<\alpha: \bar{f}_{Y}(\alpha)<\aleph_{\beta}\right\} .
\end{aligned}
$$

h_{Y} is regressive, so by Fodor's Theorem (2.98) there is a stationary $T_{Y} \subseteq S \cap D$ on which h_{Y} is constant.

By an argument as before, there is a stationary $T \subseteq S \cap D$ such that

$$
\left|A_{2}\right|=\aleph_{\omega_{1}+1}
$$

where $A_{2}:=\left\{Y \in A_{1}: T_{Y}=T\right\}$.
Let $\beta<\omega_{1}$ be such that for all $Y \in A_{2}$ and for all $\alpha \in T, h_{Y}(\alpha)=\beta$. Then $\bar{f}_{Y}(\alpha)<\aleph_{\beta}$ for all $Y \in A_{2}$ and $\alpha \in T$.
There are at most $\aleph_{\beta}^{\aleph_{1}}$ many functions $T \rightarrow \aleph_{\beta}$, but

$$
\begin{aligned}
\aleph_{\beta}^{\aleph_{1}} & \leqslant 2^{\aleph_{\beta} \cdot \aleph_{1}} \\
& =\aleph_{\beta+1} \cdot \aleph_{2} \\
& <\aleph_{\omega_{1}} .
\end{aligned}
$$

Suppose that for each function $\tilde{f}: T \rightarrow \aleph_{\beta}$ there are $<\aleph_{\omega_{1}+1}$ many $Y \in A_{2}$ with $\bar{f}_{Y} \cap T=\tilde{f}$.
Then A_{2} is the union of $<\aleph_{\omega_{1}}$ many sets each of size $<\aleph_{\omega_{1}+1} \downarrow$. Hence for some $\tilde{f}: T \rightarrow \aleph_{\beta}$,

$$
\left|A_{3}\right|=\aleph_{\omega_{1}+1}
$$

where $A_{3}=\left\{Y \in A_{2}:\left.\bar{f}_{Y}\right|_{T}=\tilde{f}\right\}$.
Let $Y, Y^{\prime} \in A_{3}$ and $\alpha \in T$. Then

$$
\bar{f}_{Y}(\alpha)=\bar{f}_{Y^{\prime}}(\alpha)
$$

hence

$$
f_{\aleph_{\alpha}}\left(Y \cap \aleph_{\alpha}\right)=f_{Y}(\alpha)=f_{Y^{\prime}}(\alpha)=f_{\aleph_{\alpha}}\left(Y^{\prime} \cap \aleph_{\alpha}\right),
$$

i.e. $Y \cap \aleph_{\alpha}=Y^{\prime} \cap \aleph_{\alpha}$. Since T is cofinal in ω_{1}, it follows that $Y=Y^{\prime}$. So $\left|A_{3}\right| \leqslant 1$ 亿

Let us now define a sequence $\left\langle X_{i}: i<\aleph_{\omega_{1}+1}\right\rangle$ of subsets of $\aleph_{\omega_{1}+1}$ as follows:
Suppose $\left\langle X_{j}: j<i\right\rangle$ were already chosen. Consider

$$
\left\{Y \subseteq \aleph_{\omega_{1}}: \exists j<i . Y \leqslant X_{j}\right\}=\bigcup_{j<i}\left\{Y \subseteq \aleph_{\omega_{1}}: Y \leqslant X_{j}\right\}
$$

This set has cardinality $\leqslant \aleph_{\omega_{1}}$ by Claim 2.86.3. Let $X_{i} \subseteq \aleph_{\omega_{1}}$ be such that $X_{i} \not \approx X_{j}$ for all $j<i$.
The set

$$
P:=\left\{Y \subseteq \aleph_{\omega_{1}}: \exists i<\aleph_{\omega_{1}+1} . Y \leqslant X_{i}\right\}=\bigcup_{i<\aleph_{\omega_{1}+1}}\left\{Y \subseteq \aleph_{\omega_{1}}: Y \leqslant X_{i}\right\}
$$

has size $\leqslant \aleph_{\omega_{1}+1}$ (in fact the size is exactly $\aleph_{\omega_{1}+1}$).
On the other hand $P=\mathcal{P}\left(\aleph_{\omega_{1}}\right)$ because if $X \subseteq \aleph_{\omega_{1}}$ is such that $X \$ X_{i}$ for all $i<\aleph_{\omega_{1}+1}$, then $X_{i} \leqslant X$ for all $i<\aleph_{\omega_{1}+1}$, so such a set X does not exist by Claim 2.86.3.

Definition 2.107. - A cardinal κ is called weakly inaccessible iff κ is uncountable, ${ }^{a}$ regular and $\forall \lambda<\kappa$. $\lambda^{+}<\kappa$.

- A cardinal κ is (strongly) inaccessible iff κ is uncountable, regular and $\forall \lambda<\kappa .2^{\lambda}<\kappa$.
${ }^{a}$ dropping this we would get that \aleph_{0} is inaccessible

Remark 2.107.51. Since $2^{\lambda} \geqslant \lambda^{+}$, strongly inaccessible cardinals are weakly inaccessible.

If GCH holds, the notions coincide.

Theorem 2.108. If κ is inaccessible, then $V_{\kappa} \models$ ZFC. ${ }^{a}$
${ }^{a}$ More formally $\left(V_{\kappa},\left.\in\right|_{V_{k}}\right) \models$ ZFC.

Proof. Since κ is regular, (Rep) works. Since $2^{\lambda}<\kappa$, (Pow) works. The other axioms are trivial.

Corollary 2.109. ZFC does not prove the existence of inaccessible cardinals, unless ZFC is inconsistent.

Proof. If ZFC is consistent, it can not prove that it is consistent. In particular, it can not prove the existence of a model of ZFC.

Definition 2.110 (Ulam). A cardinal $\kappa>\aleph_{0}$ is measurable iff there is an ultrafilter U on κ, such that U is not principal ${ }^{a}$ and $<\kappa$-closed,i.e. if $\theta<\kappa$ and $\left\{X_{i}: i<\theta\right\} \subseteq U$, then $\bigcap_{i<\theta} X_{i} \in U$.
$a_{\text {i.e. }}\{\xi\} \notin U$ for all $\xi<\kappa$
Goal. We want to prove that if κ is measurable, then κ is inaccessible and there are κ many inaccessible cardinals below κ (i.e. κ is the $\kappa^{\text {th }}$ inaccessible).

Theorem 2.111. The following are equivalent:

1. κ is a measurable cardinal.
2. There is an elementary embedding ${ }^{a} j: V \rightarrow M$ with M transitive such that $\left.j\right|_{\kappa}=\mathrm{id}, j(\kappa) \neq \kappa$.
[^9]Proof. 2. \Longrightarrow 1.: Fix $j: V \rightarrow M$. Let $U=\{X \subseteq \kappa: \kappa \in j(X)\}$. We need to show that U is an ultrafilter:

- Let $X, Y \in U$. Then $\kappa \in j(X) \cap j(Y)$. We have $M \models j(X \cap Y)=$ $j(X) \cap j(Y)$, and thus $j(X \cap Y)=j(X) \cap j(Y)$. It follows that $X \cap Y \in U$.
- Let $X \in U$ and $X \subseteq Y \subseteq \kappa$. Then $\kappa \in j(X) \subseteq j(Y)$ by the same argument, so $Y \in U$.
- We have $j(\varnothing)=\varnothing$ (again $M \models j(\varnothing)$ is empty), hence $\varnothing \notin U$.
- $\kappa \in U$ follows from $\kappa \in j(\kappa)$. This is shown as follows:

Claim 1. For every ordinal $\alpha, j(\alpha)$ is an ordinal such that $j(\alpha) \geqslant \alpha$.
Subproof. $\alpha \in \mathrm{OR}$ can be written as

$$
\forall x \in \alpha . \forall y \in x . y \in \alpha \wedge \forall x \in \alpha . \forall y \in \alpha .(x \in y \vee x=y \vee y \in x) .
$$

So if α is an ordinal, then $M \models " j(\alpha)$ is an ordinal" in the sense above. Therefore $j(\alpha)$ really is an ordinal.

If the claim fails, we can pick the least α such that $j(\alpha)<\alpha$. Then $M \models j(j(\alpha))<j(\alpha)$, i.e. $j(j(\alpha))<j(\alpha)$ contradicting the minimality of α.

Therefore as $j(\kappa) \neq \kappa$, we have $j(\kappa)>\kappa$, i.e. $\kappa \in j(\kappa)$.

- U is an ultrafilter: Let $X \subseteq \kappa$. Then $\kappa \in j(\kappa)=j(X \cup(\kappa \backslash X))=$ $j(X) \cup j(\kappa \backslash X)$. So $X \in U$ or $\kappa \backslash X \in U$.
Let $\theta<\kappa$ and $\left\{X_{i}: i<\theta\right\} \subseteq U$. Then $\kappa \in j\left(X_{i}\right)$ for all $i<\theta$, hence

$$
\kappa \in \bigcap_{i<\theta} j\left(X_{i}\right)=j\left(\bigcap_{i<\theta} X_{i}\right) \in U .
$$

This holds since $j(\theta)=\theta($ as $\theta<\kappa)$, so $j\left(\left\langle X_{i}: i<\theta\right\rangle\right)=\left\langle j\left(X_{i}\right): i<\theta\right\rangle$.
Also if $\xi<\kappa$, then $j(\{\xi\})=\{\xi\}$ so $\kappa \notin j(\{\xi\})$ and $\{\xi\} \notin U$.

1. $\Longrightarrow 2$. Fix U. Let ${ }^{\kappa} V$ be the class of all function from κ to V. For $f, g \in{ }^{\wedge} V$ define $f \sim g: \Longleftrightarrow\{\xi<\kappa: f(\xi)=g(\xi)\} \in U$. This is an equivalence relation since U is a filter. Write $[f]=\left\{g \in{ }^{\kappa} V: g \sim f \wedge\right.$
$g \in V_{\alpha}$ for the least α such that there is some $h \in V_{\alpha}$ with $\left.h \sim f\right\} .^{8} \quad$ For any two such equivalence classes $[f],[g]$ define

$$
[f] \tilde{\epsilon}[g]: \Longleftrightarrow\{\xi<\kappa: f(\xi) \in g(\xi)\} \in U .
$$

This is independent of the choice of the representatives, so it is well-defined. Now write $\mathcal{F}=\left\{[f]: f \in{ }^{\mathcal{K}} V\right\}$ and look at $(\mathcal{F}, \tilde{\epsilon})$.
The key to the construction is Łoś's Theorem (2.112) (see below). Given Łoś's Theorem (2.112), we may define an elementary embedding $\bar{j}:(V, \in) \rightarrow(\mathcal{F}, \tilde{\epsilon})$ as follows:
Let $\bar{j}(x)=\left[c_{x}\right]$, where $c_{x}: \kappa \rightarrow\{x\}$ is the constant function with value x.
Then

$$
\begin{aligned}
(V, \in) \models \varphi\left(x_{1}, \ldots, x_{k}\right) & \Longleftrightarrow \Longleftrightarrow\left\{\xi<\kappa:(V, \in) \models \varphi\left(c_{x_{1}}(\alpha), \ldots, c_{x_{k}}(\alpha)\right)\right\} \in U \\
& \Longleftrightarrow \Longleftrightarrow(\mathcal{F}, \tilde{\epsilon}) \models \varphi\left(\bar{j}\left(x_{1}\right), \ldots, \bar{j}\left(x_{k}\right)\right) .
\end{aligned}
$$

Let us show that $(\mathcal{F}, \tilde{\epsilon})$ is well-founded. Otherwise there is $\left\langle f_{n}: n\langle\omega\rangle\right.$ such that $f_{n} \in{ }^{\kappa} V$ and $\left[f_{n+1}\right] \tilde{\epsilon}\left[f_{n}\right]$ for all $n<\omega$.

Then $X_{n}:=\left\{\xi<\kappa: f_{n+1}(\xi) \in f_{n}(\xi)\right\} \in U$, so $\bigcap X_{n} \in U$. Let $\xi_{0} \in \bigcap X_{n}$. Then $f_{0}\left(\xi_{0}\right) \ni f_{1}\left(\xi_{0}\right) \ni f_{2}\left(\xi_{0}\right) \ni \ldots$ 亿.

Note that $\tilde{\epsilon}$ is set-like, therefore by the Mostowski Collapse (2.61) there is some transitive M with $(\mathcal{F}, \tilde{\epsilon}) \stackrel{\sigma}{\cong}(M, \in)$.

We can now define an elementary embedding $j: V \rightarrow M$ by $j:=\sigma \circ \bar{j}$.
It remains to show that $\alpha<\kappa \Longrightarrow j(\alpha)=\alpha$. This can be done by induction: Fix α. We already know $j(\alpha) \geqslant \alpha$. Suppose $\beta \in j(\alpha)$. Then $\beta=\sigma([f])$ for some f and $\sigma([f]) \in \sigma\left(\left[c_{\alpha}\right]\right)$, i.e. $[f] \tilde{\epsilon}\left[c_{\alpha}\right]$. Thus $\{\xi<\kappa: f(\xi) \in \underbrace{c_{\alpha}(\xi)}_{\alpha}\} \in U$.
Hence there is some $\delta<\alpha$ such that

$$
X_{\delta}:=\{\xi<\kappa: f(\xi)=\delta\} \in U
$$

as otherwise $\forall \delta<\alpha . \kappa \backslash X_{\delta} \in U$, i.e. $\varnothing=\left(\bigcap_{\delta<\alpha} \kappa \backslash X_{\delta}\right) \cap X \in U$ k. We get $[f]=\left[c_{\delta}\right]$, so $\beta=\sigma([f])=\sigma\left(\left[c_{\delta}\right]\right)=j(\delta)=\delta$, where for the last equality we have applied the induction hypothesis. So $j(\alpha) \leqslant \alpha$.
For all $\eta<\kappa$, we have $\eta=\sigma\left(\left[c_{\eta}\right]\right)<\sigma\left(\left[c_{\mathrm{id}}\right]\right)<\sigma\left(\left[c_{\kappa}\right]\right)$, so $j(\kappa)>\kappa$.

[^10]Theorem 2.112 (Łoś). For all formulae φ and for all $f_{1}, \ldots, f_{k} \in{ }^{\wedge} V$,

$$
(\mathcal{F}, \tilde{\epsilon}) \models \varphi\left(\left[f_{1}\right], \ldots,\left[f_{k}\right]\right) \Longleftrightarrow\left\{\xi<\kappa:(V, \in) \models \varphi\left(f_{1}(\xi), \ldots, f_{k}(\xi)\right)\right\} \in U .
$$

Proof. Induction on the complexity of φ.
[Lecture 19, 2024-01-11]
Beginning with this lecture, the material is no longer relevant for the exam.
Recall that $\exists x \in y . \varphi$ abbreviates $\exists x . x \in y \wedge \varphi$ and $\forall x \in y . \varphi$ abbreviates $\forall x . x \in y \rightarrow \varphi$.

Definition 2.113 (Arithmetical Hierarchy). Let φ be a \mathcal{L}_{ϵ}-formula. We say that φ is Δ_{0} (or Σ_{0} or Π_{0}) iff it is in the smallest set Γ of formulas such that
(1) Γ contains all atomic formulas $(x \in y, x=y)$.
(2) If $\varphi, \psi \in \Gamma$, then so are $\neg \varphi$ and $\varphi \wedge \psi .^{a}$
(3) If $\varphi \in \Gamma$, then $(\exists x \in y . \varphi),(\forall x \in y . \varphi) \in \Gamma$.

If $\varphi\left(x_{0}, \ldots, x_{m}\right) \in \Sigma_{n}$, then $\left(\forall x_{0} . \ldots \forall x_{m} . \varphi\left(x_{0}, \ldots, x_{m}\right)\right) \in \Pi_{n+1}$. If ZFC $\models \varphi \leftrightarrow \psi$ and $\varphi \in \Sigma_{n}$, then $\psi \in \Sigma_{n}$.
If $\varphi\left(x_{0}, \ldots, x_{m}\right) \in \Pi_{n}$, then $\left(\exists x_{0} . \ldots \exists x_{m} . \varphi\left(x_{0}, \ldots, x_{m}\right) \in \Sigma_{n+1}\right.$. If ZFC \models $\varphi \leftrightarrow \psi$ and $\varphi \in \Pi_{n}$, then $\psi \in \Pi_{n}$.
$\Delta_{n}:=\Sigma_{n} \cap \Pi_{n}$.
${ }^{a}$ It follows that $\varphi \vee \psi, \varphi \rightarrow \psi$ and $\varphi \leftrightarrow \psi$ are also in Γ.

Notation 2.113.52. Assume that M is transitive and φ is sentence. Then

$$
M \models \varphi
$$

means that $\left(M,\left.\in\right|_{M}\right) \models \varphi$.
If $a_{0}, \ldots, a_{n} \in M$ and $\varphi\left(x_{0}, \ldots, x_{n}\right)$ is a \mathcal{L}_{ϵ}-formula, then we say $M \models$ $\varphi\left(a_{0}, \ldots, a_{n}\right)$ iff M satisfies $\varphi\left(x_{0}, \ldots, x_{n}\right)$ for the assignment $x_{i} \mapsto a_{i}$.

Lemma 2.114. Let M be transitive, $\varphi \in \Delta_{0}$ and $a_{0}, \ldots, a_{n} \in M$. Then $M \models \varphi\left(a_{0}, \ldots, a_{n}\right)$ iff $V \models \varphi\left(a_{0}, \ldots, a_{n}\right)$.

Proof. Clearly $M \models a_{i} \in a_{j} \Longleftrightarrow V \models a_{i} \in a_{j}$ and $M \models a_{i}=a_{j} \Longleftrightarrow V \models$ $a_{i}=a_{j}$, i.e. the lemma holds for atomic φ.
It is clear that if $M \models \varphi_{i} \Longleftrightarrow V \models \varphi_{i}, i=1,2$, then also $M \models \neg \varphi_{i} \Longleftrightarrow$ $V \models \neg \varphi_{i}$ and $M \models \varphi_{1} \wedge \varphi_{2} \Longleftrightarrow V \models \varphi_{1} \wedge \varphi_{2}$.

Assume that the lemma holds for φ. Then it also holds for $\exists a_{i} \in a_{j} . \varphi$: We have that $a_{i} \in a_{j}$ is atomic and by the assumption that the lemma holds for φ so since M is transitive, a witness can be transferred from V to M and vice versa. The case of $\forall a_{i} \in a_{j} . \varphi$ can be treated similarly.

A similar arguments yields upwards absoluteness for Σ_{1}-formulas and downwards absoluteness for Π_{1}-formulas:

Lemma 2.115. Let M be transitive. Let $\varphi\left(x_{0}, \ldots, x_{n}\right) \in \mathcal{L}_{\in}$ and $a_{0}, \ldots, a_{n} \in$ M. Then

- If φ is Σ_{1}, then

$$
M \models \varphi\left(a_{0}, \ldots, a_{n}\right) \Longrightarrow V \models \varphi\left(a_{0}, \ldots, a_{n}\right)
$$

- If φ is Π_{1}, then

$$
V \models \varphi\left(a_{0}, \ldots, a_{n}\right) \Longrightarrow M \models \varphi\left(a_{0}, \ldots, a_{n}\right) .
$$

Definition 2.116. Assume that T is a theory and $\varphi \in \mathcal{L}_{\in}$ a formula We say that φ is Δ_{1}^{T} iff there are formulas ψ, τ such that $\psi \in \Sigma_{1}, \tau \in \Pi_{1}$ and

$$
T \vdash \varphi \leftrightarrow \psi \leftrightarrow \tau
$$

Again by a similar argument we get:
Lemma 2.117. Let M be a transitive model of a theory T. Let φ be a Δ_{1}^{T} formula and $a_{0}, \ldots, a_{n} \in M$. Then $M \models \varphi\left(a_{0}, \ldots, a_{n}\right) \Longleftrightarrow V \models$ $\varphi\left(a_{0}, \ldots, a_{n}\right)$.

Lemma 2.118. Let φ denote the statement " R is a well-founded relation". Then $\varphi \in \Delta_{1}^{\mathrm{ZFC}^{-}}$.

Proof. φ is equivalent to

- R is a relation $\left(\Delta_{0}\right)$ and
- $\forall b . b \cap \operatorname{ran}(R)=\varnothing \vee \exists x \in b$. " x is R-minimal".

We only need to care about the second point. This is equivalent (using (C)!) to the statement that there is no

$$
f: \omega \rightarrow \operatorname{dom}(R) \cup \operatorname{ran}(R) \text { such that } \forall n<\omega . f(n+1) R f(n),
$$

which can be written as a Π_{1}-formula. With the help of ranks, we can also write it as a Σ_{1}-formula:
$\exists r:$ OR $\rightarrow \operatorname{dom}(R) \cup \operatorname{ran}(R) . \forall x \in \operatorname{dom}(R) \cup \operatorname{ran}(R) . r(x)=\{\sup (r(y)+1): y R x\}$.

So $\varphi \in \Delta_{1}^{\mathrm{ZFC}^{-}}$.

Lemma 2.119. Assume that M is transitive. Then
(1) $M \models$ (Ext).
(2) $M \models$ (Fund).
(3) If $\omega \in M$, then $M \models(\operatorname{Inf})$.
(4) If M is closed under $(x, y) \mapsto\{x, y\}$, then $M \models$ (Pair).
(5) If M is closed under $x \mapsto \bigcup x$, then $M \models$ (Union).

Proof. (1) Let $x, y \in M$ such that $M \models \forall t . t \in x \Longleftrightarrow t \in y$. Since M is transitive $V \models \forall t$. $t \in x \Longleftrightarrow t \in y$. Since $V \models$ Ext, we can apply $V \models x=y \Longleftrightarrow M \models x=y$.
(2) We need to show $M \models \forall y \neq \varnothing . \exists x \in y . x \cap y=\varnothing$. Let $y \in M$. Since $V \models$ (Fund), $V \models \exists x \in y . x \cap y=\varnothing$. Note that this is a Δ_{0}-formula, hence $M \models \exists x \in y . x \cap y=\varnothing$.
(3) By assumption $\omega \in M$. Since M is transitive, we get $\omega \subseteq M$. Hence ω is a witness for (Inf).
(4) Trivial.
(5) Trivial.

3 Forcing

Recall that a structure $\mathbb{P}=(P, \leqslant)$ is a partially ordered set (poset) if \leqslant is reflexive, symmetric and transitive.

Definition 3.1. A non-empty poset $\mathbb{P}=(P, \leqslant)$ is called a forcing notion. The elements of P are called conditions. If $q \leqslant p$ we say that q is stronger than $p .{ }^{a} D \subseteq P$ is called dense iff $\forall p \in P . \exists q \in D . q \leqslant p$.
Let $p \in P, D \subseteq P$. Then D is dense below p iff $\forall P \ni q \leqslant p$. $\exists r \in D . r \leqslant q$. $G \subseteq P$ is called a filter iff
(1) $\forall p, q \in G . \exists r \in G . r \leqslant p \wedge r \leqslant q$.
(2) $(p \in G \wedge p \leqslant q) \Longrightarrow q \in G$.

For $p, q \in P$ we say that p and q are compatible, $p \| q$, iff $\exists r \in P . r \leqslant$ $p \wedge r \leqslant q$. Otherwise they are incompatible, $p \perp q$.

Let \mathcal{D} be a family of dense subsets of P and G a filter. We say that G is \mathcal{D}-generic iff $\forall D \in \mathcal{D} . G \cap D \neq \varnothing$.
$a_{\text {i.e. it carries more information. }}$

Lemma 3.2. Let $\mathcal{P}=(P, \leqslant)$ be a poset, \mathcal{D} a countable family of dense subsets of P and $p \in P$. Then there exists a \mathcal{D}-generic filter $G \subseteq P$ such that $p \in G$.

Proof. Fix p as above. Let $\left\langle D_{n}: n\langle\omega\rangle\right.$ be an enumeration of \mathcal{D}. Let $p_{0} \leqslant p$ be such that $p_{0} \in D_{0}$. If p_{n} is given, let $p_{n+1} \leqslant p_{n}$ be such that $p_{n+1} \in D_{n+1}$. This is possible since \mathcal{D} is a collection of dense sets. Define $G:=\left\{q \in P: \exists n . p_{n} \leqslant q\right\}$.
G is a filter: Let $r, q \in G$. Let $n_{r}, n_{q}<\omega$ such that $p_{n_{r}} \leqslant r$ and $p_{n_{q}} \leqslant q$. Let $m=\max \left\{n_{r}, n_{q}\right\}$. Then p_{m} is a common extension.
Clearly G is \mathcal{D}-generic.
[Lecture 20, 2024-01-15]
Idea. We want to add a new object that satisfies certain condition. The elements of the forcing notion correspond to approximations of this object.
A filter picks some information which we want to be true. Being a filter ensures that this information does not contradict itself.

Definition 3.3. Assume that M is a transitive model of ZFC, and $\mathbb{P} \in M$ a poset. $G \subseteq \mathbb{P}$ is said to be M-generic for \mathbb{P} if whenever $D \subseteq \mathbb{P}$ is dense and in M, then $G \cap D \neq \varnothing$.

Remark 3.3.53. That is the same as being $\{D \subseteq \mathbb{P}$ dense : $D \in M\}$ generic with generic defined as in Definition 3.1.

Definition 3.4 (Cohen Forcing). Let \mathbb{P} be the set of finite partial function p from ω to 2, i.e. $\mathcal{P}=2^{<\omega}$.
The order on \mathbb{P} is described by $q \leqslant p: \Longleftrightarrow q \supseteq p . \mathbb{P}$ is called the Cohen forcing.

Fact 3.4.54. Assume $X \subseteq 2^{\omega}$ is countable, Then there is $x \in 2^{\omega} \backslash X$.
Of course we already know that, but let's use it to test our machinery:
Proof. Assume that $X=\left\{x_{n}: n \in \omega\right\}$ is an enumeration of X. Let $D_{n}=\{p \in$ $\left.\mathbb{P}: \exists i \in \operatorname{dom}(\mathbb{P}) . x_{n}(i) \neq p(i)\right\}$. This makes sure that we get a "new" element not belonging to X.

Claim 1. D_{n} is dense in \mathbb{P}.
Subproof. Assume $q \in \mathbb{P}$. Let $i=1+\max (\operatorname{dom}(q))$. Note that $i \notin \operatorname{dom}(q)$. Let $p=q \cup\left\{\left(i, 1-x_{n}(i)\right)\right\}$. Then $p \in D_{n}$.

Let $E_{i}=\{p \in \mathbb{P}: i \in \operatorname{dom}(\mathbb{P})\}$. This makes sure that our "new" element is defined everywhere.

Claim 2. $\forall i<\omega . E_{i} \subseteq \mathbb{P}$ is dense.
Subproof. Assume $q \in \mathbb{P}$. If $i \in \operatorname{dom}(q)$ pick $p=q \in E_{i}$. If $i \notin \operatorname{dom}(q)$, let $p=q \cup\{(i, 0)\} \in E_{i}$.

Let $\mathcal{D}=\left\{D_{n}: n<\omega\right\} \cup\left\{E_{i}: i<\omega\right\}$. This is a countable subset of dense sets. By Lemma 3.2 there is a \mathcal{D}-generic filter G. Let $y=\bigcup G$. Note that y is a function, since any two elements of G are compatible.

Note that the "new" element did already exists, so we used forcing language to find it but didn't actually do anything.

Lemma 3.5. Let M be a transitive model of ZFC and let $\mathbb{P}=(P, \leqslant) \in M$.
Let $D \subseteq \mathbb{P}, D \in M, p \in \mathbb{P}$. Then
(1) \mathbb{P} is a partial order iff $M \models$ " \mathbb{P} is a partial order".
(2) D is dense in \mathbb{P} iff $M \models " D$ is dense in $\mathbb{P} "$.
(3) D is dense below p iff $M \models$ " D is dense below p " (this only makes sense if $p \in M)$.

Proof. All the definitions are Δ_{0}, so we can apply Lemma 2.114.

Definition 3.6. Assume that M is a transitive model of $Z F C$ and $\mathbb{P} \in M$ is a poset. $G \subseteq \mathbb{P}$ is called a \mathbb{P}-generic filter over M or M-generic filter for \mathbb{P} if

$$
\forall D \in M .((D \subseteq \mathbb{P} \text { is dense }) \Longrightarrow G \cap D \neq \varnothing)
$$

Corollary 3.7. If M is a countable transitive model of ZFC, $\mathbb{P} \in M$ is a poset and $p \in \mathbb{P}$, then there is an M-generic filter $G \subseteq \mathbb{P}$ with $p \in G$.

Remark 3.7.55. The filter usually exists outside of $M . M$ itself does not think that M is countable, since $M \models$ ZFC. But from the outside, we see that M is countable, so we can find a filter.

Definition 3.8. Assume that \mathbb{P} is a poset. \mathbb{P} is said to be atomless if for all $p \in \mathbb{P}$ there are $q, r \in \mathbb{P}$ such that
(1) $q \leqslant p, r \leqslant p$,
(2) $q \perp r$.

Example 3.9. The Cohen Forcing (3.4) is atomless.
Usually we are only interested in atomless partial orders.

Lemma 3.10. Assume that M is a transitive model of $Z F C, \mathbb{P} \in M$ an atomless poset and let $G \subseteq \mathbb{P}$ be M-generic for \mathbb{P}. Then $G \notin M$.

Proof. Towards a contradiction assume $G \in M$. Define $D:=\mathbb{P} \backslash G$. We'll show that $D \subseteq \mathbb{P}$ is dense, which is a contradiction, since G was assumed to be M generic. Let $q \in \mathbb{P}$ and let r, s be two extensions of q such that $r \perp s$. These exist because \mathbb{P} is atomless. Since G is a filter, it can contain at most one of $\{r, s\}$, wlog. $s \notin G$. In particular, $s \in D$ and $s \leqslant q$. Hence D is dense in \mathbb{P}.

Lemma 3.11. Assume that M is a transitive model of ZFC, $\mathbb{P} \in M$ a poset, $G \subseteq \mathbb{P}$ an M-generic filter and $p \in G$.
If D is dense below p, then $G \cap D \neq \varnothing$.

Proof. Let $E=D \cup\{q \in \mathbb{P}: q \perp p\} . E \subseteq \mathbb{P}$ is dense: Let $r \in \mathbb{P}$.

- If $r \| p$ let $s \leqslant r, p$. Since D is dense below p, there exists $\bar{s} \in D$ such that $\bar{s} \leqslant s$. Since $D \subseteq E, \bar{s} \in E$.
- If $r \perp p$, then it is obvious that $r \in E$.

Since $E \in M, G \cap E \neq \varnothing$.

$$
\begin{aligned}
& G \cap(D \cup\{q \in \mathbb{P}: q \perp p\}) \neq \varnothing \\
& \Longrightarrow(G \cap D) \cup \underbrace{(G \cap\{q \in \mathbb{P}: q \perp p\})}_{\varnothing} \neq \varnothing
\end{aligned}
$$

Definition 3.12. Assume that \mathbb{P} is a poset.
(1) $A \subseteq \mathbb{P}$ is said to be an antichain iff for all $p \neq q$ in $A, p \perp q$.
(2) An antichain $A \subseteq \mathbb{P}$ is a maximal antichain iff $\forall r \in \mathbb{P}$, there exists $a \in \mathbb{P}$ such that $p \| r$.
(3) $X \subseteq \mathbb{P}$ is said to be open if $\forall p \in X . \forall q \leqslant p . q \in X$.

Remark 3.12.56. Note that if A is a maximal antichain in \mathbb{P}, then it is maximal in $(\{A \subseteq \mathbb{P}: A$ is an antichain $\}, \subseteq)$. Using (C), every antichain can be extend to a maximal antichain.
The statement " A is an antichain" is Δ_{0}.
Note that "every antichain of \mathbb{P} is countable" is not necessarily absolute between transitive models of ZFC.

Lemma 3.13. Assume that M is a transitive model of $Z F C, \mathbb{P} \in M$ a poset and $G \subseteq \mathbb{P}$ a filter. Then the following are equivalent:
(1) G is \mathbb{P}-generic over M.
(2) $G \cap A \neq \varnothing$ for every maximal antichain $A \in M$.
(3) $G \cap D \neq \varnothing$ for every dense open $D \in M$ with $D \subseteq \mathbb{P}$

We'll prove this next time.
[Lecture 21, 2024-01-18]
Goal. We want to show that certain statements are consistent with ZFC (or ZF), for instance CH.
We start with a model M of ZFC. Usually we want M to be transitive.
We want to enlarge M to get a bigger model, where our desired statement holds, i.e. add more reals to violate CH .

However we need to do this in a somewhat controlled way, so we can't just do it the way one builds field extensions. In particular, when trying to violate CH we need to make sure that we don't collapse cardinals.

Remark 3.13.57. The idea behind forcing is clever. Unfortunately an easy "how could I have come up with this myself"-approach does not seem to exist.

Remark 3.13.58. How can a countable transitive model M even exist?
M believes some statements that are wrong from the outside perspective. For example there exists $\aleph_{1}^{M} \in M$ such that $M \models x=\aleph_{1}$. \aleph_{1}^{M} is indeed an ordinal (since being an ordinal is a Σ_{0}-statement). However \aleph_{1}^{M} is countable, since M is countable and transitive. This is fine. (Note that " \aleph_{1}^{M} is uncountable" is a Π_{1}-statement.)

Idea (The method of forcing). Start with M, a countable transitive model of ZFC and let $\mathbb{P} \in M$ be a partial order, where $p \leqslant q$ means that p has "more information" than q.

A filter $g \subseteq \mathbb{P}$ is \mathbb{P}-generic over M iff $g \cap D \neq \varnothing$ for all dense $D \subseteq \mathbb{P}, D \in M$.
Next steps:
(1) Define the forcing extension $M[g]$.
(2) Show that $M[g] \models$ ZFC.
(3) Determine other facts about (the theory of) $M[g]$. This depends on the partial order \mathbb{P} we chose in the beginning (and maybe M).

Example 3.14 (Prototypical example). Let $\mathbb{P}=2^{<\omega}, p \leqslant q: \Longleftrightarrow p \supseteq q$ be Cohen forcing, often denoted \mathbb{C}.
Let M be a countable transitive model of ZFC. Since the definition of \mathbb{C} is simple enough, $\mathbb{C} \in M$. Let g be \mathbb{C}-generic over M.
Claim 1. For each $n \in \omega$, the set $D_{n}:=\{p \in \mathbb{C}: n \in \operatorname{dom}(p)\}$ is dense.
Subproof. This is trivial.
Claim 2. $D_{n} \in M$.
Subproof. The definition of D_{n} is absolute.
Claim 3. If $p, q \in g \cap D_{n}$, then $p(n)=q(n)$.
Subproof. g is a filter, so p and q are compatible. $p, q \in D_{n}$ makes sure that $p(n)$ and $q(n)$ are defined.

Let $x=\bigcup g$. By Claim 3, $x \in 2^{\leqslant \omega}$. By Claim 1 and Claim 2, we have $g \cap D_{n} \neq \varnothing$ for all $n<\omega$, hence $n \in \operatorname{dom}(x)$ for all $n<\omega$. So $x \in 2^{\omega}$.
Claim 4. Let $z \in 2^{\omega}, z \in M$. Then $D^{z}=\{p \in \mathbb{C}: \exists n \in \operatorname{dom}(p) . p(n) \neq$ $z(n)\}$ is dense.

Subproof. Trivial.
Claim 5. $D^{z} \in M$ for all $z \in 2^{<\omega}$ with $z \in M$. Therefore, $g \cap D^{z} \neq \varnothing$ for all $z \in M, z: 2^{<\omega}$. Hence $x \neq z$ for all $z \in M, z \in 2^{<\omega}$. In other words $x \notin M$.
The new real x does not do too much damage to M when adding it. ${ }^{a}$ (Some reals would completely kill the model.)

Now let α be an ordinal in M. Let

$$
\begin{aligned}
\mathbb{C}(\alpha):=\{p: & p \text { is a function with domain } \alpha, \\
& p(\xi) \in \mathbb{C} \text { for all } \xi<\alpha, \\
& \{\xi<\alpha: p(\xi) \neq \varnothing\} \text { is finite }\}
\end{aligned}
$$

(α many copies of \mathbb{C} with finite support).
For $p, q \in \mathbb{C}(\alpha)$ define $p \leqslant q: \Longleftrightarrow \forall \xi<\alpha . p(\xi) \supseteq q(\xi)$. We have $\mathbb{C}(\alpha) \in M$
Let g be $\mathbb{C}(\alpha)$-generic over M. Let $x_{\xi}=\bigcup\{p(\xi): p \in g\}$ for $\xi<\alpha$. $x_{\xi} \in 2^{\omega}$:
For each $n<\omega$ and $\xi<\alpha$,

$$
D_{n, \xi}:=\{p \in \mathbb{C}(\alpha): n \in \operatorname{dom}(p(\xi))\} \in M
$$

and $D_{n, \xi}$ is dense.
Claim 6. For all $\xi, \eta<\alpha, \xi \neq \eta$,

$$
D^{\xi, \eta}:=\{p \in \mathbb{C}(\alpha): \exists n \in \operatorname{dom}(p(\xi)) \cap \operatorname{dom}(p(\eta)) \cdot p(\xi)(n) \neq p(\eta)(n)\}
$$

we have that $D^{\xi, \eta} \in M$ and is $D^{\xi, \eta}$ dense.
Therefore if $\xi \neq \eta, x_{\xi} \neq x_{\eta}$.
Currently this is not very exciting, since we only showed that for a countable transitive model M, there is a countable set of reals not contained in M. The interesting point will be, that we can actually add these reals to M.
${ }^{a}$ We still need to make this precise.
Next we want to define $M[g]$.

Warning † 3.14.59. Forcing will not be relevant for the exam. Because of a lack of time, this is more of an outlook than a thorough presentation of the material.
For the rest of the section, let us fix a transitive model M of ZFC a partial order \mathbb{P} and an M-generic filter g.

Definition 3.15 (\mathbb{P}-names). For an ordinal $\alpha \in M^{a}$, let $M_{\alpha}^{\mathbb{P}}$, the \mathbb{P}-names in M of rank $\leqslant \alpha$, be defined as follows:

$$
\tau \in M_{\alpha}^{\mathbb{P}}: \Longleftrightarrow \tau \in M \wedge \tau \subseteq \mathbb{P} \times \bigcup\left\{M_{\beta}^{\mathbb{P}}: \beta<\alpha\right\}
$$

i.e. the elements of $\tau \in M_{\alpha}^{\mathbb{P}}$ are of the form (p, σ), where $p \in \mathcal{P}$ and $\sigma \in M_{\beta}^{\mathbb{P}}$
for some $\beta<\alpha$.
Finally $M^{\mathbb{P}}=\bigcup\left\{M_{\alpha}^{\mathbb{P}}: \alpha \in M\right\}$.
${ }^{a}$ Recall that $\operatorname{Ord}_{M}=\operatorname{Ord} \cap M$.
Let R be the relation on $M^{\mathbb{P}}$ defined by $\sigma R \tau$ iff $\exists p \in \mathbb{P} .(p, \sigma) \in \tau$. If $\tau \in$ $M^{\mathbb{P}}$ and $(p, \sigma) \in \tau$, then $\sigma \in\{p, \sigma\} \in(p, \sigma) \in \tau$, so the relation R is well founded.

Definition 3.16. Let $\tau \in M_{\alpha}^{\mathbb{P}}$. Then τ^{g}, the g-interpretation of τ, is defined to be

$$
\left\{\sigma^{g}: \exists p \in g .(p, \sigma) \in \tau\right\}
$$

Definition 3.17. $M[g]$, the forcing extension of M given by g, is

$$
\left\{\tau^{g}: \tau \in M^{\mathbb{P}}\right\}
$$

Lemma 3.18. $M[g]$ is transitive.

Proof. Trivial!

Lemma 3.19. $M \cup\{g\} \subseteq M[g]$.

Proof. For all $x \in M$ we need to find a name \check{x} such that $\check{x}^{g}=x$.
We can recursively (along \in) define

$$
\check{x}=\{(p, \check{y}): p \in \mathbb{P} \wedge y \in x\} .
$$

By induction, $\check{x} \in M$ for all $x \in M$.
Claim 1. $\check{x}^{g}=x$.
Subproof. Recall that $\mathbb{P} \neq \varnothing$. Inductively, we get

$$
\begin{array}{cl}
\check{x}^{g} \begin{array}{c}
= \\
\text { induction }
\end{array} & \left\{\check{y}^{g}: \exists p \in g \cdot(p, \check{y}) \in \check{x}\right\} \\
& \{y: \exists p \in g \cdot(p, \check{y}) \in \check{x}\} \\
\text { definition of } \check{x} & \{y: y \in x\}=x .
\end{array}
$$

So $M \subseteq M[g]$.
We also need a name for g. Let $\dot{g}:=\{(p, \check{p}): p \in \mathbb{P}\}$.

Indeed

$$
\begin{aligned}
\dot{g}^{g} & =\left\{\check{p}^{g}: \exists p \in g \cdot(p, \check{p}) \in \dot{g}\right\} \\
& =\{p: p \in g\}=g .
\end{aligned}
$$

Lemma 3.20. $M[g] \models$ (Ext), (Fund), (Inf), (Pair), (Union).
Proof. - (Ext):
The formula $\forall x . \forall y .((\forall z \in x . z \in y \wedge \forall z \in y . z \in x) \rightarrow x=y)$ is Π_{1}, hence it is true in $M[g]$ by Lemma 2.115 .

- (Fund): Again,

$$
\forall x .(\exists y \in x . y=y \rightarrow \exists y \in x . \forall z \in y . z \notin x)
$$

is Π_{1}.

- (Inf) can be written as

$$
\exists x .(\underbrace{\neq \in x \wedge \forall y \in x . y \cup\{y\} \in x}_{\Sigma_{0}}) .
$$

We have $\omega \in M \subseteq M[g]$, so $M[g] \models(\operatorname{Inf})$.

- (Pair): Let us assume $x, y \in M[g]$, say $x=\tau^{g}$ and $y=\sigma^{g}$. Let $\pi=\{(p, \tau): p \in \mathbb{P}\} \cup\{(p, \sigma): p \in \mathbb{P}\} \in M^{\mathbb{P}}$. Then $\pi^{g}=\left\{\tau^{g}, \sigma^{g}\right\}=\{x, y\}$, so $\{x, y\} \in M[g]$. As a \mathcal{L}_{ϵ}-statement, $z=\{x, y\}$ is Σ_{0}, so $M[g] \models$ " $\{x, y\}$ is the pair of x and y ". Hence $M[g] \models$ (Pair).
- (Union): Similar to (Pair).

Still missing are

- (Pow),
- (Aus),
- (Rep),
- (C).

Definition 3.21 (Forcing relation). Let M be a countable transitive model of ZFC and let $\mathbb{P} \in M$ be a partial order. Let $p \in \mathbb{P}$ and let φ be a \mathcal{L}_{ϵ}-formula.
Let $\tau_{1}, \ldots, \tau_{k} \in M^{\mathbb{P}}$ be names.

We say that p forces $\varphi\left(\tau_{1}, \ldots, \tau_{k}\right)$,

$$
p \Vdash_{M}^{\mathcal{P}} \varphi\left(\tau_{1}, \ldots, \tau_{k}\right),
$$

if for all $h \subseteq \mathbb{P}$ which are \mathbb{P}-generic over M with $p \in h$,

$$
M[h] \models \varphi\left(\tau_{1}^{h}, \ldots, \tau_{k}^{h}\right)
$$

Theorem 3.22. Fix an \mathcal{L}_{ϵ}-formula φ. Then the relation

$$
R=\left\{\left(p, \tau_{1}, \ldots, \tau_{k}: p \Vdash_{M}^{\mathbb{P}} \varphi\left(\tau_{1}, \ldots, \tau_{k}\right)\right\}\right.
$$

is definable over M (in the parameter $\mathbb{P})$.
Proof. Omitted.

Theorem 3.23 (Forcing Theorem). Let M, \mathbb{P}, g, be as above, let φ be a formula, and let $\tau_{1}, \ldots, \tau_{k} \in M^{\mathbb{P}}$. Then the following are equivalent:
(1) $M[g] \models \varphi\left(\tau_{1}^{g}, \ldots, \tau_{k}^{g}\right)$.
(2) There is some $p \in g$ with

$$
p \Vdash_{M}^{\mathbb{P}} \varphi\left(\tau_{1}, \ldots, \tau_{k}\right) .
$$

Proof. Omitted.

Theorem 3.24. $M[g] \models$ ZFC.

Proof. We have already shown a part of this in Lemma 3.20.
Let us show that $M[g] \models$ (Aus), the rest is similar and left as an exercise. ${ }^{9}$
Let φ be a formula, let $a, x_{1}, \ldots, x_{k} \in M[g]$. We need to see

$$
M[g] \models \exists y . y=\left\{z \in a: \varphi\left(z, x_{1}, \ldots, x_{k}\right)\right\} .
$$

If suffices to show that there is some $y \in M[g]$ with $y=\{z \in a: M[g] \models$ $\left.\varphi\left(z, x_{1}, \ldots, x_{k}\right)\right\}$.

For this, let us construct a name for y. Let $a=\tau^{g}, x_{i}=\sigma_{i}^{g}$.
Let

$$
\pi=\left\{(p, \rho): \exists \bar{p}>p .(\bar{p}, \rho) \in \tau \wedge p \Vdash_{M}^{\mathbb{P}} \varphi\left(\rho, \sigma_{1}, \ldots, \sigma_{k}\right)\right\} .
$$

We have $\pi \in M$, since the relation $\Vdash_{M}^{\mathbb{P}}$ can be defined in M.

[^11]Let $z \in a$ such that $M[g] \models \varphi\left(z, x_{1}, \ldots, x_{n}\right)$. We have $z=\rho^{g}$ for some ρ and there is $\bar{p} \in g$ with $(\bar{p}, \rho) \in \pi$. Now $M[g]=\varphi\left(\rho^{g}, \sigma_{1}^{g}, \ldots \sigma_{k}^{g}\right)$.
Let $p^{\prime} \Vdash_{M}^{\mathbb{P}} \varphi\left(\rho, \sigma_{1}, \ldots, \sigma_{k}\right)$, where $p^{\prime} \in g$. We have $p^{\prime}, \bar{p} \in g$, so there is some $p \leqslant p^{\prime}, \bar{p}$ with $p \in g$. Then $(p, \rho) \in \pi$, so $\rho^{g} \in \pi^{g}$.

This shows that

$$
\left\{z \in a: M[g] \models \varphi\left(z, x_{1}, \ldots, x_{k}\right)\right\} \subseteq \pi^{g}
$$

The other inclusion is easy.

Goal. We want to construct a model of ZFC such that $2^{\aleph_{0}} \geqslant \aleph_{2}$.
Let M be a countable transitive model of ZFC. Suppose that $M \models \mathrm{CH}$ (otherwise we are done).
Let $\alpha=\omega_{2}^{M}$.
Let $\mathbb{C}(\alpha):=\{p: p: \alpha \rightarrow \mathbb{C}$ is a function such that $\{\xi<\alpha: p(\xi) \neq \varnothing\}$ is finite $\}$, ordered by $p \leqslant_{\mathbb{C}(\alpha)} q$ iff $p(\xi) \leqslant \mathbb{C} q(\xi)$ for all $\xi<\alpha$.
Recall that \mathbb{C} is the set of finite sequences of natural numbers ordered by $p \leqslant \mathbb{C} q$ iff $p \supseteq q$.
Let g be $\mathbb{C}(\alpha)$-generic over M. For $\xi<\alpha$ let $x_{\xi}=\bigcup\{p(\xi): p \in g\}$. We have already seen that $x_{\xi}: \omega \rightarrow \omega$ is a function and $x_{\xi} \neq x_{\eta}$ for $\xi \neq \eta$.

We have $M[g] \models$ ZFC. ${ }^{10}$ As $g \in M[g]$, we have $\left\langle x_{\xi}: \xi<\alpha\right\rangle \in M[g]$. Therefore $M[g] \models " 2^{\aleph_{0}} \geqslant \alpha$ ". Also $\alpha=\omega_{2}^{M}$. However the proof is not finished yet, since we need to make sure, that $M[g]$ does not collapse cardinals.
We only have $M[g] \models 2^{\aleph_{0}} \geqslant \aleph_{2}^{M}$, i.e. we need to see $\aleph_{2}^{M[g]}=\aleph_{2}^{M}$.
Claim 7. Every cardinal of M is still a cardinal of $M[g]$.
This suffices, because then $\aleph_{0}^{M}=\aleph_{0}^{M[g]}, \aleph_{1}^{M}=\aleph_{1}^{M[g]}, \aleph_{2}^{M}=\aleph_{2}^{M[g]}, \ldots$
Definition 3.25. Let (\mathbb{P}, \leqslant) be a partial order. We say that \mathbb{P} has the countable chain condition (c.c.c.) ${ }^{a}$ iff there is no uncountable antichain, i.e. every uncountable $V \subseteq \mathbb{P}$ contains compatible $p \neq q$.

[^12]We shall prove:
Claim 8. For all $\beta, \mathbb{C}(\beta)$ has the c.c.c.

[^13]Claim 9. If $\mathbb{P} \in M$ and $M \models$ " \mathbb{P} has the c.c.c." and h is generic over M, then all M-cardinals are still $M[h]$ cardinals. ${ }^{11}$

Proof of Claim 9. Suppose not. Let κ be minimal such that $M \models$ " κ is a cardinal", but $M[h] \models$ " κ is not a cardinal". Then $\kappa=\left(\lambda^{+}\right)^{M}$ for some unique M cardinal $\lambda<\kappa$. By minimality, λ is also an $M[h]$-cardinal.
Let $f \in M[h]$ be such that $M[h] \models$ " f is a surjection from λ onto κ ". There is a name $\tau \in M^{\mathbb{P}}$ with $\tau^{h}=f$.

We then have some $p \in h$ with $p \Vdash_{M}^{\mathbb{P}}$ " τ is a surjection from $\check{\lambda}$ onto $\check{\kappa}$ ".
Let $\xi<\lambda$. Consider $X_{\xi}:=\{\eta<\kappa: \exists q \leqslant \mathbb{P} p . q \Vdash \tau(\check{\xi})=\check{\eta}\} \in M$.
X_{ξ} is countable in M by the following argument (in M): For every $\eta \in X_{\xi}$, let $q_{\eta} \leqslant p$ be such that $q_{\xi} \Vdash \Vdash_{M}^{\mathbb{P}} \tau(\check{\xi})=\check{\eta}$. The set $\left\{q_{\eta}: \eta \in X_{\xi}\right\}$ is an antichain as for $\eta_{1} \neq \eta_{2}$ we have that $q_{\eta_{i}} \Vdash \tau(\check{\xi})=\check{\eta}_{i}$, so they are not compatible. So $\left\{q_{\eta}: \eta \in X_{\xi}\right\}$ is countable by the c.c.c. Thus X_{ξ} is countable.
Therefore we may define a function in M

$$
F: \lambda \times \omega \longrightarrow \kappa
$$

such that for all $\xi<\lambda$

$$
\{F(\xi, n): n<\omega\}=X_{\xi} .
$$

F is surjective since f is surjective: For $\eta<\kappa$, there is some $\xi<\lambda$ such that $M[h] \models " f(\xi)=\eta$ ", there is some $\bar{q} \in h$ with $\bar{q} \Vdash_{M}^{\mathbb{P}} \tau(\check{\xi})=\check{\eta}$. Pick $q \leqslant \bar{q}, p$. This shows $\eta \in X_{\xi}$ hence $\eta=F(\xi, n)$ for some n. But $|\lambda \times \omega|=|\lambda|=\lambda$, so in M there is a surjection $F^{\prime}: \lambda \rightarrow \kappa$, but κ is a cardinal in M 夕.

Proof of Claim 8. Omitted.

[^14]
Index

$<\alpha$-Closed, 38
$A^{\prime}, 5$
M-Generic filter for $\mathbb{P}, 56$
M-Generic for $\mathbb{P}, 55$
$\Delta_{0}, 52$
$\Delta_{1}^{T}, 53$
$\Pi_{0}, 52$
$\Sigma_{0}, 52$
$\check{x}, 61$
$\dot{g}, 61$
\mathbb{P}-Generic filter over $M, 56$
D, 55
inf, 13
\mathbb{P}-Names, 60
$\max , 13$
sup, 13
g-Interpretation of $\tau, 61$
n-Ary relation, 12
Accumulation point, 5
Antichain, 57
Antisymmetric, 13
Atomless, 57
Bernays-Gödel class theory, 21
BG, 21
Bijective, 12
Binary relation, 12
C.c.c., 64

Cardinal, 28
Cardinality, 28
Cartesian product, 11
Choice, 10
Choice set, 11
Class function, 22
Closed, 5, 37
Club, 37
Club filter, 39
Cofinal, 32
Cofinal filter, 44
Cofinality, 32
Cohen forcing, 55
Compatible, 54

Condensation point, 7
Conditions, 54
Continuum hypothesis, 5, 31
Countable chain condition, 64
Dense, 54
Dense below $p, 54$
Diagonal intersection, 39
Downwards absoluteness, 53
Elementary embedding, 50
Elementary substructure, 41
Extensionality, 9
Filter, 38, 54
Finite support, 60
force, 63
Forcing, 58
Forcing extension, 59
Forcing notion, 54
Forcing relation, 62
Forcing Theorem, 63
Formula
atomic, 52
Foundation, 9
Fréchet filter, 44
Function, 12
Generalized continuum hypothesis, 46
Gödel pairing function, 30
inaccessible
strongly, 49
Incompatible, 54
Inductive, 10
Infinity, 10
Injective, 12
Isomorphism, 13
Linear order, 13
Lower bound, 13
Maximal antichain, 57
Maximal element, 13

Maximum, 13
Measurable, 49
Minimal element, 13
Minimum, 13
Morse-Kelly, 22
Mostowski collapse, 27
Natural numbers, 17
Neumann-Bernays-Gödel, 22
Open, 5, 58
Order type, 28
Order-preserving, 13
Ordinal, 17
limit, 20
successor, 20
Ordinal number, 17
Pairing, 9
Partial order, 13
Perfect, 6
Pointwise image, 12
Poset, 54
Power Set, 10
Power set, 4
Rank function, 28
Rank initial segments, 27

Reflexive, 13
Regressive, 40
Regular, 33
Replacement, 10
Scott's Trick, 51
Separation, 10
Set-like, 24
Singular, 33
Skolem-function, 41
Stationary, 40
Stronger, 54
Surjective, 12
Symmetric, 13
Total order, 13
Transitive, 13, 17
Transitive collapse, 27
Ultrafilter, 43
Unbounded, 37
Union, 10
Upper bound, 13
Upwards absoluteness, 53
Weakly inaccessible, 49
Well-founded, 23, 24
Well-order, 13

[^0]: ${ }^{a}$ To show that this exists, we need the recursion theorem and replacement.

[^1]: ${ }^{1}$ Neumann-Bernays-Gödel

[^2]: ${ }^{2}$ This exists as by definition the sequence $\left(x_{n}\right)$ is a function $f: \omega \rightarrow V$ and this set is the image of f.
 ${ }^{3}$ Actually we only need the axiom of dependent choice, a weaker form of the Axiom of Choice (2.9). We'll discuss this later.

[^3]: ${ }^{a}$ Some authors don't require $\varnothing \notin F$, but that is a degenerate case anyway, since $\varnothing \in F \Longleftrightarrow F=\mathcal{P}(a)$.

[^4]: 4 "It is even more closed."
 ${ }^{5}$ Ordinal multiplication, i.e. $\alpha \cdot \omega=\sup _{n<\omega} \underbrace{\alpha+\ldots+\alpha}_{n \text { times }}$.

[^5]: ${ }^{a}$ Note that clubs can never be disjoint, since their intersection is a club.

[^6]: ${ }^{6}$ Here we use (C) to choose the C_{ν} uniformly.

[^7]: ${ }^{a}$ we consider limit ordinals to be even

[^8]: 7 "This is one of the arguments where it is certainly worth it to look at it again."

[^9]: ${ }^{a}$ Recall: $j: V \rightarrow M$ is an elementary embedding iff $j^{\prime \prime} V=\{j(x): x \in V\}<M$, i.e. for all formulae φ and $x_{1}, \ldots, x_{k} \in V, V \vDash \varphi\left(x_{1}, \ldots, x_{u}\right) \Longleftrightarrow M \models$ $\varphi\left(j\left(x_{1}\right), \ldots, j\left(x_{u}\right)\right)$.

[^10]: ${ }^{8}$ This is know as Scott's Trick. Note that by defining equivalence classes in the usual way (i.e. without this trick), one ends up with proper classes: For $f: \kappa \rightarrow V$, we can for example change $f(0)$ to be an arbitrary V_{α} and get another element of $[f]$.

[^11]: ${ }^{9}$ or done next semester in Logic IV!

[^12]: ${ }^{a}$ it should really be the "countable antichain condition"

[^13]: ${ }^{10} \mathrm{We}$ only handwaved this step.

[^14]: ${ }^{11}$ Being a cardinal is Π_{1}, so $M[h]$ cardinals are always M cardinals.

