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[Lecture 01, 2023-10-10]

1 Introduction

Definition 1.1. Let X be a nonempty topological space. We say that X
is a Polish space if X is

• separable, i.e. there exists a countable dense subset, and

• completely metrisable, i.e. there exists a complete metric on X
which induces the topology.

Note that Polishness is preserved under homeomorphisms, i.e. it is really a
topological property.

Example 1.2. • R is a Polish space,

• Rn for finite n is Polish,

• r0, 1s,

• any countable discrete topological space,

• the completion of any separable metric space considered as a topo-
logical space.

Polish spaces behave very nicely. We will see that uncountable polish spaces
have size 2ℵ0 . There are good notions of big (comeager) and small (meager).

1.1 Topology background

Recall the following notions:

Definition 1.3 (product topology). Let pXiqiPI be a family of topolog-
ical spaces. Consider the set

ś

iPI Xi and the topology induced by basic
open sets

ś

iPI Ui with Ui Ď Xi open and Ui Ĺ Xi for only finitely many
i.

Fact 1.3.1. Countable products of separable spaces are separable.

Definition 1.4. A topological space X is second countable, if it has a
countable base.

Let X be a topological space. If X is second countable, it is also separable.
However the converse of this does not hold.

1 INTRODUCTION 4



Example 1.5. Let X be an uncountable set. Take x0 P X and consider
the topology given by

τ “ tU Ď X|U Q x0u Y tHu.

Then tx0u is dense in X, but X is not second countable.

Example 1.6 (Sorgenfrey line). Consider R with the topology given by
the basis tra, bq : a, b P Ru. This is T3, but not second countable and not
metrizable.

Fact 1.6.2. For metric spaces, the following are equivalent:

• separable,

• second-countable,

• Lindelöf (every open cover has a countable subcover).

Fact 1.6.3. Compact Hausdorff spaces are normal (T4) i.e. two disjoint
closed subsets can be separated by open sets.

Fact 1.6.4. For a metric space, the following are equivalent:

• compact,

• sequentially compact (every sequence has a convergent subse-
quence),

• complete and totally bounded (for all ε ą 0 we can cover the space
with finitely many ε-balls).

Theorem 1.7 (Urysohn’s metrisation theorem). Let X be a topological
space. If X is

• second countable,

• Hausdorff and

• regular (T3)

then X is metrisable.
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Fact 1.7.5. IfX is a compact Hausdorff space, the following are equivalent:

• X is Polish,

• X is metrisable,

• X is second countable.

1.2 Some facts about polish spaces

Fact 1.7.6. Let pX, τq be a topological space. Let d be a metric on X.
We will denote the topology induces by this metric as τd. To show that
τ “ τd, it is equivalent to show that

• every open d-ball is in τ ( ùñ τd Ď d ) and

• every open set in τ is a union of open d-balls.

To show that τd “ τd1 for two metrics d, d1, suffices to show that open balls
in one metric are unions of open balls in the other.

Notation 1.7.7. We sometimesa denote minpa, bq by a^ b.

aonly in this subsection?

Proposition 1.8. Let pX, τq be a topological space, d a metric on X com-
patible with τ (i.e. it induces τ).

Then d1 :“ minpd, 1q is also a metric compatible with τ .

Proof. To check the triangle inequality:

dpx, yq ^ 1 ď pdpx, zq ` dpy, zqq ^ 1

ď pdpx, zq ^ 1q ` pdpy, zq ^ 1q .

For ε ď 1 we have B1
εpxq “ Bεpxq and for ε ą 1, B1

εpxq “ X.

Since d is complete, we have that d1 is complete.

Proposition 1.9. Let A be a Polish space. Then Aω Polish.

Proof. Let A be separable. Then Aω is separable. (Consider the basic open sets
of the product topology).

Let d ď 1 be a complete metric on A. Define D on Aω by

D ppxnq, pynqq :“
ÿ

năω

2´pn`1qdpxn, ynq.
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Clearly D ď 1. It is also clear, that D is a metric.

We need to check that D is complete: Let pxnq
pkq be a Cauchy sequence in Aω.

Consider the pointwise limit panq. This exists since x
pkq
n is Cauchy for every

fixed n. Then pxnq
pkq kÑ8
ÝÝÝÑ panq.

Definition 1.10 (Our favourite Polish spaces).

• 2N is called the Cantor set. (Consider 2 with the discrete topology)

• N :“ NN is called the Baire space. (N with descrete topology)

• H :“ r0, 1sN is called the Hilbert cube. (r0, 1s Ď R with the usual
topology)

Proposition 1.11. Let X be a separable, metrisable topological spacea.
Then X topologically embeds into the Hilbert cube, i.e. there is an
injective f : X ãÑ r0, 1sω such that f : X Ñ fpXq is a homeomorphism.

ae.g. Polish, but we don’t need completeness.

Proof. X is separable, so it has some countable dense subset, which we order
as a sequence pxnqnPω.

Let d be a metric on X which is compatible with the topology. W.l.o.g. d ď 1
(by Proposition 1.8). Define

f : X ÝÑ r0, 1sω

x ÞÝÑ pdpx, xnqqnăω

Claim 1. f is injective.

Subproof. Suppose that fpxq “ fpyq. Then dpx, xnq “ dpy, ynq for all n. Hence
dpx, yq ď dpx, xnq`dpy, xnq “ 2dpx, xnq. Since pxnq is dense, we get dpx, yq “ 0.

■

Claim 2. f is continuous.

Subproof. Consider a basic open set in r0, 1sω, i.e. specify open sets U1, . . . , Un

on finitely many coordinates. f´1pU1 ˆ . . .ˆUn ˆ . . .q is a finite intersection of
open sets, hence it is open. ■

Claim 3. f´1 is continuous.
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Subproof. Consider Bεpxnq Ď X for some n P N, ε ą 0. Then fpUq “ fpXq X
r0, 1sn ˆ r0, εq ˆ r0, 1sω is open1. ■

Proposition 1.12. Countable disjoint unions of Polish spaces are Polish.

Proof. Define a metric in the obvious way.

Proposition 1.13. Closed subspaces of Polish spaces are Polish.

Proof. Let X be Polish and V Ď X closed. Let d be a complete metric on
X. Then d|V is complete. Subspaces of second countable spaces are second
countable.

Definition 1.14. Let X be a topological space. A subspace A Ď X is
called Gδ

a, if it is a countable intersection of open sets.

aGebietdurchschnitt

Next time: Closed sets are Gδ. A subspace of a Polish space is Polish iff it is
Gδ

[Lecture 02, 2023-10-13]

Theorem 1.15. A subspace of a Polish space is Polish iff it is Gδ.

Remark 1.15.8. Closed subsets of a metric space pX, dq are Gδ.

Proof. Let C Ď X be closed. Let U 1
n
:“ tx|dpx,Cq ă 1

nu. Clearly C Ď
Ş

U 1
n
.

Let x P
Ş

U 1
n
. Then @n. Dxn P C. dpx, xnq ă

1
n . The xn converge to x and

since C is closed, we get x P C. Hence C “
Ş

U 1
n
is Gδ.

Example 1.16. Let X be Polish. Let d be a complete metric on X.

a) If Y Ď X is closed, then pY, d|Y q is complete.

b) Y “ p0, 1q Ď R with the usual metric dpx, yq “ |x´ y|. Then xn Ñ 0 is
Cauchy in pp0, 1q, dq.

But

d1px, yq :“ |x´ y| `

ˇ

ˇ

ˇ

ˇ

1

minpx, 1´ xq
´

1

minpy, 1´ yq

ˇ

ˇ

ˇ

ˇ

1as a subset of fpXq!
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also is a complete metric on p0, 1q which is compatible with d.

We want to generalize this idea.

Proof of Theorem 1.15.

Claim 1.15.1. If Y Ď pX, dq is Gδ, then there exists a complete metric on Y .

Proof of Claim 1.15.1. Let Y “ U be open in X. Consider the map

fU : U ÝÑ X
loomoon

d

ˆ R
loomoon

|¨|

x ÞÝÑ

ˆ

x,
1

dpx, U cq

˙

.

Note that X ˆ R with the

d1ppx1, y1q, px2, y2qq :“ dpx1, x2q ` |y1 ´ y2|

metric is complete.

fU is an embedding of U into X ˆ R:

• It is injective because of the first coordinate.

• It is continuous since dpx, U cq is continuous and only takes strictly positive
values.

• The inverse is continuous because projections are continuous.

So we have shown that U and the graph of f̃U : x ÞÑ 1
dpx,Ucq

are homeomorphic.

The graph is closed in U ˆ R, because f̃U is continuous. It is closed in X ˆ R
because f̃U Ñ8 for dpx, U cq Ñ 0.

Therefore we identified U with a closed subspace of the Polish space pXˆR, d1q.

Let Y “
Ş

nPN Un be Gδ. Consider

fY : Y ÝÑ X ˆ RN

x ÞÝÑ

ˆ

x,

ˆ

1

δpx, U c
nq

˙

nPN

˙

As for an open U , fY is an embedding. Since X ˆRN is completely metrizable,
so is the closed set fY pY q Ď X ˆ RN.

Claim 1.15.2. If Y Ď pX, dq is completely metrizable, then Y is a Gδ subspace.
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Proof of Claim 1.15.2. There exists a complete metric dY on Y . For every n,
let Vn Ď X be the union of all open sets U Ď X such that

(i) U X Y ‰ H,

(ii) diamdpUq ď
1
n ,

2

(iii) diamdY
pU X Y q ď 1

n .

We want to show that Y “
Ş

nPN Vn. For x P Y , n P N we have x P Vn, as we
can choose two neighbourhoods U1 (open in Y q and U2 (open in X ) of x, such
that diamdY

pUq ă 1
n and U2 X Y “ U1. Additionally choose x P U3 open in X

with diamdpU3q ă
1
n . Then consider U2 X U3 Ď Vn. Hence Y Ď

Ş

nPN Vn.

Now let x P
Ş

nPN Vn. For each n pick x P Un Ď X open satisfying (i), (ii), (iii).
From (i) and (ii) it follows that x P Y , since we can consider a sequence of points

yn P Un X Y and get yn
d
ÝÑ x. For all n we have that U 1

n :“ U1 X . . .X Un is an
open set containing x, hence U 1

n X Y ‰ H. Thus we may assume that the Ui

form a decreasing sequence. We have that diamdY
pUnXY q ď

1
n . If follows that

the yn form a Cauchy sequence with respect to dY , since diampUn X Y q
dY
ÝÝÑ 0

and thus diampUn X Y q
dY
ÝÝÑ 0. The sequence yn converges to the unique point

in
Ş

n Un X Y . Since the topologies agree, this point is x.

[Lecture 03, 2023-10-17]

1.3 Trees

Notation 1.16.9. Let A ‰ H, n P N. Then

An :“ ts : t0, 1, . . . , n´ 1u Ñ Au

is the set of n-element sequences. We often write ps0, s1, . . . , sn´1q.

If s “ ps0, . . . , sn´1q, then n is the length of s, denoted by |s|.

If n “ 0 there exists only the empty sequence, i.e. A0 “ tHu and |H| “ 0.

We set

AăN :“
8
ď

n“0

An

and
AN :“ tx : NÑ Au.

If s P An and m ď n, we let s|m :“ ps0, . . . , sm´1q.

2The proof gets a little easier if we bound by 1
2n

instead of 1
n
, as that allows to simply

take U 1
n :“

Ť

mąn Um, but both bounds work.
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Let s, t P AăN. We say that s is an initial segment of t (or t is an
extension of s) if there exists an n such that s “ t||s|. We write this as
s Ď t.

We say that s and t are compatible if s Ď t or t Ď s. Otherwise the are
incompatible, we denote that as s K t.

The concatenation of s “ ps0, . . . , sn´1q and t “ pt0, . . . , tm´1q is the
sequence s ⌢ t :“ ps0, . . . , sn´1, t0, . . . , tn´1q

In the case of t “ paq we also write s ⌢ a for s ⌢paq.

Similarly, if x P AN we can write x “ px0, x1, . . .q. If n P N, x|n :“
px0, . . . , xn´1q, define extension, initial segments and concatenation of a
finite sequence with an infinite one.

Definition 1.17. A tree on a set A is a subset T Ď AăN closed under
initial segments, i.e. if t P T, s Ď t ùñ s P T . Elements of trees are called
nodes.

A leave is an element of T , that has no extension in t.

An infinite branch of a tree T is x P AN such that @n. x|n P T .

The body of T is the set of all infinite branches:

rT s :“ tx P AN : @n.x|n P T u.

We say that T is pruned, iff

@t P T.Ds Ľ t. s P T.

Definition 1.18. A Cantor scheme on a set X is a family pAsqsP2ăN of
subsets of X such that

i) @s P 2ăN. A
s⌢ 0

XA
s⌢ 1

“ H.

ii) @s P 2ăN, i P 2. A
s⌢ i

Ď As.

Definition 1.19. A topological space is perfect if it has no isolated points,
i.e. for any U ‰ H open, there x ‰ y such that x, y P U .

Theorem 1.20. Let X ‰ H be a perfect Polish space. Then there is an
embedding of the Cantor space 2N into X.

Proof. We will define a Cantor scheme pUsqsP2ăN such that @s P 2ăN.

(i) Us ‰ H and open,
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(ii) diampUsq ď 2´|s|,

(iii) U
s⌢ i

Ď Us for i P 2.

We define Us inductively on the length of s.

For UH take any non-empty open set with small enough diameter.

Given Us, pick x ‰ y P Us and let U
s⌢ 0

Q x, U
s⌢ 1

Q y be disjoint, open, of

diameter ď 1
2|s|`1 and such that U

s⌢ 0
, U

S ⌢ 1
Ď Us.

Let x P 2N. Then let fpxq be the unique point in X such that

tfpxqu “
č

n

Ux|n “
č

n

Ux|n .

(This is nonempty as X is a completely metrizable space.) It is clear that f is
injective and continuous. 2N is compact, hence f´1 is also continuous.

Corollary 1.21. Every nonempty perfect Polish space X has cardinality
c “ 2ℵ0

Proof. Since the cantor space embeds into X, we get the lower bound. Since X
is second countable and Hausdorff, we get the upper bound: Let xUn : n ă ωy
be a countable basis. Consider the injective function

f : X ÝÑ 2ω

x ÞÝÑ tn : x P Unu.

Theorem 1.22. Any Polish space is countable or it has cardinality c.

Proof. See Corollary A.7.

Definition 1.23. A Lusin scheme on a set X is a family pAsqsPNăN of
subsets of X such that

(i) A
s⌢ i

XA
s⌢ j

“ H for all j ‰ i P N, s P NăN.

(ii) A
s⌢ i

Ď As for all i P N, s P NăN.

Theorem 1.24. Let X ‰ H be a Polish space. Then there is a closed
subset

D Ď NN :“N

and a continuous bijection f : D Ñ X (the inverse does not need to be
continuous).
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Moreover there is a continuous surjection g : N Ñ X extending f .

Definition 1.25. An Fσ set is the countable union of closed sets, i.e. the
complement of a Gδ set.

Observe. • Any open set is Fσ.

• In metric spaces the intersection of an open and closed set is Fσ.

Proof of Theorem 1.24. Let d be a complete metric on X. W.l.o.g. diampXq ď
1. We construct a Lusin scheme pFsqsPNăN such that Fs Ď X and

(i) FH “ X,

(ii) Fs is Fσ for all s.

(iii) The F
s⌢ i

partition Fs, i.e. Fs “
Ů

i Fs⌢ i
.

Furthermore we want that F
s⌢ i

Ď Fs for all i.

(iv) diampFsq ď 2´|s|.

Suppose we already have Fs :“F . We need to construct a partition pFiqiPN of
F with Fi Ď F and diampFiq ă ε for ε “ 2´|s|´1, such that the Fi are Fσ.

Step 1 Write F :“
Ť

iPN Ci for some closed sets Ci. W.l.o.g. Ci Ď Ci`1.

Let F 0
i :“ Ci`1zCi. These F 0

i are Fσ, and form a partition of F . Furthermore

F 0
i Ď F .

However the diameter might be too large. Fix i P N and consider F 0
i . Cover

it with countably many open balls B1, B2, . . . of diameter smaller than ε. The
sets Di :“ F 0

i XBizpB1 Y . . .YBi´1q are Fσ, disjoint and F
0
i “

Ť

j Dj .

[Lecture 04, 2023-10-20]

Remark 1.25.10. Some of the Fs might be empty.

Continuation of proof of Theorem 1.24. Take

D “ tx P N :
č

n

Fx|n ‰ Hu.

Since . . . Ě Fx|n Ě Fx|n`1
Ě Fx|n`1

Ě . . . we have

č

n

Fx|n “
č

n

Fx|n .
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f : D Ñ X is determined by

tfpxqu “
č

n

Fx|n

f is injective and continuous. The proof of this is exactly the same as in Theo-
rem 1.20.

Claim 1.24.1. D is closed.

Proof of Claim 1.24.1. Let xn be a series in D converging to x in N .

Claim 1.24.1.1. pfpxnqq is Cauchy.

Subproof. Let ε ą 0. TakeN such that diampFx|nq ă ε. TakeM such that for all
m ěM , xm|N “ x|N . Then for allm,n ěM , we have that fpxmq, fpxnq P Fx|N .
So dpfpxmq, fpxnqq ă ε, i.e. pfpxnqq is Cauchy.

■

Since pX, dq is complete, there exists y “ lim
n
fpxnq. Since for all m ě M ,

fpxmq P Fx|N , we get that y P Fx|N .

Note that for N 1 ą N by the same argument we get y P Fx|N1 . Hence

y P
č

n

Fx|n “
č

n

Fx|n ,

i.e. y P D and y “ fpxq.

We extend f to g : N Ñ X in the following way:

Take S :“ ts P NăN : Dx P D,n P N. x|n “ su. Clearly S is a pruned tree.
Moreover, since D is closed, we have that3

D “ rSs “ tx P NN : @n P N. x|n P Su.

We construct a retraction r : N Ñ D (i.e. r “ id on D and r is a continuous
surjection). Then g :“ f ˝ r.

To construct r, we will define φ : NăN Ñ S by induction on the length such that

• s Ď t ùñ φpsq Ď φptq,

• |s| “ φp|s|q,

• if s P S, then φpsq “ s.

3cf. Sheet 3, Exercise 1 (A.3.1)
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Let φpHq “ H. Suppose that φptq is defined. If t ⌢ a P S, then set φpt ⌢ aq :“
t ⌢ a. Otherwise take some b such that t ⌢ b P S and define φpt ⌢ aq :“ φptq ⌢ b.This
is possible since S is pruned.

Let r : N “ rNăNs Ñ rSs “ D be the function defined by rpxq “
Ť

n fpx|nq.

r is continuous, since dN prpxq, rpyqq ď dN px, yq. It is immediate that r is a
retraction.

2 Meager and Comeager Sets

Definition 2.1. Let X be a topological space, A Ď X. We say that A is
nowhere dense (nwd), if intpAq “ H. Equivalently

• A is nwd,

• XzA is dense in X,

• @H ‰ U
open
Ď X. DH ‰ V

open
Ď U. V XA “ H. (If we intersect A with

an open U , then AX U is not dense in U).

A set B Ď X is meager (or first category), iff it is a countable union of
nwd sets.

The complement of a meager set is called comeager.

Example 2.2. Q Ď R is meager.

Notation 2.2.11. Let A,B Ď X. We write A “˚ B iff the symmetric
difference, A△B :“ pAzBq Y pBzAq, is meager.

Remark 2.2.12. “˚ is an equivalence relation.

Definition 2.3. A set A Ď X has the Baire property (BP) if A “˚ U

for some U
open
Ď X.

Note that open sets and meager sets have the Baire property.

Example 2.4. • Q Ď R is Fσ.

• RzQ Ď R is Gδ.

• Q Ď R is not Gδ: It is dense and meager, hence it can not be Gδ by
the Baire Category Theorem (2.7).

[Lecture 05, 2023-10-31]
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Fact 2.4.13. • A set A is nwd iff A is nwd.

• If F is closed then F is nwd iff XzF is open and dense.

• Any meager set B is contained in a meager Fσ-set.

Proof. • This follows from the definition as A “ A.

• Trivial.

• Let B “
Ť

năω Bn be a union of nwd sets. Then B Ď
Ť

năω Bn.

Definition 2.5. A σ-algebra on a set X is a collection of subsets of X
such that:

• H, X P A,

• A P A ùñ XzA P A,

• pAiqiăω, Ai P A ùñ
Ť

iăω Ai P A.

Fact 2.5.14. Since
Ş

iăω Ai “ p
Ť

iăω A
c
i q

c
we have that σ-algebras are

closed under countable intersections.

Theorem 2.6. Let X be a topological space. Then the collection of sets
with the Baire property is a σ-algebra on X.

It is the smallest σ-algebra containing all meager and open sets.

Proof of Theorem 2.6. Let A be the collection of sets with the Baire property.
Since open sets have the Baire property, we have H, X P A.

Let An P A for all n ă ω. Take Un such that An △Un is meager. Then
˜

ď

năω

An

¸

△

˜

ď

năω

Un

¸

is meager, hence
Ť

năω An P A.

LetA P A. Take some open U such that U △A is meager. We have pXzUq△pXzAq “
U △A.

Claim 2.6.1. If F is closed, then F z intpF q is nwd. In particular, F △ intpF q
is nwd.

Proof of Claim 2.6.1. F z intpF q is closed, hence F z intpF q “ F z intpF q. Clearly
intpF z intpF qq “ H.
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From the claim we get that XzA “˚ XzU “˚ intpXzUq. Hence XzA P A.

It is clear that all meager sets have the Baire property.

Let A P A. Then A “ pAzUq Y pA X Uq for some open U such that AzU is
meager. We have A X U “ UzpUzAq. Thus we get that A is the minimal
σ-algebra containing all meager and all open sets.

Theorem 2.7 (Baire Category theorem). Let X be a completely metriz-
able space. Then every comeager set of X is dense in X.

Proof (copy
from some
other lecture)Theorem and Definition 2.8. Let X be a topological space. The fol-

lowing are equivalent:

(i) Every nonempty open set is non-meager in X.

(ii) Every comeager set is dense.

(iii) The intersection of countable many open dense sets is dense.

In this case X is called a Baire space.a

acf. Sheet 5, Exercise 1 (A.5.1)

Proof. (i) ùñ (ii) Consider a comeager set A. Let U ‰ H be any open set.
Since U is non-meager, we have AX U ‰ H.

(ii) ùñ (iii) The complement of an open dense set is nwd. Hence the intersec-
tion of countable many open dense sets is comeager.

(iii) ùñ (i) Let us first show that X is non-meager. Suppose that X is meager.
Then X “

Ť

nAn “
Ť

nAn is the countable union of nwd sets. We have that

H “
č

n

pXzAnq

is dense by (iii). This proof can be adapted to other open sets X.

Notation 2.8.15. Let X,Y be topological spaces, A Ď X ˆ Y and x P
X, y P Y .

Let
Ax :“ ty P Y : px, yq P Au

and
Ay :“ tx P X : px, yq P Au.

The following similar to Fubini, but for meager sets:
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Theorem 2.9 (Kuratowski-Ulam). Let X,Y be second countable topolog-
ical spaces. Let A Ď X ˆ Y be a set with the Baire property.a

Then

(i) tx P X : Ax has the BP u is comeagerb and similarly for y.

(ii) A is meager

ðñ tx P X : Ax is meageru is comeager

ðñ ty P Y : Ay is meageru is comeager.

(iii) A is comeager

ðñ tx P X : Ax is comeageru is comeager

ðñ ty P Y : Ay is comeageru is comeager.

aIt is important that A has the Baire property (cf. Sheet 5, Exercise 4 (A.5.4)).
bNote that not necessarily all sections have the BP. For example txu ˆ Y is meager

in X ˆ Y

Proof of Theorem 2.9. (ii) and (iii) are equivalent by passing to the complement.

Claim 2.9.1. If F
closed
Ď X ˆ Y is nwd, then

tx P X : Fxis nwdu

is comeager.

Proof of Claim 2.9.1. PutW “ F c. This is open and dense in XˆY . It suffices
to show that tx P X : Wx is denseu is comeager. Note that Wx is open for all
x.

Fix a countable basis pVnq of Y with Vn non-empty. We want to show that

tx P X : @n. pWx X Vnq ‰ Hu

is a comeager set. This is equivalent to

tx P X : pWx X Vnq ‰ Hu

being comeager for all n, because the intersection of countably many comeager
sets is comeager.

Fix n and let Un :“ tx P X : pWx X Vnq “ Hu. We will show that Un is open
and dense, hence it is comeager.

Un “ projxpW X pX ˆ Vnqq is open since projections of open sets are open.
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Let U Ď X be nonempty and open. We need to show that U X Un ‰ H. It is

U X Un “ projxpW X pU ˆ Vnqq

nonempty since W is dense.

Claim 2.9.2. If F Ď X ˆ Y is nwd, then

tx P X : Fxis nwdu

is comeager.

Proof of Claim 2.9.2. We have that F is nwd. Hence by Claim 2.9.1 the set

tx P X : Fx is nwdu Ď tx P X : Fx is nwdu

is comeager.

Claim 2.9.3. If M Ď X ˆ Y is meager, then

tx P X :Mx is meageru

is comeager.

Proof of Claim 2.9.3. This follows from Claim 2.9.2: Let M “
Ť

năω Fn where
the Fn are nwd. Apply Claim 2.9.2 to each Fn. We get that Mx is comeager as
a countable intersection of comeager sets.

[Lecture 06, 2023-11-03]

(i) Let A be a set with the Baire property. Write A “ U △M for U open
and M meager. Then for all x, we have that Ax “ Ux △Mx, where Ux

is open, and tx : Mx is meageru is comeager. Therefore tx : Ux open ^

Mx meager u is comeager, and for those x, Ax has the Baire property.

Claim 2.9.4. For P Ď X, Q Ď Y with the Baire property, let R :“ P ˆ Q.
Then R is meager iff at least one of P or Q is meager.

Proof of Claim 2.9.4. Suppose that R is meager. Then by Claim 2.9.3, we have
that C “ tx : Rx is meager u is comeager.

• If P is meager, the statement holds trivially.

• If P is not meager, then P X C ‰ H. For x P P X C we have that Rx is
meager and Rx “ Q, hence Q is meager.

On the other hand suppose that P is meager. Then P “
Ť

n Fn for nwd sets Fn.
Note that Fn ˆ Y is nwd. So Fn ˆQ is also nwd. Hence P ˆQ is a countable
union of nwd sets, so it is meager.
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(ii) “ðù ” Let A be a set with the Baire property such that tx : Ax is meageru
is comeager. Let A “ U △M for U open and M meager. Towards a
contradiction suppose that A is not meager. Then U is not meager. Since
X ˆ Y is second countable, we have that U is a countable union of open
rectangles. At least one of them, say G ˆ H Ď U , is not meager. By
Claim 2.9.4, both G and H are not meager. Since tx : Ax is meager ^
Mx is meageru is comeager (using Claim 2.9.3), there is x0 P G such that
Ax0

is meager and Mx0
is meager. But then H is meager as

HzMx0 Ď Ux0zMx0 Ď Ux0 △Mx0 “ Ax0

and Mx0 is meager  .

“ ùñ ” This is Claim 2.9.3.

Remark 2.9.16. Suppose that A has the BP. Then there is an open U
such that A△U :“M is meager. Then A “ U △M .

3 Borel sets

Definition 3.1. Let X be a topological space. Let BpXq denote the small-
est σ-algebra, that contains all open sets. Elements of BpXq are called
Borel sets.

Remark 3.1.17. Note that all Borel sets have the Baire property.

3.1 The hierarchy of Borel sets

Let ω1 be the first uncountable ordinal. For every d ă ω1, we define by transfi-
nite recursion classes Σ0

α and Π0
α (or Σ0

αpXq and Π0
αpXq for a topological space

X).

Let X be a topological space. Then define

Σ0
1pXq :“ tU

open
Ď Xu,

Π0
αpXq :“ ␣Σ

0
αpXq :“ tXzA|A P Σ

0
αpXqu,

and for α ą 1

Σ0
α :“ t

ď

năω

An : An P Π
0
αn
pXq for some αn ă αu.

Note that Π0
1 is the set of closed sets, Σ0

2 “ Fσ, and Π0
2 “ Gδ.
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Furthermore define
∆0

αpXq :“ Σ0
αpXq XΠ0

αpXq,

i.e. ∆0
1 is the set of clopen sets.

Σ0
1

open
Σ0

2
Fσ

Σ0
ξ

∆0
1

clopen
∆0

2 ∆0
3 . . . ∆0

ξ ∆0
ξ`1 . . .

Π0
1

closed
Π0

2
Gδ

Π0
ξ

Ď

Ď Ď

Ď Ď

Ď

Ď

Ď

Ď

Ď

Ď

Ď

Proposition 3.2. Let X be a metrizable space. Then

(a) Σ0
ηpXq YΠ0

ηpXq Ď ∆0
ξpXq for all 1 ď η ă ξ ă ω1.

(b) BpXq “
Ť

αăω1
Σ0

αpXq “
Ť

αăω1
Π0

αpXq “
Ť

αăω1
∆0

αpXq.

Proof. (a)

Observe. For all 1 ď α ă β ă ω1, we have Π0
αpXq Ď Σ0

βpXq by taking
“unions” of singleton sets.

Furthermore Σ0
αpXq Ď Π0

βpXq by passing to complements.

It suffices to show Σ0
ηpXq Ď ∆0

ξpXq, since ∆0
ηpXq is closed under comple-

ments.

Furthermore, it suffices to show Σ0
ηpXq Ď Σ0

ξpXq, by the observation (since

Σ0
ηpXq Ď Π0

ξpXq and ∆0
ξpXq “ Σ0

ξpXq XΠ0
ξpXq).

So to prove (a) it suffices to show that for all 1 ď η ă ξ ă ω1, we have
Σ0

ηpXq Ď Σ0
ξpXq. For η “ 1, ξ “ 2 this holds, since every open set is Fσ.

4

For η ą 1, ξ ą η, we have

Σ0
ηpXq “ t

ď

n

An : An P Π
0
αn
pXq, αn ă ηu

Ď t
ď

n

Bn : Bn P Π
0
βn
pXq, βn ă ξu “ Σ0

ξpXq.

(b) Let B0 :“
Ť

αăω1
Σ0

αpXq “
Ť

αăω1
Π0

αpXq “
Ť

αăω1
∆0

αpXq. We need to
show that B0 “ BpXq. Clearly B0 Ď BpXq. It suffices to notice that B0 is
a σ-algebra containing all open sets. Consider

Ť

năω An for some An P B0.
Then An P Π0

αn
pXq for some αn ă ω1. Let α “ supαn ă ω1. Then

Ť

năω An P Σ
0
αpXq. It is clear that B0 is closed under complements.

4Here we use that X is metrizable!
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Example 3.3. Consider the cofinite topology on ω1. Then the non-empty
open sets of this are not Fσ.

[Lecture 07, 2023-11-07]

Proposition 3.4. Let X be second countable. Then |BpXq| ď c.

Proof. We use strong induction on ξ ă ω1. We have Σ0
1pXq ď c (for every

element of the basis, we can decide whether to use it in the union or not).

Suppose that @ξ1 ă ξ. |Σ0
ξ1pXq| ď c. Then |Π0

ξ1pXq| ď c. We have that

Σ0
ξpXq “ t

ď

n

An : n P N, An P Π
0
ξnpXq, ξn ă ξu.

Hence |Σ0
ξpXq| ď p

tξ1:ξ1
ăξu is countable

hkkikkj

ℵ0 ¨ c
loomoon

inductive assumption

q

countable unions
hkkikkj

ℵ0 .

We have
BpXq “

ď

ξăω1

Σ0
ξpXq.

Hence
|BpXq| ď ω1 ¨ c “ c.

Proposition 3.5 (Closure properties). Suppose that X is metrizable. Let
1 ď ξ ă ω1. Then

(a) • Σ0
ξpXq is closed under countable unions.

• Π0
ξpXq is closed under countable intersections.

• ∆0
ξpXq is closed under complements.

(b) • Σ0
ξpXq is closed under finite intersections.

• Π0
ξpXq is closed under finite unions.

• ∆0
ξpXq is closed under finite unions and finite intersections.

Proof. (a) This follows directly from the definition. Note that a countable in-
tersection can be written as a complement of the countable union of com-
plements:

č

n

Bn “

˜

ď

n

Bc
n

¸c

.
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(b) If suffices to check this for Σ0
ξpXq. Let A “

Ť

nAn for An P Π0
ξn
pXq and

B “
Ť

mBm for Bm P Π
0
ξ1
m
pXq. Then

AXB “
ď

n,m

pAn XBmq

and An XBm P Π
0
maxpξn,ξ1

mq
pXq.

Example 3.6. Consider the cantor space 2ω. We have that ∆0
1p2

ωq is not
closed under countable unions (countable unions yield all open sets, but
there are open sets that are not clopen).

3.2 Turning Borel Sets into Clopens

Theorem 3.7. a Let pX, T q be a Polish space. For any Borel set A Ď X,
there is a finer Polish topology,b such that

• A is clopen in TA,

• the Borel sets do not change, i.e. BpX, T q “ BpX, TAq.
aWhilst strikingly concise the verb “to clopenize” unfortunately seems to be non-

standard vocabulary. Our tutor repeatedly advised against using it in the final exam.
Contrary to popular belief the very same tutor was not the one first to introduce it, as
it would certainly be spelled “to clopenise” if that were the case.

bi.e. TA Ě T and pX, TAq is Polish

Corollary 3.8 (Perfect set property). Let pX, T q be Polish, and let B Ď X
be Borel and uncountable. Then there is an embedding of the cantor space
2ω into B.

Proof. Pick TB Ě T such that pX, TBq is Polish, B is clopen in TB and BpX, T q “
BpX, TBq.

Therefore pB, TB |Bq is Polish. We know that there is an embedding f : 2ω Ñ
pB, TB |Bq.

Consider f : 2ω Ñ B Ď pX, T q. This is still continuous as T Ď TB . Since 2ω is
compact, f is an embedding.
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Proof of Theorem 3.7. We show that

A :“ tB Ď BpX, T q : DTB Ě T .
pX, TBq is Polish,
BpX, T q “ BpX, TBq
B is clopen in TB

u

is equal to the set of Borel sets. The proof rests on two lemmata:

Lemma 3.9. Let pX, T q be a Polish space. Then for any F
closed
Ď X (wrt.

T ) there is TF Ě T such that TF is Polish, BpT q “ BpTF q and F is clopen
in TF .

Subproof. Consider pF, T |F q and pXzF, T |XzF q. Both are Polish spaces. Take
the coproduct5 F‘pXzF q of these spaces. This space is Polish, and the topology
is generated by T Y tF u, hence we do not get any new Borel sets. ■

So all closed sets are in A. Furthermore A is closed under complements, since
complements of clopen sets are clopen.

Lemma 3.10. Let pX, T q be Polish. Let tTnunăω be Polish topologies
such that Tn Ě T and BpTnq “ BpT q. Then the topology T8 generated by
Ť

n Tn is Polish and BpT8q “ BpT q.

Proof of Lemma 3.10. We have that T8 is the smallest topology containing all
Tn. To get T8 consider

F :“ tA1 XA2 X . . .XAn : Ai P Tiu.

Then
T8 “ t

ď

iăω

Bi : Bi P Fu.

(It suffices to take countable unions, since we may assume that the A1, . . . , An

in the definition of F belong to a countable basis of the respective Tn).

Let Y “
ś

nPNpX, Tnq. Then Y is Polish. Let δ : pX, T8q Ñ Y defined by
δpxq “ px, x, x, . . .q.

Claim 3.10.1. δ is a homeomorphism.

5In the lecture, this was called the topological sum.
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Subproof. Clearly δ is a bijection. We need to show that it is continuous and
open.

Let U P Ti. Then

δ´1pD X pX ˆX ˆ . . .ˆ U ˆ . . .qqq “ U P Ti Ď T8,

hence δ is continuous. Let U P T8. Then U is the union of sets of the form

V “ Un1
X Un2

X . . .X Unu

for some n1 ă n2 ă . . . ă nu and Uni P Ti.

Thus is suffices to consider sets of this form. We have that

δpV q “ D X pX ˆX ˆ . . .ˆ Un1
ˆ . . .ˆ Un2

ˆ . . .ˆ Unu
ˆX ˆ . . .q

open
Ď D.

■

Claim 3.10.2. D “ tpx, x, . . .q P Y : x P Xu
closed
Ď Y.

Subproof. Let pxnq P Y zD. Then there are i ă j such that xi ‰ xj . Take
disjoint open xi P U , xj P V . Then

pxnq P X ˆX ˆ . . .ˆ U ˆ . . .ˆX ˆ . . .ˆ V ˆX ˆ . . .

is open in Y zD. Hence Y zD is open, thus D is closed. ■

It follows that D is Polish.

We need to show that A is closed under countable unions. By Lemma 3.10 there
exists a topology T8 such that A “

Ť

năω An is open in T8 and BpT8q “ BpT q.
Applying Lemma 3.9 yields a topology T 1

8 such that pX, T 1
8q is Polish, BpT 1

8q “

BpT q and A is clopen in T 1
8.

[Lecture 08, 2023-11-10]
6

3.3 Parametrizations

Let Γ denote a collection of sets in some space. For us Γ will be one of
Σ0

ξpXq,Π
0
ξpXq,∆

0
ξpXq,BpXq, where X is a metrizable, usually second count-

able space.

Definition 3.11. We say that U Ď Y ˆX is Y -universal for ΓpXq / U
parametrizes ΓpXq iff:

• U P ΓpY ˆXq,

6In the beginning of the lecture, we finished the proof of Lemma 3.10. This has been moved
to the notes on lecture 7.
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• tUy : y P Y u “ ΓpXq.

Example 3.12. Let X “ ωω, Y “ 2ω and consider Γ “ Σ0
ω`5pω

ωq. We
will show that there is a 2ω-universal set for Γ.

Theorem 3.13. Let X be a separable, metrizable space. Then for every
ξ ě 1, there is a 2ω-universal set for Σ0

ξpXq and similarly for Π0
ξpXq.

Proof. Note that if U is 2ω universal for Σ0
ξpXq, then p2

ωˆXqzU is 2ω-universal

for Π0
ξpXq. Thus it suffices to consider Σ0

ξpXq.

First let ξ “ 1. We construct U
open
Ď 2ω ˆX such that

tUy : y P 2ωu “ Σ0
1pXq.

Let pVnq be a basis of open sets of X. For all y P 2ω and x P X put py, xq P U
iff x P

Ť

tVn : yn “ 1u. U is open. For any V
open
Ď X, define y P 2ω by yn “ 1 iff

Vn Ď V . Then Uy “ V .

Now suppose that there exists a 2ω-universal set for Σ0
ηpXq for all η ă ξ. Fix

ξ0 ď ξ1 ď . . . ă ξ such that ξn Ñ ξ if ξ is a limit, or ξn “ ξ1 if ξ “ ξ1 ` 1 is a
successor.

Recall that η1 ď η2 ùñ Π0
η1
pXq Ď Π0

η2
pXq.

Note that if A “
Ť

nAn, with An P Π0
ηn
pXq for some ηn ă ξ, we also have

A “
Ť

nA
1
n with A1

n P Π
0
ξn
pXq.

We construct a p2ωˆωq – 2ω-universal set for Σ0
ξpXq. For pym,nq P p2

ωˆωq

and x P X we set ppym,nq, xq P U iff Dn. ppym,nqmăω, xq P Uξn , i.e. iff Dn. x P
pUξnqpym,nqmăω

.

Let A P Σ0
ξpXq. Then A “

Ť

nBn for some Bn P Π0
ξn
pXq. Furthermore

U P Σ0
ξpp2

ωˆω ˆXq.

Remark 3.13.18. Since 2ω embeds into any uncountable polish space Y ,
we can replace 2ω by Y in the statement of the theorem.a

aBy definition of the subspace topology and transfinite induction, Σ0
ξpY q|2ω “

Σ0
ξp2ωq.

[Lecture 09, 2023-11-14]

Theorem 3.14. Let X be an uncountable Polish space. Then for all ξ ă
ω1, we have that Σ0

ξpXq ‰ Π0
ξpXq.
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Proof. Fix ξ ă ω1. Towards a contradiction assume Σ0
ξpXq “ Π0

ξpXq. By

Theorem 3.13, there is a X-universal set U for Σ0
ξpXq.

Take A :“ ty P X : py, yq R Uu. Then A P Π0
ξpXq.

7 By assumption A P Σ0
ξpXq,

i.e. there exists some z P X such that A “ Uz. We have

z P A ðñ z P Uz ðñ pz, zq P U .

But by the definition of A, we have z P A ðñ pz, zq R U .

Definition 3.15. Let X be a Polish space. A set A Ď X is called analytic
iff

DY Polish. DB P BpY q. D f : Y Ñ X
looooomooooon

continuous

. fpBq “ A.

Trivially, every Borel set is analytic. We will see that not every analytic set is
Borel.

Remark 3.15.19. In the definition we can replace the assertion that f is
continuous by the weaker assertion of f being Borel.a

ause Theorem 3.7, cf. Sheet 6, Exercise 2 (A.6.2)

Theorem 3.16. Let X be Polish, H ‰ A Ď X. Then the following are
equivalent:

(i) A is analytic.

(ii) There exists a Polish space Y and f : Y Ñ X continuousa such that
A “ fpY q.

(iii) There exists h : N Ñ X continuous with hpN q “ A.

(iv) There is F
closed
Ď X ˆN such that A “ projXpF q.

(v) There is a Borel set B Ď X ˆ Y for some Polish space Y , such that
A “ projXpBq.

aor Borel

Proof. To show (i) ùñ (ii): take B P BpY 1q and f : Y 1 Ñ X continuous
with fpBq “ A. Take a finer Polish topology T on Y 1 adding no Borel sets,
such that B is clopen with respect to the new topology. Then let g “ f |B and
Y “ pB, T |Bq.

(ii) ùñ (iii): Any Polish space is the continuous image of N . Let g1 : N Ñ Y
and h :“ g ˝ g1.

7cf. Sheet 7, Exercise 1 (A.7.1) and use that tpx, xq P X2u – X.
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(iii) ùñ (iv): Let h : N Ñ X with hpN q “ A. Let Gphq :“ tpa, bq : hpaq “

bu
closed
Ď N ˆX be the graph of h. Take F :“ Gphq´1 :“ tpc, dq|pd, cq P Gphqu

Clearly (iv) ùñ (v).

(v) ùñ (i): Take f :“ projX .

Theorem 3.17. Let X,Y be Polish spaces. Let f : X Ñ Y be Borel
(i.e. preimages of open sets are Borel).

(a) The image of an analytic set is analytic.

(b) The preimage of an analytic set is analytic.

(c) Analytic sets are closed under countable unions and countable inter-
sections.

Proof. (a) Let A Ď X analytic. Then there exists Z Polish and g : Z Ñ X
continuous with gpZq “ A. We have that fpAq “ pf ˝ gqpZq and f ˝ g is
Borel.

(b) Let f : X Ñ Y be Borel and B Ď Y analytic.

Take Z Polish and B0 Ď Y ˆZ such that projY pB0q “ B. Take f` : XˆZ Ñ
Y ˆ Z, f` “ f ˆ id. Then

f´1pBq “ projXp

Borel
hkkkkkkkkkkikkkkkkkkkkj

p f`
loomoon

Borel

q´1p B0
loomoon

Borel

qq

loooooooooooooooomoooooooooooooooon

analytic

.

(c) See Sheet 7, Exercise 2 (A.7.2).

Notation 3.17.20. Let X be Polish. Let Σ1
1pXq denote the set of all

analytic subsets of X. Π1
1pXq :“ tB Ď X : XzB P Σ1

1pXqu is the set of
coanalytic sets.

We will see later that Σ1
1pXq XΠ1

1pXq “ BpXq.

Theorem 3.18. Let X,Y be uncountable Polish spaces. There exists a
Y -universal Σ1

1pXq set.

Proof. Take U Ď Y ˆ X ˆ N which is Y -universal for Π0
1pX ˆ N q. Let V :“

projY ˆXpUq. Then V is Y -universal for Σ1
1pXq:
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• V P Σ1
1pY ˆXq since V is a projection of a closed set.

• All sections of V are analytic. Let A P Σ1
1pXq. Let C Ď X ˆN be closed

such that projXpCq “ A. There is y P Y such that Uy “ C, hence Vy “ A.

Remark 3.18.21. In the same way that we proved Σ0
ξpXq ‰ Π0

ξpXq for

ξ ă ω1, we obtain that Σ1
1pXq ‰ Π1

1pXq.

In fact if U is universal for Σ1
1pXq, then ty : py, yq P Uu P Σ1

1pXqzΠ
1
1pXq.

In particular, this set is not Borel.

Remark: 3.18.22. Showing that there exist sets that don’t have the Baire
property requires the axiom of choice. An example of such a set is con-
structed in Sheet 5, Exercise 4 (A.5.4).

3.4 The Lusin Separation Theorem
[Lecture 10, 2023-11-17]

Theorem 3.19 (Lusin separation theorem). Let X be Polish and
A,B Ď X disjoint analytic. Then there is a Borel set C, such that A Ď C
and C XB “ H.

Corollary 3.20. Let X be Polish. Then

BpXq “ ∆1
1pXq,

where ∆1
1pXq :“ Σ1

1pXq XΠ1
1pXq.

Proof. Clearly BpXq Ď ∆1
1pXq.

Let A P ∆1
1pXq. Then A,XzA P Σ

1
1pXq. These can be separated by a Borel set

C, but then A “ C, hence A P BpXq.

For the proof of the Lusin Separation Theorem (3.19), we need the following
definition:

Definition 3.21. Let X be Polish, P,Q Ď X. We say that P,Q are
Borel-separable, if there exists R P BpXq, such that P Ď R,QXR “ H.

Lemma 3.22. If P “
Ť

măω Pm, Q “
Ť

năω Qn are such that for any m,n
the sets Pm and Qn are Borel separable, then P and Q are Borel separable.
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Proof. For all m,n pick Rm,n Borel, such that Pm Ď Rm,n and QnXRm,n “ H.
Then R “

Ť

m

Ş

nRm,n has the desired property that P Ď R and R X Q “

H.

Notation 3.22.23. For s P ωăω be write Ns :“ tx P N : x Ě su.

Proof of Theorem 3.19. Let X be Polish, and A,B Ď X analytic such that
AXB “ H Then there are continuous surjections f : N ↠ A Ď X and g : N ↠
B Ď X.

Write As :“ fpNsq and Bs :“ gpNsq. Note that As “
Ť

mA
s⌢ m

and Bs “
Ť

năω Bs⌢ n
.

In particular A “
Ť

măω A xmy
loomoon

Pω1

and B “
Ť

năω Bxny. Towards a contradiction

suppose that A and B are not Borel separable. Then by Lemma 3.22, there
exist m,n such that Axmy and Bxny can’t be separated. Since Axmy “

Ť

iAxm,iy

and similarly for B, there exist i, j such that Axm,iy and Bxn,jy are not Borel
separable.

Recursively, we find sequences x, y P N , such that Ax|n and By|n are not Borel
separable for any n ă ω. So fpxq P A and gpyq P B.

Recall that Ax|n “ fpNx|n and By|n “ gpNx|nq.

Since AXB “ H, we get that fpxq ‰ gpyq. Let U, V be disjoint open such that
fpxq P U, gpyq P V . As f and g are continuous, U Ď fpNx|nq and V Ď gpNx|nq

for n large enough. Then U separates Ax|n0
and V separates By|n0

, contradicting
the choice of x and y.

Theorem 3.23 (Lusin-Souslin). Let X,Y be Polish and f : X Ñ Y Borel.
Let A P BpXq such that f |A is injective. Then fpAq is Borel.

Proof of Theorem 3.23. W.l.o.g. suppose that f is continuous, A is closed8 and
X “ N by Theorem 1.24:

N

Z X Y

h´1pAq A fpAq

f

f |A

h

Ď Ď Ď

h|A

8We might even assume that A is clopen, but we only need closed.
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For s P ωăω write Bs :“ fpNs XAq.

As in the previous proof we have BH “ fpAq and Bs “
Ť

năω Bs⌢ n
for every

s P ωăω.

Note that

• @n. @s. B
s⌢ n

Ď Bs and

• @n ‰ n1. @s. B
s⌢ n

XB
s⌢ n1 “ H.

The second point follows from injectivity of f and the fact that N
s⌢ n

XN
s⌢ n1 “

H. In particular, the pBsq form a Lusin scheme.

Note that fpAq “
Ť

sPωk Bs for every k ă ω, thus fpAq “
Ş

kăω

Ť

sPωk Bs. We
want to find B˚

s P BpXq for s P ωăω, such that the B˚
s form a Lusin scheme

and still
fpAq “

č

kăω

ď

sPωăω

B˚
s .

The existence of such B˚
s implies that fpAq is Borel.

By the Corollary of the Lusin Separation Theorem (3.24), for all k ă ω, we
can separate the collection of disjoint analytic sets tBs : s P ω

ku Borel sets, i.e.
there are disjoint Borel sets pCsqsPωk such that Bs Ď Cs.

Using this, we get a Lusin scheme pB1
sqsPωăω such that the B1

s are Borel, B
1
H “ Y

and Bs Ď B1
s: Set B

1
H “ Y and B1

s⌢ n
“ B1

s XCs⌢ n
. However the B1

s might be
to large.

We define another Lusin scheme pB˚
s qs as follows: Let B

˚
H

:“ Y , and for s P ωăω,
n ă ω

B˚

s⌢ n
“ B1

s⌢ n
XB

s⌢ n
XB˚

s .

[Lecture 11, 2023-11-21]

Continuation of proof of Theorem 3.23. Note that Bpn0,...,nkq Ď B˚
pn0,...,nkq

Ď

Bn0,...,nk
.

We want to show that
fpAq “

č

kăω

ď

sPωk

B˚
s .

Let x P fpAq. Then take a P A such that x “ fpaq. Then

x P
č

k

Ba|k
loomoon

“fpAXNa|k
q

Ď
č

k

B˚
a|k
.

This gives fpAq Ď
Ş

kăω

Ť

sPωk B˚
s .

If x P
Ş

kăω

Ť

sPωk B˚
s , Then there is a unique a such that x P

Ş

k B
˚
a|k

.
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Claim 3.23.1. a P A.

Subproof. We have B˚
a|k
Ď Ba|k . So x P

Ş

k Ba|k . In particular, Ba|k ‰ H for

all k. So for all k we get that AXNa|k ‰ H. But A is closed and Na|k is clopen
for all k. We have tau “

Ť

kNa|k , so a P A. ■

Claim 3.23.2. fpaq “ x.

Subproof. We have fpaq P
Ş

k Ba|k . Suppose fpaq ‰ x. Pick U Q fpaq open such

that x R U . By continuity of f , we get that fpNa|k0
q Ď U for k0 large enough.

So x R fpNa|k0
q. In particular x R fpNa|k0

q “ Ba|k0
Ě B˚

a|k0
. But x P

Ş

k B
˚
a|k
 .
■

Corollary 3.24 (of the Lusin Separation Theorem (3.19)). Let X be Pol-
ish. Let A1, A2, A3, . . . Ď X be analytic and pairwise disjoint. Then there
are pairwise disjoint Borel sets Bi Ě Ai.

Proof. For all i, let Bi, Ci be disjoint Borel sets, such that Ai Ď Bi and
Ť

j‰iAj Ď Ci. Take Di :“ Bi X
Ş

j‰i Cj .

Theorem 3.25 (Borel Schröder-Bernstein). Let A,B be Borel in some
Polish spaces. Suppose that there are Borel embeddings f : A ãÑ B and
g : B ãÑ A. Then A and B are Borel isomorphic.

Proof. Cf. subsubsection A.7.4.

Theorem 3.26 (Isomorphism Theorem). Let X,Y be Borel in some
Polish spaces. Then X is Borel isomorphic to Y iff |X| “ |Y |.

Proof. ùñ is clear. Suppose that |X| “ |Y | ď ℵ0, then any bijection suffices,
since all subsets are Borel. If |X| “ |Y | ą ℵ0, then they must have cardinality
c, since we can embed the Cantor space.

It suffices to show that if X is an uncountable Polish space and C “ 2ω the Can-
tor space, then they are Borel isomorphic. There is 2ω ãÑ X Borel (continuous
wrt. the topology of X) On the other hand

X ãÑ N continuous embedding9

ãÑ C

9cf. subsubsection A.2.4
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For the first inclusion, recall that there is a continuous bijection b : D Ñ X,

where D
closed
Ď N . Consider b´1. Whenever B Ď X is Borel, we have that

b´1pBq is Borel, since b is continuous. For A Ď D Borel be get by Lusin-Souslin
(3.23), that b with respect to bpAq is Borel, since b|A is injective.

Hence Schröder-Bernstein for Borel sets (3.25) can be applied.

3.5 The Projective Hierarchy

Σ1
1pXq Σ1

2pXq

∆1
1pXq ∆1

2pXq

Π1
1pXq Π1

2pXq

Ď

Ď Ď

Ď Ď

Ď

Definition 3.27. Let X be a Polish space. We define

∆1
npXq :“ Σ1

npXq XΠ1
npXq

Π1
npXq “ tA Ď X : XzA P Σ1

npXqu

Σ1
n`1pXq “ tA Ď X : DB P Π1

npX ˆN q. A “ projX rBsu

Theorem 3.28. Every analytic and every coanalytic set has the Baire
property.

We will not proof this in this lecture.

3.6 Ill-Founded Trees

Recall that a tree on N is a subset of NăN closed under taking initial segments.

We now identify trees with their characteristic functions, i.e. we want to asso-
ciate a tree T Ď NăN

1T : ωăω ÝÑ t0, 1u

x ÞÝÑ

#

1 : x P T,

0 : x R T.

Note that 1T P t0, 1u
NăN

.

Let Tr :“ tT P 2N
ăN

: T is a treeu Ď 2N
ăN

.

Observe. Tr Ď 2N
ăN

is closed (where we take the topology of the Cantor space).
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Indeed, for any s P NăN we have that tT P 2N
ăN

: s P T u and tT P 2N
ăN

: s R T u
are clopen. Boolean combinations of such sets are clopen as well. In particular
for s fixed, we have that

tA P 2N
ăN

: s P A and s1 P A for any initial segment s1 Ď su

is clopen in 2N
ăN

.
[Lecture 12, 2023-11-24]

Definition 3.29. A tree T is ill-founded if it has an infinite branch, i.e.
rT s ‰ H Otherwise it is called well-founded. Let

IF :“ tT P Tr : T is ill-foundedu

and
WF :“ tT P Tr : T is well-foundedu

Proposition 3.30. IF P Σ1
1pTrq.

Proof. We have

T P IF ðñ Dβ P N . @n P N. T pβ|nq “ 1.

Consider
D :“ tpT, βq P TrˆN : @n. T pβ|nq “ 1u.

Note that this set is closed in TrˆN , since it is a countable intersection of
clopen sets. Then IF “ projTrpDq P Σ

1
1.

Definition 3.31. An analytic set B in some Polish space Y is complete
analytic (Σ1

1-complete) iff for any analytic A P Σ1
1pXq for some Polish

space X, there exists a Borel function f : X Ñ Y such that x P A ðñ

fpxq P B, i.e. f´1pBq “ A.

Similarly, a conalytic set B is called complete coanalytic (Π1
1-complete)

iff for any A Ď Π1
1pXq there exists f : X Ñ Y Borel such that f´1pBq “ A.

Observe.

• Complements of Σ1
1-complete sets are Π1

1-complete.

• Σ1
1-complete sets are never Borel: Suppose there is a Σ1

1-complete set B P
BpY q. Take A P Σ1

1pXqzBpXq10 and f : X Ñ Y Borel. But then we get
that f´1pBq is Borel  .

10e.g. Theorem 3.18
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Theorem 3.32. Suppose that A Ď N is analytic. Then there is a con-
tinuous function f : N Ñ Tr such that x P A ðñ fpxq is ill-founded,
i.e. A “ f´1pIFq.

For the proof we need some prerequisites:

Recall that for S countable, the pruned11 trees T Ď SăN on S correspond to
closed subsets of SN:12

T ÞÝÑ rT s

tα|n : α P D,n P Nu ÐÝ [ D

Definition 3.33. If T is a tree on NˆN and x P N , then the section at
x denoted T pxq, is the following tree on N :

T pxq “ ts P NăN : px||s|, sq P T u.

Proposition 3.34. Let A Ď N . The following are equivalent:

• A is analytic.

• There is a pruned tree on Nˆ N such that

A “ proj1prT sq “ tx P N : Dy P N . px, yq P rT su.

Proof. A is analytic iff there exists F
closed
Ď pN ˆ NqN such that A “ proj1pF q.

But closed sets of NN ˆ NN correspond to pruned trees, by the first point.

Proof of Theorem 3.32. Take a tree T on NˆN as in Proposition 3.34, i.e. A “
proj1prT sq. Consider

f : N ÝÑ Tr

x ÞÝÑ T pxq.

Clearly x P A ðñ fpxq P IF. f is continuous: Let x|n “ y|n for some n P N.
Then for all m ď n, s, t P NăN such that s “ x|m “ y|m and |t| “ |s|, we have

• t P T pxq ðñ ps, tq P T ,

• t P T pyq ðñ ps, tq P T .

So if x|n “ y|n, then t P T pxq ðñ t P T pyq as long as |t| ď n.

11no maximal elements, in particular this implies ill-founded if the tree is non empty.
12cf. Sheet 3, Exercise 1 (A.3.1) (c)
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Corollary 3.35. IF is Σ1
1-complete.

Proof. Let X be Polish. Suppose that A Ď X is analytic and uncountable.

Then

X N Tr

A bpAq

fb

where f is chosen as in Theorem 3.32.

If X is Polish and countable and A Ď X analytic, just consider

g : X ÝÑ Tr

x ÞÝÑ

#

a : x P A,

b : x R A,

where a P IF and b R IF are chosen arbitrarily.

3.7 Linear Orders

Let us consider the space

LO :“ tx P 2NˆN : x is a linear order on Nu,

where we code a linear order pN,ăq by x P 2NˆN with xpm,nq “ 1 ðñ m ď n.

Let
WO :“ tx P LO : x is a well orderingu.

Recall that

• pA,ăq is a well ordering iff there are no infinite descending chains.

• Every well ordering is isomorphic to an ordinal.

• Any two well orderings are comparable, i.e. they are isomorphic, or one is
isomorphic to an initial segment of the other.

Let pA,ăAq ă pB,ăBq denote that pA,ăAq is isomorphic to a proper
initial segment of pB,ăBq.

Definition 3.36. A rank on some set C is a function

φ : C Ñ Ord .
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Example 3.37. Let C “WO and

φ : WO ÝÑ Ord

where φppA,ăAqq is the unique ordinal isomorphic to pA,ăAq.

[Lecture 13, 2023-11-08]

LO “ tx P 2NˆN : x is a linear orderu. LO Ď 2NˆN is closed and WO “ tx P
LO : x is a wellorderingu is coanalytic in LO.

Another way to code linear orders:

Consider pQ,ăq, the rationals with the usual order. We can view 2Q as the space
of linear orders embeddable into Q, by associating a function f : QÑ t0, 1u with
pf´1pt1uq,ăq.

Lemma 3.38. Any countable wellorder embeds into pQ,ăq.

Proof. 13 Cf. [Wof].

Definition 3.39 (Kleene-Brouwer ordering). Let pA,ăq be a linear
order and A countable. We define the linear order ăKB on AăN as follows:
Let

s “ ps0, . . . , sm´1q, t “ pt0, . . . , tn´1q.

We set s ă t iff

• ps Ľ tq or

• si ă ti for the minimal i such that si ‰ ti.

Proposition 3.40. Suppose that pA,ăq is a countable well ordering. Then
for a tree T Ď AăN on A, Then T is well-founded iff pT,ăKB |T q is well
ordered.

Proof. If T is ill-founded and x P rT s, then for all n, we have x|n`1 ăKB x|n.
Thus pT,ăKB |T q is not well ordered.

Conversely, let ă |KB be not a well-ordering on T . Let s0 ąKB s1 ąKB s2 ąKB

. . . be an infinite descending chain. We have that s0p0q ě s1p0q ě s2p0q ě . . .
stabilizes for n ą n0. Let a0 :“ sn0

p0q. Now for n ě n0 we have that snp0q
is constant, hence for n ą n0 the value snp1q must be defined. Thus there is
n1 ě n0 such that snp1q is constant for all n ě n1. Let a1 :“ sn1

p1q and so on.
Then pa0, a1, a2, . . .q P rT s.

13In the lecture this was only done for countable ordinals.
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Theorem 3.41 (Lusin-Sierpinski). The set LO zWO (resp. 2QzWO) is
Σ1

1-complete.

Proof. We will find a continuous function f : TrÑ LO such that

x PWF ðñ fpxq PWO

(equivalently x P IF ðñ fpxq P LO zWO). This suffices, since IF Ď Tr is
Σ1

1-complete (see Corollary 3.35).

Fix a bijection b : NÑ NăN.

Idea. For T P Tr consider ăKB |T .

Let α P Tr. For m,n P N define fpαqpm,nq :“ 1 (i.e. m ďfpαq n) iff

• αpbpmqq “ αpbpnqq “ 1 and bpmq ďKB bpnq (recall that we identified Tr

with a subset of 2N
ăN

), or

• αpbpmqq “ 1 and αpbpnqq “ 0 or

• αpbpmqq “ αpbpnqq “ 0 and m ď n.

Then α PWF ðñ fpαq PWO and f is continuous.

3.8 Π1
1-ranks

Recall that a rank on a set C is a map φ : C Ñ Ord.

Example 3.42.

otp: WO ÝÑ Ord

x ÞÝÑ the unique α P Ord such that x – α.

Definition 3.43. A prewellordering ĺ on a set C is a binary relation
that is

• reflexive,

• transitive,

• total (any two x, y are comparable),

• ă (x ă y ðñ x ĺ y ^ y ł x) is well-founded, in the sense that
there are no descending infinite chains.

Remark 3.43.24.

• A prewellordering may not be a linear order since it is not necessarily
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antisymmetric.

• Modding out x „ y :ðñ x ĺ y^y ĺ x turns a prewellordering into
a wellordering.

We have the following correspondence between downwards-closed ranks and
prewellorderings:

ranks ÝÑ prewellorderings

pφ : C Ñ Ordq ÞÝÑ px ďφ y :ðñ φpxq ď φpyq, x, y P Cq

φĺ ÐÝ [ ĺ,

where φĺpxq is defined as

φĺpxq :“ 0 if x is minimal,

φĺpxq :“ suptφĺpyq ` 1 : y ă xu,

i.e.
φĺpxq “ otp

´

ty P C : y ă xu
„

¯

.

Definition 3.44. Let X be Polish and C Ď X coanalytic. Then φ : C Ñ
Ord is a Π1

1-rank provided thatď˚
φ andă˚

φ are coanalytic subsets ofXˆX,
where x ď˚

φ y iff

• y P XzC ^ x P C or

• x, y P C ^ φpxq ď φpyq

and similarly for ă˚
φ.

[Lecture 14, 2023-12-01]

Theorem 3.45 (Moschovakis). If C is coanalytic, then there exists a Π1
1-

rank on C.

Proof. Pick a Π1
1-complete set. It suffices to show that there is a rank on it.

Then use the reduction to transfer it to any coanalytic set, i.e. for x, y P C 1 let

x ď˚
C1 y :ðñ fpxq ď˚

C fpyq

and similarly for ă˚. Let X “ 2Q ĚWO. We have already shown that WO is
Π1

1-complete.

Set φpxq :“ otppxq (otp: WO Ñ Ord denotes the order type). We show that
this is a Π1

1-rank.

Define E Ď QQ ˆ 2Q ˆ 2Q by

pf, x, yq P E

:ðñ f order embeds px,ďQq to py,ďQq

ðñ @p, q P Q. pp, q P x^ p ăQ q ùñ fppq, fpqq P y ^ fppq ăQ fpqqq
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E is Borel as a countable intersection of clopen sets.

Define x ă˚
φ y iff

• px,ăQq is well ordered and

• py,ăQq does not order embed into px,ăQq,

where we identify 2Q and the powerset of Q. This is equivalent to

• x PWO and

• @f P QQ. pf, y, xq R E,

so it is Π1
1.

14

Furthermore x ď˚
φ y ðñ either x ă˚

φ y or px,ăQq and py,ăQq are well
ordered with the same order type, i.e. either x ă˚

φ y or x, y P WO and any
order embedding of px,ăQq to py,ăQq is cofinal15 in py,ăQq and vice versa.
Equivalently, either px ă˚

φ yq or

x, y PWO

^ @f P QQ. pEpf, x, yq ùñ @p P y. Dq P x. p ď fpqqq

^ @f P QQ. pEpf, y, xq ùñ @p P x. Dq P y. p ď fpqqq

Theorem 3.46. Let X be Polish and R Ď X ˆ N by Π1
1 (we only need

that N is countable). Then there is R˚ Ď R coanalytic such that

@x P X. pDn. px, nq P R ðñ D!n. px, nq P R˚q.

We say that R˚ uniformizes R.a

aWikimedia has a nice picture.

Proof. Let φ : RÑ Ord be a Π1
1-rank. Set

px, nq P R˚ :ðñ px, nq P R

^@m. px, nq ď˚
φ px,mq

^@m.
`

px, nq ă˚
φ px,mq _ n ď m

˘

,

i.e. take the element with minimal rank that has the minimal second coordinate
among those elements.

14(very informal) Note that Σ1
1-sets work well with comprehensions using “D”: Writing

A P Σ1
1pXq as A “ projXpBq for some Borel set B Ď X ˆ Y , the second coordinate can

be thought of as being a witness for a statement. Likewise, being complements of Σ1
1-sets,

Π1
1-sets can capture that a witness does not exist, i.e. they interact nicely with “@”.
15Recall that A Ď px,ăQq is cofinal if @t P x. Da P A. t ďQ a.
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Remark 3.46.25. Uniformization also works for R P Π1
1pX ˆ Y q for arbi-

trary Polish spaces X,Y , cf. [Kec12, (36.12)].

Corollary 3.47 (Countable Reduction for Π1
1 Sets). Let X be a Polish

space and pCnqn a sequence of coanalytic subsets of X.

Then there exists a sequence pC˚
nq of pairwise disjoint Π1

1-sets with C
˚
n Ď

Cn and
ď

nPN
C˚

n “
ď

nPN
Cn.

Proof. Define R Ď X ˆ N by setting px, nq P R : ðñ x P Cn and apply
Theorem 3.46.

Let X be a Polish space. If pX,ăq is well-founded (i.e. there are no infinite
descending chains) then we define a rank ρă : X Ñ Ord as follows: For minimal
elements the rank is 0. Otherwise set ρăpxq :“ suptρăpyq ` 1 : y ă xu. Let
ρpăq :“ suptρăpxq ` 1 : x P Xu.

Fact 3.47.26 ([Kec12, Appendix B]). Since ρă : X Ñ ρpăq is surjective,
we have that ρpăq ă |X|`.a

aHere, |X|` denotes the successor cardinal.

Theorem 3.48 (Kunen-Martin, [Kec12, (31.1)]). If pX,ăq is well-founded
and ăĎ X2 is Σ1

1 then ρpăq ă ω1.

Proof. Wlog. X “ N . There is a tree S on NˆNˆN (i.e. S Ď pNˆNˆNqăN)
such that

@x, y P N . px ą y ðñ Dα P N . px, α, yq P rSsq .16

Let

W :“ tw “ ps0, u1, s1, . . . , un, snq : si, ui P Nn ^ psi´1, ui, siq P Su.

Clearly |W | ď ℵ0. Define ă˚ on W by setting

ps0, u1, s1, . . . , un, snq ą˚ ps1
0, u

1
1, s

1
1, . . . , u

1
m, s

1
mq

iff

• n ă m and

16Here we use that ă is analytic, i.e. ă can be written as the projection of a closed subset
of pN ˆ N q ˆ N and closed subsets correspond to pruned trees.
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• @i ď n. si Ĺ s1
i ^ ui Ĺ u1

i.

Claim 1. ă˚ is well-founded.

Subproof. If wn “ ps
n
0 , u

n
1 , . . . , u

n
n, s

n
nq was descending, then let

xi :“
ď

sni P N

and
αi :“

ď

n

uni P N .

We get pxi´1, αi, xiq P rSs, hence xi´1 ą xi for all i, but this is an infinite
descending chain in the original relation  ■

Hence ρpă˚q ă |W |` ď ω1. We can turn pX,ăq into a tree pTă,Ĺq with

ρpăq “ ρpTăq

by setting H P Tă and px0, . . . , xnq P Tă,xi P X “ N , iff x0 ą x1 ą x2 ą . . . ą

xn.

For all x ą y pick αx,y P N such that px, αx,y, yq P rSs. Define

φ : TăztHu ÝÑW

px0, x1, . . . , xnq ÞÝÑ px0|n, αx0,x1
|n, x1|n, . . . , αxn´1,xn

|n, xn|nq.

Then φ is a homomorphism of Ľ to ă˚ so

ρpăq “ ρpTăztHu,Ľq ď ρpă˚q ă ω1.

[Lecture 15, 2023-12-05]

Theorem 3.49 (Boundedness Theorem). Let X be Polish, C Ď X coana-
lytic, φ : C Ñ ω1 a coanalytic rank on C, A Ď C analytic, i.e. A P Σ1

1pXq.
Then suptφpxq : x P Au ă ω1.

Moreover for all ξ ă ω1,

Dξ :“ tx P C : φpxq ă ξu

and
Eξ :“ tx P C : φpxq ď ξu

are Borel subsets of X.
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Proof. Let

x ă y :ðñ x, y P A^ φpxq ă φpyq

ðñ x, y P A^ y ď˚
φ x.

Since A is analytic, this relation is analytic and wellfounded on X. By Kunen-
Martin (3.48) we get ρpăq ă ω1. Thus suptφpxq : x P Au ă ω1.

Since Dξ “
Ť

ηăξ Eξ, it suffices to check Eξ P Σ1
1pXq. Let α :“ suptφpxq : x P

Cu. Then Eξ “ Eα for all α ď ξ ă ω1.

Consider ξ ď α.

• If there exists x0 P C with φpx0q ě ξ, pick such x0 of minimal rank. Then
for all y P X we have

y P Eξ ðñ y P C ^ φpyq ď ξ

ðñ y ď˚
φ x0 coanalytic

ðñ x0 ă
˚
φ y analytic

So Eξ is Borel.

• If there exists no such x0 then ξ “ α and

Eξ “ Eα “
ď

ηăα

Eη

is a countable union of Borel sets by the previous case.
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4 Abstract Topological Dynamics

Recall:

Definition: 4.0.27. Let X be a set. A group action of a group G on X
is a function α : GˆX Ñ X such that

• @x P X. αp1G, xq “ x,

• @g, h P G, x P X. αpgh, xq “ αpg, αph, xqq.

Often we will abbreviate αpg, xq as g ¨ x.

For x P X, the orbit of x is defined as

G ¨ x :“ tg ¨ x : g P Gu.

A group action is called transitive iff g ÞÑ g ¨ x is surjective for all x P X,
i.e. iff the action has exactly one orbit.

For x P X, the stabilizer subgroup of G with respect to x is

Gx :“ tg P G : g ¨ x “ xu.

Remark: 4.0.28. Group actions of a group G on a set X correspond to
group homomorphisms G Ñ SympXq. Indeed for a group action α : G ˆ
X Ñ X consider

G ÝÑ SympXq

g ÞÝÑ px ÞÑ g ¨ xq.

Definition: 4.0.29. A group G with a topology is a topological group
iff

GˆG ÝÑ G

px, yq ÞÝÑ x ¨ y

and

G ÝÑ G

x ÞÝÑ x´1

are continuous.

Definition 4.1. Let T be a topological groupa and let X be a compact
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metrizable space.

A flow pX,T q, sometimes denoted T ñX is a continuous action

T ˆX ÝÑ X

pt, xq ÞÝÑ tx.

A flow is minimal iff every orbit is dense.

pY, T q is a subflow of pX,T q if Y Ď X and Y is invariant under T , i.e. @t P
T, y P Y. ty P Y .

A flow pX,T q is isometric iff there is a metric d on X such that for all
t P T the map

at : X ÝÑ X

x ÞÝÑ tx

is an isometry, i.e. @t P T. @x, y P X. dpatpxq, atpyqq “ dpx, yq.

If pX,T q is a flow, then a pair px, yq, x ‰ y is proximal iff

Dz P X. Dptnqnă P T
ω. tnx

nÑ8
ÝÝÝÑ z ^ tny

nÑ8
ÝÝÝÑ z.

A flow is distal iff it has no proximal pair.

ausually T “ Z with the discrete topology

Remark 4.1.30. Note that a flow is minimal iff it has no proper subflows.

Definition: 4.1.31. Let pT,Xq and pT, Y q be flows. A factor map
π : pT,Xq Ñ pT, Y q is a continuous surjectionX ↠ Y that is T -equivariant,
i.e. @t P T, x P X. πpt ¨ xq “ t ¨ πpxq. If such a factor map exists, we also
say that pT, Y q is a factor of pT,Xq.

An isomorphism from pT,Xq to pT, Y q is a homeomorphism X Ø Y
commuting with the group action.

Warning: 4.1.32. What is called “factor” here is called “subflow” by
Furstenberg.

Example 4.2. Recall that S1 “ tz P C : |z| “ 1u. Let X “ S1, T “ S1

pα, βq ÞÑ α` β is isometric.a

aNote that here we consider the abelian group structure of S1 and α`β denotes the
addition of angles, i.e. α ¨ β in complex numbers.
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Definition 4.3. Let X,Y be compact metric spaces and π : pX,T q Ñ
pY, T q a factor map. Then pX,T q is an isometric extension of pY, T q
if there is ρ : X ˆY X Ñ Ra such that

(a) ρ is continuous.

(b) For each y P Y , ρ is a metric on the fiber Xy :“ tx P X : πpxq “ yu.

(c) @t P T. ρptx1, tx2q “ ρpx1, x2q.

(d) @y, y1 P Y. the metric spaces pXy, ρq and pXy1 , ρq are isometric.

aRecall that in the category of topological spaces the fiber product of A
f

ÝÑ C,

B
g

ÝÑ C is A ˆC B “ tpa, bq P A ˆ B : fpaq “ gpbqu, i.e. X ˆY X “ tpx1, x2q P X2 :
πpx1q “ πpx2qu.

Remark 4.3.33. A flow is isometric iff it is an isometric extension of the
trivial flow, i.e. the flow acting on a singleton. Indeed maps ρ : X ˆ‹ X “

X2 Ñ R as in Definition 4.3 correspond to metrics witnessing that the flow
is isometric.

Proposition 4.4. An isometric extension of a distal flow is distal.

Proof. Let π : X Ñ Y be an isometric extension. Towards a contradiction,
suppose that x1, x2 P X are proximal. Take z P X and a sequence pgnqnăω in
T such that gnx1 Ñ z and gnx2 Ñ z.

Then gnπpx1q Ñ πpzq and gnπpx2q Ñ πpzq, so by distality of Y we have πpx1q “
πpx2q. Then ρpgnx1, gnx2q is defined and equal to ρpx1, x2q. By the continuity of
ρ, we get ρpgnx1, gnx2q Ñ ρpz, zq “ 0. Therefore ρpx1, x2q “ 0. Hence x1 “ x2
 .

Definition 4.5. Let Σ “ tpXi, T q : i P Iu be a collection of factors of
pX,T q. Let πi : pX,T q Ñ pXi, T q denote the factor map. Then pX,T q is a
limita of Σ iff

@x1 ‰ x2 P X. Di P I. πipx1q ‰ πipx2q.

aThis is not a limit in the category theory sense and not uniquely determined.

Proposition 4.6. A limit of distal flows is distal.

Proof. Let pX,T q be a limit of Σ “ tpXi, T q : i P Iu. Suppose that each pXi, T q
is distal. If pX,T q was not distal, then there were x1, x2, z P X and a sequence
pgnq in T with gnx1 Ñ z and gnx2 Ñ z. Take i P I such that πipx1q ‰ πipx2q.
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But then gnπipx1q Ñ πipzq and gnπipx2q Ñ πipzq, which is a contradiction since
pXi, T q is distal.

[Lecture 16, 2023-12-08]

X is always compact metrizable.

Theorem 4.7. Every minimal isometric flow pX,Zq for X a compact
metrizable spacea is isomorphic to an abelian group rotation pK,Zq, with
K an abelian compact group and some fixed α P K such that hpxq “ x`α
for all x P K

aSuch a flow is uniquely determined by h : X Ñ X,x ÞÑ 1 ¨ x.

Proof. The action of 1 determines h. Consider

thn : n P Zu Ď CpX,Xq “ tf : X Ñ X : f continuousu,

where the topology is the uniform convergence topology. Let G “ thn : n P Zu Ď
CpX,Xq. Since the family thn : n P Zu is uniformly equicontinuous, i.e.

@ε ą 0. Dδ ą 0. dpx, yq ă δ ùñ @n. dphnpxq, hnpyqq ă ε,

we have by the Arzelà-Ascoli-Theorem that G is compact.

G is a closure of a topological group, hence it is a topological group, by Fact B.0.86.
Since hn and hm commute for all n,m P Z, we obtain that G is abelian.

Take any x P X and consider the orbit G ¨x. Since ZñX is minimal, i.e. every
orbit is dense, we have that G ¨ x is dense in X.

Claim 1. G ¨ x is compact.

Subproof. Since ZñX is continuous, g ÞÑ gx is continuous:

Let gn be a sequence in G such that gn Ñ g. Then gnxÑ gx, since the topology
on CpX,Xq is the uniform convergence topology.

Therefore the compactness of G implies that the orbit Gx is compact. ■

Since G¨x is compact and dense, we get G¨x “ X (compact subsets of Hausdorff
spaces are closed).

Let Gx “ tf P G : fpxq “ xu ă G be the stabilizer subgroup. Note that Gx Ď G

is closed. Take K :“ G
Gx

with the quotient topology.

There is a continuous bijection

K ÝÑ X

fGx ÞÝÑ fpxq.
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By compactness this is a homeomorphism, so this is an isomorphism between
flows.

For α “ h we get that a flow ZñX corresponds to ZñK with p1, xq ÞÑ x`α.

Definition 4.8. Let pX,T q be a flow and pY, T q a factor of pX,T q. Suppose
there is η P Ord such that for any ξ ă η there is a factor pXξ, T q of pX,T q
with factor map πξ : X Ñ Xξ such that

(a) pX0, T q “ pY, T q and pXη, T q “ pX,T q.

(b) If ξ ă ξ1, then pXξ, T q is a factor of pXξ1 , T q “inside pX,T q”, i.e. πξ “
πξ,ξ1 ˝ πξ1 , where πξ,ξ1 : Xξ1 Ñ Xξ is the factor map.

(c) @ξ ă η. pXξ`1, T q is an isometric extension of pXξ, T q.

(d) ξ ď η is a limit, then pXξ, T q is a limit of tpXα, T q, α ă ξu.

X

Xξ1

Xξ

Y

π

πξ1

πξ

πξ,ξ1

Then we say that pX,T q is a quasi-isometric extension of pY, T q.

Definition 4.9. If pY, T q is trivial, i.e. |Y | “ 1, then a quasi-isometric
extension pX,T q of pY, T q is called a quasi-isometric flow.

Corollary 4.10. Every quasi-isometric flow is distal.

Proof. The trivial flow is distal. Apply Proposition 4.4 and Proposition 4.6.

Theorem 4.11 (Furstenberg). Every minimal distal flow is quasi-isometric.

By Zorn’s lemma, this will follow from

4 ABSTRACT TOPOLOGICAL DYNAMICS 48



Theorem 4.12 (Furstenberg). Let pX,T q be a minimal distal flow and let
pY, T q be a proper factor.a Then there is another factor pZ, T q of pX,T q
which is a proper isometric extension of Y .

pY, T q pX,T q

pZ, T q

isometric extension

ai.e. pX,T q and pY, T q are not isomorphic

Theorem 4.11 allows us to talk about ranks of distal minimal flows:

Definition 4.13 ([Fur63, 13.1]). Let pX,T q be a quasi-isometric flow, and
let η be the smallest ordinal such that there exists a quasi-isometric system
tpXξ, T q, ξ ď ηu with pX,T q “ pXξ, T q. Then η is called the rank or order
of the flow and is denoted by rankppX,T qq.

Definition: 4.13.34. Let X be a topological space. Let KpXq denote the
set of all compact subspaces of X and KpXq˚ :“ KpXqztHu. If d ď 1 is a
metric on X, we can equip KpXq with a metric dH given by

dHpH,Hq :“ 0,

dHpK,Hq :“ 1 K ‰ H,

dHpK0,K1q :“ maxtmax
xPK0

dpx,K1q,max
xPK1

dpx,K0quK0,K1 ‰ H.

The topology induced by the metric is given by basic open subsetsa of the

form rU0;U1, . . . , Uns, for U0, . . . , Un

open
Ď X, where

rU0;U1, . . . , Uns :“ tK P KpXq|K Ď U0 ^ @1 ď i ď n. K X Ui ‰ Hu.

acf. Sheet 9, Exercise 2 (A.9.2)

We want to view flows as a metric space. For a fixed compact metric space
X, we can view the flows pX,Zq as a subset of CpX,Xq. Note that CpX,Xq is
Polish.17 Then the minimal flows on X are a Borel subset of CpX,Xq.18

However we do not want to consider only flows on a fixed space X, but we
want to look all flows at the same time. The Hilbert cube H “ r0, 1sN embeds
all compact metric spaces. Thus we can consider KpHq, the space of compact
subsets of H. KpHq is a Polish space.19 Consider KpH2q. A flow ZñX

17cf. Sheet 1, Exercise 4 (A.1.4)
18Exercise
19cf. Sheet 9, Exercise 2 (A.9.2), Sheet 12, Exercise 4 (A.12.4)
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corresponds to the graph of

X ÝÑ X

x ÞÝÑ 1 ¨ x

and this graph is an element of KpH2q.

Theorem 4.14 (Beleznay-Foreman). Consider Z-flows.

• For any α ă ω1, there is a distal minimal flow of rank α.

• Distal flows form a Π1
1-complete set, where flows are identified with

their graphs as elements of KpH2q as above.

• Moreover, this rank is a Π1
1-rank.

4.1 The Ellis semigroup
[Lecture 17, 2023-12-12]

Let pX, dq be a compact metric space and pX,T q a flow.

Let XX :“ tf : X Ñ Xu be the set of all functions.20 We equip this with the
product topology, i.e. a subbasis is given by sets

Uεpx, yq :“ tf P X
X : dpx, fpyqq ă εu.

for all x, y P X, ε ą 0.

XX is a compact Hausdorff space.21

Remark 4.14.35. a Let f0 P X
X be fixed.

• XX Q f ÞÑ f ˝ f0 is continuous:

Consider tf : f ˝ f0 P Uεpx, yqu. We have f ˝ f0 P Uεpx, yq iff f P
Uεpx, f0pyqq.

• Fix x0 P X. Then f ÞÑ fpx0q is continuous.

• In general f ÞÑ f0 ˝ f is not continuous, but if f0 is continuous, then
the map is continuous.

acf. Sheet 11, Exercise 1 (A.11.1)

Definition 4.15. Let pX,T q be a flow. Then the Ellis semigroup is
defined by EpX,T q :“ T Ď XX , i.e. identify t P T with x ÞÑ tx and take
the closure in XX .

20We take all the functions, they need not be continuous.
21cf. Tychonoff’s theorem
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EpX,T q is compact and Hausdorff, since XX has these properties.

Properties of pX,T q translate to properties of EpX,T q:

Goal. We want to show that if pX,T q is distal, then EpX,T q is a group.

Proposition 4.16. EpX,T q is a semigroup, i.e. closed under composition.

Proof. Let G :“ EpX,T q. Take t P T . We want to show that tG Ď G, i.e. for
all h P G we have th P G.

We have that t´1G is compact, since t´1 is continuous and G is compact.

It is T Ď t´1G since T Q s “ t´1 ptsq
loomoon

PG

.

So G “ T Ď t´1G. Hence tG Ď G.

Claim 1. If g P G, then
Tg “ Tg.

Subproof. Cf. Sheet 11, Exercise 1 (A.11.1) ■

Let g P G. We need to show that Gg Ď G.

It is
Gg “ Tg “ Tg.

Since G compact, and Tg Ď G, we have Tg Ď G.

Definition 4.17. A compact semigroup S is a nonempty semigroupa

with a compact Hausdorff topology, such that S Q x ÞÑ xs is continuous
for all s.

amay not contain inverses or the identity

Example 4.18. The Ellis semigroup is a compact semigroup.

Lemma 4.19 (Ellis–Numakura). Every non-empty compact semigroup
contains an idempotent element, i.e. f such that f2 “ f .

Proof. Using Zorn’s lemma, take a Ď-minimal compact subsemigroup R of S
and let s P R.

Then Rs is also a compact subsemigroup and Rs Ď R. By minimality of R,
R “ Rs. Let P :“ tx P R : xs “ su. Then P ‰ H, since s P Rs and P is
a compact semigroup, since x

α
ÞÑ xs is continuous and P “ α´1psq X R. Thus

P “ R by minimality, so s P P , i.e. s2 “ s.
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The Ellis-Numakura Lemma (4.19) is not very interesting for EpX,T q, since we
already know that it has an identity. But it is interesting for other semigroups.

Theorem 4.20 (Ellis). pX,T q is distal iff EpX,T q is a group.

Proof. Let G :“ EpX,T q and let d be a metric on X. For all g P G we need
to show that x ÞÑ gx is injective. If we had gx “ gy, then dpgx, gyq “ 0. Then
inftPT dptx, tyq “ 0, but the flow is distal, hence x “ y.

Let g P G. Consider the compact semigroup Γ :“ Gg. By the Ellis-Numakura
Lemma (4.19), there is f P Γ such that f2 “ f , i.e. for all x P X we have
f2pxq “ fpxq. Since f is injective, we get that x “ fpxq, i.e. f “ id.

Since f P Gg, there exists g1 P G such that f “ g1 ˝ g.

It is g1 “ g1gg1, so @x. g1pxq “ g1pgg1pxqq. Hence g1 is injective and x “ gg1pxq,
i.e. gg1 “ id.

On the other hand if px0, x1q is proximal, then there exists g P G such that
gx0 “ gx1.

22 It follows that an inverse to g can not exist.

Theorem 4.21. If pX,T q is distal, then X is the disjoint union of minimal
subflows. In fact those disjoint sets will be orbits of EpX,T q.

Proof. Let G “ EpX,T q. Note that for all x P X, we have that Gx Ď X is
compact and invariant under the action of G.

Since G is a group, the orbits partition X.23

We need to show that pGx, T q is minimal. Suppose that y P Gx, i.e. Gx “ Gy.
Since g ÞÑ gy is continuous, we have Gx “ Gy “ Ty “ Ty, so Ty is dense in
Gx.

Corollary 4.22. If pX,T q is distal and minimal, then EpX,T qñX is
transitive.

4.2 Sketch of proof of Theorem 4.12
[Lecture 18, 2023-12-15]

The goal for this lecture is to give a very rough sketch of Theorem 4.12 in the
case of |Z| “ 1.

Let pX,T q be a distal flow. Then G :“ EpX,T q is a group.

22cf. Sheet 11, Exercise 1 (A.11.1) (e)
23Note that in general this does not hold for semigroups.
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Definition 4.23. For x, x1 P X define

F px, x1q :“ inftdpgx, gx1q : g P Gu.

Fact 4.23.36. (a) F px, x1q “ F px1, xq,

(b) F px, x1q ě 0 and F px, x1q “ 0 iff x “ x1.

(c) F pgx, gx1q “ F px, x1q since G is a group.

(d) F is an upper semi-continuousa function onX2, i.e. @a P R. tpx, x1q P

X2 : F px, x1q ă au
open
Ď X2.

This holds because F is the infimum of continuous functions

fg : X
2 ÝÑ R

px, x1q ÞÝÑ dpgx, gx1q

for g P G.

aWikimedia has a nice picture.

Theorem and Definition 4.24. The sets

Uapxq :“ tx
1 : F px, x1q ă au

form the basis of a topology in X. This topology is called the F-topology
on X. In this setting, the original topology is also called the E-topology.

This will follow from the following lemma:

Lemma 4.25. Let F px, x1q ă a. Then there exists ε ą 0 such that when-
ever F px1, x2q ă ε, then F px, x2q ă a.

Proof of Theorem and Definition 4.24. We have to show that if Uapx1qXUbpx2q ‰
H, then this intersection is the union of sets of this kind. Let x1 P Uapx1q X
Ubpx2q. Then by Lemma 4.25, there exists ε1 ą 0 with Uε1px

1q Ď Uapx1q. Sim-
ilarly there exists ε2 ą 0 such that Uε2px

1q Ď Ubpx2q. So for ε ď ε1, ε2, we get
Uεpx

1q Ď Uapx1q X Ubpx2q.

Proof of Lemma 4.25. 2425

Let T “
Ť

n Tn,Tn compact, wlog. Tn Ď Tn`1, and let Gpx, x1q :“ tpgx, gx1q : g P
Gu Ď X ˆX. Take b such that F px, x1q ă b ă a. Then U “ tpu, u1q P Gpx, x1q :
dpu, u1q ă bu is open in Gpx, x1q and since F px, x1q ă b we have U ‰ H.

24Not relevant for the exam.
25This was not covered in class.
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Claim 4.25.1. There exists n such that

@pu, u1q P Gpx, x1q. Tnpu, u
1q X U ‰ H.

Subproof. Suppose not. Then for all n, there is pun, u
1
nq P Gpx, x

1q with

Tnpun, u
1
nq Ď Gpx, x1qzU.

Note that the RHS is closed. For m ą n we have Tnpum, u
1
mq Ď Gpx, x1qzU

since Tn Ď Tm. By compactness of X, there exists v, v1 and some subsequence
such that punk

, u1
nk
q Ñ pv, v1q.

So for all n we have Tnpv, v
1q Ď Gpx, x1qzU , hence T pv, v1qXU “ H, so Gpv, v1qX

U “ H. But this is a contradiction as H ‰ U Ď Gpv, v1q. ■

The map

T ˆX ÝÑ X

pt, xq ÞÝÑ tx

is continuous. Since Tn is compact, we have that tpx, tq ÞÑ tx : t P Tnu is
equicontinuous. Sheet 11So there is ε ą 0 such that dpx1, x2q ă ε ùñ dptx1, tx2q ă a´b
for all t P Tn.

Suppose now that F px1, x2q ă ε. Then there is t0 P T such that dpt0x
1, t0x

2q ă

ε, hence dptt0x
1, tt0x

2q ă a ´ b for all t P Tn. Since pt0x, t0x
1q P Gpx, x1q,

there is t1 P Tn with pt1t0x, t1t0x
1q P U , i.e. dpt1t0x, t1t0x

1q ă b and therefore
F px, x2q “ dpt1t0x, t1t0x

2q ă a.

Now assume Z “ t‹u. We want to sketch a proof of Theorem 4.12 in this case,
i.e. show that if pZ, T q is a proper factor of a minimal distal flow pX,T q then
there is another factor pY, T q of pX,T q which is a proper isometric extension of
Z.

Proof (sketch).

1. For x P X define

Fx : X ÝÑ R
x1 ÞÝÑ F px, x1q.

2. Define an equivalence relation on X, by x1 „ x2 : ðñ tx P X : Fx1
pxq “

Fx2
pxqu is comeager in X26. Then for all g P G we have x1 „ x2 ùñ

gx1 „ gx2.

Let M :“ trxs„ : x P Xu “ X
„ bet the quotient space. It is compact,

second countable and Hausdorff. Let π : X ÑM denote the quotient map.

26with respect to the E-topology
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3. pY, T q :“pM,T q is an isometric flow:

(a) For a ą 0, x, x1 P X let

W px, x1q :“ tg P G : F px, gx1q ă au.

This turns out to be a subbasis of a topology which is coarser than the
original topology on G. The new topology makes G compact.

(b) Let θpgq be the transformation of M defined by θpgqπpxq “ πpgxq. This
is well defined. Let H “ θpGq. This is just a quotient of G, g ÞÑ θpgq
may not be injective.

(c) One can show that H is a topological group and pM,Hq is a flow.27

(d) Since H is compact, pM,Hq is equicontinuous, i.e. it is isometric. In
particular, pM,T q is isometric.

4. M ‰ t‹u, i.e. pM,T q is non-trivial:

Suppose towards a contradiction thatM “ t‹u, i.e. x1 „ x2 for all x1, x2 P X.
Fix x2. For every x1 P X we have that

tx : F px1, xq “ F px2, xqu

is comeager. Let x1 be a point of continuity of Fx2
. Let xan : n ă ωy be a

sequence of elements that set, i.e. F px1, anq “ F px2, anq, such that an Ñ x1.
So by the continuity of Fx2 at x1

lim
nÑ8

F px2, anq “ F px2, x1q

and by the definition of F

lim
nÑ8

F px1, anq “ F px1, x1q “ 0.

So
F px2, x1q “ lim

nÑ8
F px2, anq “ lim

nÑ8
F px1, anq “ 0

and by distality we get x1 “ x2. Since almost all points of X are points of
continuity of Fx2

(Theorem 4.26) this implies that Xztx2u is meager. But
then X “ t‹u .

Theorem 4.26. a Let X be a metric space and Γ: X Ñ R be upper
semicontinuous. Then the set of continuity points of Γ is comeager.

aNot covered in class

27This is non-trivial.
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Proof. 28 Take x such that Γ is not continuous at x. Then there is an ε ą 0 and
xn Ñ x such that Γpxnq ` ε ď Γpxq. Take q P Q such that Γpxq ´ ε ă q ă Γpxq.
Then let

Bq :“ ta P X : Γpaq ě qu.

XzBq “ ta P X : Γpaq ă qu is open, i.e. Bq is closed. Note that x P Fq :“
Bqz intpBqq and Bqz intpBqq is nwd as it is closed and has empty interior, so
Ť

qPQ Fq is meager.

4.3 The Order of a Flow
[Lecture 19, 2023-12-19]

See also [Tao08, Lecture 6].

Definition: 4.26.37. Let X,Y be metric spaces. A family F of functions
X Ñ Y is called equicontinuous at x0 P X iff

@ε ą 0. Dδ ą 0. @f P F. dXpx0, xq ă δ ùñ dY pfpx0q, fpxqq ă ε.

It is called equicontinuous iff it is equicontinuous at every point. It is called
uniformly equicontinuous iff

@ε ą 0. Dδ ą 0. @x0 P X. @f P F. dXpx0, xq ă δ ùñ dY pfpx0q, fpxqq ă ε.

A flow pX,T q is called equicontinuous iff T is equicontinuous.

Note that since X compact the notions of equicontinuity and uniform equicon-
tinuity coincide.

Fact: 4.26.38 ([Tao08, Lecture 6, Exercise 1]). A flow pX,T q is isometric
iff it is equicontinuous.

Proof. Clearly an isometric flow is equicontinuous. On the other hand suppose
that T is uniformly equicontinuous. Define a metric d̃ on X by setting d̃px, yq :“
suptPT dptx, tyq ď 1 (wlog. d ď 1). By equicontinuity of T we get that d̃ and d
induce the same topology on X.

Recall that we defined the order of a quasi-isometric flow to be the minimal
number of steps required when building the tower to reach the flow with a
quasi-isometric system (cf. Theorem 4.12, Definition 4.13).

Theorem 4.27 (Maximal isometric factor). For every flow pX,T q there
is a maximal factor pY, T q, π : X Ñ Y , i.e. if pY 1, T q, π1 : X Ñ Y 1 is any
isometric factor of pX,T q, then pY 1, T q is a factor of pY, T q.

28Not relevant for the exam.
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pX,T q

pY,T q

maximal isometric

pY 1,T q
isometric

D

Proof. We want to apply Zorn’s lemma. If suffices to show that isometric flows
are closed under inverse limits,29 i.e. if pYα, fα,βq, β ă α ď Θ are isometric,
then the inverse limit Y is isometric.

X

Y Yα

Yβ

fα,β

fα

fβ

πα

πβ

Consider
∆α :“ tpy, y1q P Y 2 : fαpyq “ fαpy

1qu.

Let d be a metric on Y and dα a metric on Yα, wlog. d, dα ď 1. Note that
β ă α ùñ ∆β Ě ∆α and

č

αďθ

∆α “ tpy, yq : y P Y u.

Fix ε ą 0 and consider

tpy, y1q P ∆α : dpy, y1q ě εu.

By the finite intersection property we get

Dα. fαpyq “ fαpy
1q ùñ dpy, y1q ă ε,

i.e. @z P Yα. diampf
´1
α pzqq ď ε.

Towards a contradiction assume that Y is not isometric, i.e. not equicontinuous.
Then there are pyjq, py

1
jq P Y such that dpyj , y

1
jq Ñ 0 and ε ą 0, tj P T such that

dptjyj , tjy
1
jq ą ε.

By compactness wlog. pyjq and py
1
jq converge (to the same point). Find α such

that fαpyq “ fαpy
1q ùñ dpy, y1q ă ε

4 . Let zj :“ fαpyjq and z
1
j :“ fαpy

1
jq. Then

pzjq and pz
1
jq converge to the same point z P Yα. By equicontinuity of pYα, T q,

29This seems to be an inverse limit in the category theory sense.
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dYαptjzj , tjz
1
jq Ñ 0. Wlog. ptjzjq and ptjz

1
jq converge. Let z

˚ be their limit. On
the one hand, by the triangle inequality we get

dpf´1
α ptjzjq, f

´1
α ptjz

1
jqq ą ε

loomoon

ădptjyj ,tjy
1
jq

´

Diameter of fiber
hkkikkj

ε

4
´
ε

4
“
ε

2
.

On the other hand, from

dpf´1
α ptjzjq, f

´1
α pz˚qq Ñ 0,

dpf´1
α ptjz

1
jq, f

´1
α pz˚qq Ñ 0,

diam f´1
α ptz˚uq ă

ε

4

we obtain
dpf´1

α ptjzjq, f
´1
α ptjz

1
jqq ă

ε

2
 .

More generally we can show:

Theorem 4.28 ([Fur63, Prop. 13.1]). Let pX,T q be a distal flow and
pZ, T q “ πpX,T q a factor. Then there exists an isometric extension pY, T q
of pZ, T q which is a factor of pX,T q, such that pY, T q is maximal among
such extensions, i.e. if pY 1, T q is any flow with these two properties, then
pY 1, T q is a factor of pY, T q.

pX,T q

distal

pY, T q

pY 1, T q

pZ, T q

π

max. iso.

iso.

Such a factor pY, T q is called a maximal isometric extension of pZ, T q.

Lemma 4.29. Let four flows be given as in
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pY, T q

pZ1, T q pZ2, T q

pW,T q

w1 w2

π1 π2

Suppose that whenever y ‰ y1 P Y , then π1pyq ‰ πpy1q or π2pyq ‰ π2py
1q.

If pZ1, T q is an isometric extension of pW,T q, then pY, T q is an isometric
extension of pZ2, T q.

Proof. For z1, z
1
1 P Z1 with w1pz1q “ w1pz

1
1q let ρpz1, z

1
1q be the metric on the

fiber of Z1 over W . Set σpy, y1q :“ ρpπ1pyq, π1py
1qq whenever π2pyq “ π2py

1q.
In this case w2 ˝ π2pyq “ w2 ˝ π2py

1q and w1 ˝ π1pyq “ w1 ˝ π1py
1q, so σ is well

defined. σ is a semi-metric30 on the fibers of Y over Z2 and invariant under T .

σ is a metric on fibers, since if π2pyq “ π2py
1q and σpy, y1q “ 0, then π1pyq “

π1py
1q or y “ y1.

Definition 4.30. A quasi-isometric system tpXξ, T q : ξ ď ηu is called nor-
mal if pXξ`1, T q is the maximal isometric extension of pXξ, T q in pXη, T q
for all ξ ă η.

Theorem 4.31 ([Fur63, 13.2]). If tpXξ, T q, ξ ď ηu is a normal quasi-
isometric system, then pXη, T q has order η.

Proof. We only sketch the proof here. Details can be found in [Fur63], section
13. Let tpX 1

ξ, T q, ξ ď η1u be another quasi-isometric system terminating with
pXη, T q “ pX

1
η1 , T q. We want to show that η1 ě η. For this, we show that for

all ξ ă η, pX 1
ξ, T q is a factor of pXξ, T q using transfinite induction.

30Like a metric, but the distinct points can have distance 0.
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X 1
η1 . . . X 1

3 X 1
2 X 1

1

X

Xη . . . X3 X2 X1
π3

π2

π1

π1
3

π1
2

π1
1

We’ll only show the successor step:

Suppose we have pX 1
ξ, T q “ θppXξ, T q. Let πξ and π1

ξ denote the maps from X
to Xξ resp. X 1

ξ. Set

Y :“ tpπξpxq, π
1
ξ`1pxqq P Xξ ˆX

1
ξ`1 : x P Xu

Then

pXξ`1, T q pY, T q

pXξ, T q pX 1
ξ`1, T q

pX 1
ξ, T q

max. iso

θ iso

iso
π1

θ1

π

The diagram commutes, since all maps are the induced maps. By definition of
Y is clear that π and π1 separate points in Y . Thus Lemma 4.29 can be applied.
Since θ1 is an isometric extension, so is π. Then pY, T q is a factor of pXξ`1, T q
by the maximality of the isometric extension pXξ`1, T q Ñ pXξ, T q.

In particular, pX 1
ξ`1, T q is a factor of pXξ`1, T q.

Example 4.32 ([Fur63, p. 513]). Let X be the infinite torus

X :“ tpξ1, ξ2, . . .q : ξi P C, |ξi| “ 1u.

Let πn be the projection to the first n coordinates and Xn :“ πnpXq.

Let τ1pξ1, ξ2, . . . , ξn, . . .q “ peiαξ1, ξ1ξ2, . . . , ξn´1ξn, . . .q where α
π is irra-

tional. Let T “ xτ1y – Z.

We will show that pXn, T q is minimal for all n, and so pX,T q is minimal.
Furthermore pXn`1, T q is the maximal isometric extension of pXn, T q so
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pX,T q has order ω.

[Lecture 20, 2024-01-09]

Example 4.33. a Let X “ pS1qNb and consider pX,Zq where the action is
generated by

τ : px1, x2, x3, . . .q ÞÑ px1 ` α, x1 ` x2, x2 ` x3, . . .q

for some irrational α.

aThis is the same as Example 4.32, but with new notation.
bWe identify S1 and R

Z.

Remark: 4.33.39. Note that we can identify S1 with a subset of C (and

use multiplication) or with R
Z (and use addition). In the lecture both

notations were used. Here I’ll try to only use multiplicative notation.

We will be studying projections to the first d coordinates, i.e.

τd : px1, . . . , xdq ÞÑ peiαx1, x1x2, . . . , xd´1xdq.

τd is called the d-skew shift. For d “ 1 we get the circle rotation x ÞÑ
eiαx.

Fact 4.33.40. The circle rotation x ÞÑ eiαx is minimal. In fact, every
subgroup of S1 is either dense in S1 or it is of the form

Hm :“ tx P S1 : xm “ 0u

for some m P Z.a
acf. Sheet 12, Exercise 2 (A.12.2)

We will show that τd is minimal for all d, i.e. every orbit is dense. From this it
will follow that τ is minimal.

Let πn : X Ñ pS1qn be the projection to the first n coordinates.

Lemma 4.34. Let x, x1 P X with πnpxq “ πnpx
1q for some n. Then there

is a sequence of points xk with

πn´1pxkq “ πn´1pxq “ πn´1px
1q

for all k and
F pxk, xq

kÑ8
ÝÝÝÑ 0, F pxk, x

1q
kÑ8
ÝÝÝÑ 0,
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where F is as in Definition 4.23, i.e. F pa, bq “ infnPZ dpτ
na, τnbq, where d

is the metric on X, dppxiq, pyiqq “ maxn
1
2n |xn ´ yn|.

Proof of Lemma 4.34. Let

x “ pα0
1, α

0
2, . . . , α

0
n´1, αn, αn`1, αn`2, . . .q

x1 “ pα0
1, α

0
2, . . . , α

0
n´1, αn, α

1
n`1, α

1
n`2, . . .q.

We will choose xk of the form

pα0
1, α

0
2, . . . , α

0
n´1, αne

iβk , αn`1, αn`2, . . .q,

where βk is such that βk

π is irrational and |βk| ă 2´k. Fix a sequence’(b)). of
such βk. Then

dpxk, xq “ 2´n|eiβk ´ 1| ă 2´n´k kÑ8
ÝÝÝÑ 0.

In particular F pxk, xq Ñ 0.

We want to show that F pxk, x
1q ă 2´n´k. For u, u1 P X, u “ pξnqnPN,

u1 “ pξ1
nqnPN, let

u
u1 “ p

ξn
ξ1
n
qnPN (X is a group). We are interested in F pxk, x

1q “

infm dpτmxk, τ
mx1q, but it is easier to consider the distance between their quo-

tient and 1. Consider

wk :“
xk
x1
“ p1, . . . , 1

loomoon

n´1

, eiβk ,

not interesting
hkkkkkkkkkikkkkkkkkkj

αn`1

α1
n`1

,
αn`2

α1
n`2

, . . .q.

Claim 4.34.1. It is
F pxk, x

1q “ inf
m
dpσmpwkq, 1q,

where σpξ1, ξ2, . . .q “ pξ1, ξ1ξ2, ξ2ξ3, . . .q.

Subproof. We have

F pu, u1q “ inf
m
dpτmu, τmu1q

“ inf
m
dp
τmu

τmu1
, 1q

“ inf
m
dpσm

´ u

u1

¯

, 1q.

■
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Fix k. Let w˚ “ p1, . . . , 1, eiβk , 1, . . .q. By minimality of pX,T q for any ε ą 0,
there exists m P Z such that dpσmwk, w

˚q ă ε. Then

inf
m
dpσmwk, 1q ď inf

m
dpσmwk, w

˚q ` dpw˚, 1q

ď 2´n|eiβk ´ 1|

ă 2´n´k.

Definition 4.35. For every continuous f : S1 Ñ S1, the winding num-
ber rf s P Z is the unique integer such that f is homotopica to the map
x ÞÑ xn.

af : Y Ñ Z and g : Y Ñ Z are homotopic iff there is H : Y ˆ r0, 1s Ñ Z continuous
such that Hp¨, 0q “ f and Hp¨, 1q “ g.

Remark 4.35.41. Note that for

σ : pS1qd ÝÑ S1

px1, . . . , xdq ÞÝÑ xd

we have that T “ τd`1, where

T : pS1qd ˆ S1 ÝÑ pS1qd ˆ S1

py, xd`1q ÞÝÑ pτdpyq, σpyqxd`1q.

Theorem 4.36. For every d if τd
a is minimal, then τd`1 is minimal.

amore formally ppS1qd, xτdyq

Corollary 4.37. τd is minimal for all d.

Proof. τ1 is minimal (Fact 4.33.40). Apply Theorem 4.36.

Corollary 4.38. Since all the τd are minimal, τ is minimal.

Proof. We need to show that every orbit is dense. This follows from the defini-
tion of the product topology, since for a basic open set U “ U1ˆ. . .ˆUdˆpS

1q8

it suffices to analyze the first d coordinates.

Proof of Theorem 4.36. Let S :“ τd, T :“ τd`1 and Y :“ pS1qd. Consider

γ : S1 ÝÑ Y

x ÞÝÑ px, x, . . . , xq.
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Note that

(a) γ and S ˝ γ are homotopic via

H : S1 ˆ r0, 1s ÝÑ pS1qd

px, tq ÞÝÑ pxeitα, xt`1, xt`1, xt`1, . . . , xt`1q

(b) For all m P Zzt0u, we have rx ÞÑ pσpγpxqqq
m
s “ m ‰ 0, since σpγpxqq “

σppx, . . . , xqq “ x.

[Lecture 21, 2024-01-12]

Continuation of proof of Theorem 4.36. Suppose towards a contradiction that
Y ˆ S1 contains a proper minimal subflow Z. Consider the projection π : Y ˆ
S1 Ñ Y . By minimality of Y , we have πpZq “ Y . Note that for every θ P S1,
θ ¨ Z is minimal, so either θ ¨ Z “ Z or pθ ¨ Zq X Z “ H.31

Let H “ tθ P S1 : θ ¨ Z “ Zu. H is a closed subgroup of S1. Therefore either
H “ S1 (but in that case Z “ Y ˆ S1, so this cannot be the case), or there
exists m P Z such that H “ tξ P S1 : ξm “ 1u by Fact 4.33.40.

Note that if py, βq P Z then for t P S1, we have

py, β ¨ tq P Z ðñ tm “ 1.

Therefore for every y P Y , there are exactly m many ξ P S1 such that py, ξq P Z.

Specifically for all y there exists βpyq P S1 such that py, ξq P Z iff

ξ P tβpyq ¨ t1, β
pyq ¨ t2, . . . , β

pyq ¨ tmu,

where the ti P S
1 are such that tmi “ 1 for all i and i ‰ j ùñ ti ‰ tj , i.e. the

ti are the mth roots of unity.

Consider f : py, ξq ÞÑ py, ξmq. Since pβpyq ¨ tiq
m “ pβpyqqm we get a continuous

function φ : Y Ñ S1 such that

Z “ tpy, ξq P Y ˆ S1 : ξm “ φpyqu,

namely

φ : Y ÝÑ S1

y ÞÝÑ pβpyqqm

Z is isomorphic to m copies of the graph of that function, hence the graph is
closed, so the function is continuous.

Note that fpZq is homeomorphic to Y (for every y P Y , φpyq is the unique
element such that py, φpyqq P fpZq).

31actually p1, . . . , 1, θq ¨ Z, we identify S1 and t0ud ˆ S1 Ď Y ˆ S1.
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Claim 4.36.1. φpSpyqq “ φpyq ¨ pσpyqqm.

Subproof. We have T py, ξq “ pSpyq, σpyq ¨ξq (cf. Remark 4.35.41). Z is invariant
under T . So for py, ξq P Z we get T py, ξq “ pSpyq, σpyq ¨ ξq P Z. Thus

φpSpyqq “ pσpyq ¨ ξqm

“ pσpyqqm ¨ ξm

“ pσpyqqm ¨ φpyq.

■

Applying γ we obtain

rφ ˝ S ˝ γs “ rφ ˝ γs ` rx ÞÑ pσpγpxqqns.

S ˝ γ is homotopic to γ, so rφ ˝S ˝ γs “ rφ ˝ γs. Thus rx ÞÑ pσpγpxqqns “ 0, but
that is a contradiction to (b)  

Let Xn :“ pS1qn and X :“ pS1qN.

Theorem 4.39. pXn, τnq is the maximal isometric extension of pXn´1, τn´1q

in pX, τq.

Corollary 4.40. The order of pX, τq is ω.

[Lecture 22, 2024-01-16]

Proof of Theorem 4.39. We have the following situation:

X

Xn Y

Xn´1

πn

isometric
πn´1

π1

h

g, max. isom.

We want to show that this tower is normal, i.e. the isometric extensions are
maximal isometric extension. Let Y be a maximal isometric extension of Xn´1

in X and let g “ πn
n´1 ˝h. We need to show that h is an isomorphism. Towards

a contradiction assume that h is not an isomorphism. Then there are x, x1 P X
with π1pxq ‰ π1px1q but πnpxq “ πnpx

1q “ t P Xn. Then h
´1ptq Q π1pxq, π1px1q.

By a Lemma 4.34 there is a sequence pxkq in X with πn´1pxkq “ πn´1pxq “
πn´1px

1q for all k, such that F pxk, xq Ñ 0 and F pxk, x
1q Ñ 0.
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Let ρ be a metric witnessing that g is an isometric extension, i.e. ρ is defined on
Ť

xPXn´1
pg´1pxqq2

closed
Ď Y ˆ Y , continuous and ρpTa, Tbq “ ρpa, bq for gpaq “

gpbq.

For a, b P X such that
gpπ1paqq “ gpπ1pbqq

define
Rpa, bq :“ ρpπ1paq, π1pbqq.

• For any two out of x, x1, pxkq, R is defined.

• Rpx, xkq “ Rpτmx, τmxkq for all m.

• F px, xkq
kÑ8
ÝÝÝÑ 0, so there is a sequence pmkq such that

dpτmkx, τmkxkq
kÑ8
ÝÝÝÑ 0.

By continuity of ρ, we have that Rpx, xkq “ Rpτmkx, τmkxkq
kÑ8
ÝÝÝÑ 0, and

similarly Rpx1, xkq Ñ 0. Hence Rpx, x1q
kÑ8
ÝÝÝÑ 0 by the triangle inequality. But

x and x1 don’t depend on k, hence Rpx, x1q “ 0. It follows that π1pxq “ π1px1q

 .

Theorem 4.41 (Beleznay-Foreman). (1) For every η ă ω1, there is a dis-
tal minimal flow of order η.

(2) The set of distal minimal flows is Π1
1-complete.

(3) The order is a Π1
1-rank. In particular tdistal minimal flows of rank ă

αu is Borel for all α ă ω1.
This was al-
ready stated
as Theo-
rem 4.14 in
lecture 16
and should
not have two
numbers.

A few words on the proof: Let K “ S1 and I a countable linear order. Let KI

be the product of |I| many K, Kăi :“ Ktj:jăiu and πi : KI Ñ Kăithe projection.

Let KI :“
ś

iPI CpKăi,Kq.

Fix some pfiqiPI P KI. We build a flow acting on K from pfiqiPI .

For this we define

EI : KI ÝÑ CpKI ,KIq

pfiqiPI ÞÝÑ

ˆ

KI ÝÑ KI

x ÞÝÑ pfipπipxqq ¨ xiqiPI

˙

Example 4.42. Consider the following flow:

τ : K3 ÝÑ K3

px, y, zq ÞÝÑ px ¨ α, x2y, xy3zq.
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Using

f1 : K0 ÝÑ K
x ÞÝÑ α,

f2 : K1 ÝÑ K
x ÞÝÑ x2,

f3 : K2 ÝÑ K
px, yq ÞÝÑ xy3.

we can write this as τpx, y, zq “ px ¨ f1 ˝ π1px, y, zq, y ¨ f2π2px, y, zq, z ¨
f3π3px, y, zqq

Example 4.43. The skew shift can be written in this form as well. Con-
sider f1 : x ÞÑ α and fn : px0, . . . , xn´2q ÞÑ xn´2.

Theorem 4.44 (Beleznay Foreman). Whenever I “ η for some η ă ω1,
then

tf P KI : EIpfq is distal, minimal and of rank ηu

is comeager in KI . In particular such flows exist.

Proof (sketch).

• Distality: For all f P KI , the flow EIf is distal. This is the same as for
iterated skew shifts.

• Minimality: 32Let xEn : n ă ωy be an enumeration of a countable basis
for KI .

For all n let
Un :“ tf P KI : Dk P Z. fkp1q P Enu

where f “ EIf and 1 “ p1, 1, 1, . . .q.

Beleznay and Foreman showed that Un is open and dense for all n.

So if f P
Ş

n Un, then 1 is dense in x ÞÑ fpxq. Since the flow is distal, it
suffices to show that one orbit is dense (cf. Theorem 4.21).

• The order of the flow is η: 33Let f “ pfiqiPI P KI . Consider the flows we
get from pfiqiăj resp. pfiqiďj denoted by Xăj resp. Xďj . We aim to show
that Xďj Ñ Xăj is a maximal isometric extension for comeagerly many
f .

32Not relevant for the exam.
33Not relevant for the exam.
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The following open dense sets are used to make sure that all isometric
extensions are maximal and hence the order of the flow is η:

Fix a countable dense set pxnq in KI . For ε P Q let

Vj,m,n,ε :“ tf P KI :

if Πj`1pxnq “ Πj`1pxmq,

then there are km, kn, z such that

πjpxnq “ πjpzq,@k ą j ` 1. zk “ 1,

dpfkmpxmq, f
kmpzqq ă ε and

dpfknpxnq, f
knpzqq ă ε

u

Beleznay and Foreman show that this is open and dense.

[Lecture 23, 2024-01-19]

Notation 4.44.42. Let X be a Polish space and P a property of elements
of X, then we say that x0 P X is generic if

AP :“ tx P X : Ppxqu

is comeager and x0 P AP .

For example let X “ KI and P the property of being a distal minimal flow.

Abuse of Notation 4.44.43. We will usually omit P.

Let I be a linear order

Theorem 4.45 (Beleznay and Foreman). The set of distal minimal flows
is Π1

1-complete.

Proof (sketch). 34Consider WOpNq Ď LOpNq. We know that this is Π1
1-complete.

Let

S :“ tx P LOpNq :x has a least element,

for any t, there is t‘ 1, the successor of t.u

S is Borel.35

34Not relevant for the exam.
35cf. Sheet 12, Exercise 1 (A.12.1)
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We will construct a reduction

M : S ÝÑ CpKN,KqN.

We want that α PWOpNq ðñ Mpαq codes a distal minimal flow of rank α.

1. For any α P S, Mpαq is a code for a flow which is coded by a generic pfiqiPI .
Specifically we will take a flow corresponding to some pfiqiPI which is in the
intersection of all Un, Vj,m,n, pq

(cf. proof of Theorem 4.44).

2. If α P WOpNq, then additionally pfiqiPI will code a distal minimal flow of
ordertype α.

One can get a Borel map S Q α ÞÑ tTα
n : n P Nu, such that Tα

n is closed, Tα
n ‰ H,

diampTα
n q

nÑ8
ÝÝÝÑ 0, Tα

n`1 Ď Tα
n , T

α
n Ď Wα

n , where W
α
n is an enumeration of

Uα
m,V α

j,m,n, pq
. Then pfiqiPI P

Ş

n T
α
n .

Lemma 4.46. Let tpXξ, T q : ξ ď ηu be a normal quasi-isometric system
and tpYi, T q : i P Iu such that

(i) I P S and additionally I has a largest element.

(ii) Y0 is the trivial flow and Y8 “ Xη, where 0 and8 denote the minimal
resp. maximal element of I.

(iii) @i ă j

pXη, T q Yj

Yi

πj

πi
πj
i

(iv) If i P I is a limit (i.e. there does not exist an immediate predecessor),
then pYi, T q is the inverse limit of tpYj , T q : j ă iu with respect to
the factor maps.

(v) pYi‘1, T q is a maximal isometric extension of pYi, T q in pXη, T q.

Then I is well-ordered with otppY q “ η ` 1.

Theorem 4.47 (Beleznay Foreman). The order is a Π1
1-rank.

Proof (sketch). 36 For the proof one shows that ď˚ and ă˚ are Π1
1, where

(1) p1 ď
˚ p2 iff p1 codes a distal minimal flow and if p2 also codes a distal

minimal flow, then orderpp1q ď orderpp2q.

36Not relevant for the exam.
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(2) p1 ă
˚ p2 iff p1 codes a distal minimal flow and if p2 also codes a distal

minimal flow, then orderpp1q ă orderpp2q.

One uses that pYi`1, T q is a maximal isometric extension of pYi, T q ind pX,T q
iff for all x1, x2 from a fixed countable dense set in X, for all i with πi‘1px1q “
πi‘1px2q, there is a sequence pzkq such that πipzkq “ πipx1q, F pzk, x1q Ñ 0,
F pzk, x2q Ñ 0.

Proposition 4.48. The order of a minimal distal flow on a separable,
metric space is countable.

Proof. Let pX,Zq be such a flow, i.e. X is separable, metric and compact.

Produce a normal quasi-isometric system

tpXα,Zq : α ď βu

with pXβ ,Zq “ pX,Zq. We need to show that β ă ω1.

Let πα : pX,Zq Ñ pXα,Zq. Fix x0 P X. For every α consider π´1
α pπαpx0qq “

Fα

closed
Ď X.

• For α1 ă α2 ď β we have that Fα1
Ě Fα2

.

• For limits γ ď β, we have that Fγ “
Ş

αăγ Fα, since pXγ ,Zq is the inverse
limit of tpXα,Zq : α ă γu.

• For all α it is Fα`1 Ĺ Fα, because π
α`1
α : pXα`1,Zq Ñ pXα,Zq is not a

bijection and all the fibers are isomorphic.

So pFαqαďβ is a strictly decreasing chain of closed subsets. But X is second
countable, so β is countable: Let tUnu “ B be a countable basis and for α let
Uα P B be such that Uα X Fα “ H and Uα X Fα`1 ‰ H. Then α ÞÑ Uα is an
injection.

[Lecture 24, 2024-01-23]

4.4 Applications to Combinatorics

Definition 4.49. An ultrafilter on N (or any other set) is a family U Ď
PpNq such that

(1) X P U ^X Ď Y Ď N ùñ Y P U .

(2) X,Y P U ùñ X X Y P U .

(3) H R U , N P U .

(4) For all X Ď N, we have X P U _ NzX P U .

4 ABSTRACT TOPOLOGICAL DYNAMICS 70



Remark 4.49.44. • If X Y Y P U then X P U or Y P U : Consider
ppNzXq X pNzY q “ NzpX Y Y q.

• Every filter can be extended to an ultrafilter. (Zorn’s lemma)

Definition 4.50. An ultrafilter is called principal or trivial iff it is of
the form

n̂ “ tX Ď N : n P Xu.

Notation 4.50.45. Let φp¨q be a formula, where the argument is a natural
number. Let U be an ultrafilter. We write

pUnq φpnq

for tn P N : φpnqu P U . We say that φpnq holds for U-almost all n.

Observe. Let φp¨q, ψp¨q be formulas.

(1) pUnq pφpnq ^ ψpmqq ðñ pUnqφpnq ^ pUnqψpnq.

(2) pUnq pφpnq _ ψpmqq ðñ pUnq φpnq _ pUnq ψpnq.

(3) pUnq ␣φpnq ðñ ␣pUnq φpnq.

Lemma 4.51. Let X be a compact Hausdorff space. Let U be an ultra-
filter. Then for every sequence pxnq in X, there is a unique x P X, such
that

pUnq pxn P Gq

for every neighbourhooda G of x.

aG Ď X is a neighbourhood iff x P intG.

Notation 4.51.46. In this case we write x “ U-lim
n

xn.

Proof of Lemma 4.51. 37 For metric spaces: Whenever we write X “ Y Y Z
we have pUnqxn P Y or pUnqxn P Z.

So we can repeatedly chop the space in two pieces, one of them contains U-
almost all xn, Then we restrict to this piece and continue.

For this to work, we need a finite collection Pn of closed sets for every n, such
that

Ť

Pn “ X, C P Pn`1 ùñ DC Ď D P Pn and C1 Ě C2 Ě . . ., Ci P Pi

ùñ |
Ş

i Ci| “ 1. It is clear that we can do this for metric spaces.

37The proof from the lecture only works for metric spaces.
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See Theorem 4.53 for the full proof. See Fact A.18.84 and Fact A.18.83 for a
more general statement.

Let βN be the Čech-Stone compactification of N, i.e. the set of all ultrafilters
on N with the topology given by open sets VA “ tp P βN : A P P u for A Ď N.

This is a compact Hausdorff space.38 move factsWe can turn it into a compact semigroup:
Consider ` : N ˆ N Ñ N. This gives an operation on principal ultrafilters (we
identify n P N with the corresponding principal filter). We want to extend this
to all of βN. Fix the first argument to get a function N Ñ N, n ÞÑ k ` n.
For U P βN consider U-lim

n
pk ` nq. So for a fixed k P N we get k ` ¨ : βN Ñ

βN, i.e. ` : N ˆ βN Ñ βN. Fixing the second coordinate to be V P βN, we
get a function `V : N Ñ βN. For U P βN consider U-lim

n
n ` V. This gives

` : βNˆ βNÑ βN.

U ` V “ tX Ď N : tm : tn : m` n P Xu P Vu P Uu.

This is not commutative, but associative and a ÞÑ a` b is continuous for a fixed
b, i.e. it is a left compact topological semigroup.

Let X be a compact Hausdorff space and let T : X Ñ X be continuous.39

For any U P βN, we define TU by TU pxq :“ U-lim
n

Tnpxq for x P X.

For fixed x, the map U ÞÑ TU pxq is continuous.

(More generally, for every f : NÑ X the extension f̃ : βNÑ X is continuous).

Note that for fixed U , the map x ÞÑ TU pxq is not necessarily continuous.

Definition 4.52. Let X be a compact Hausdorff space and T : X Ñ X
continuous. A point x P X is recurrent, iff for every neighbourhood G of
x, infinitely many n satisfy Tnpxq P G.

A point x P X is uniformly recurrent, if for every neighbourhood G of
x, there exists M P N, such that

@n. Dk ăM. Tn`kpxq P G.

Fact 4.52.47. Let U ,V P βN and T : X Ñ X continuous for a compact
Hausdorff space X. Then TU pTVpxqq “ TU`Vpxq.

38cf. Fact 4.52.49, Fact 4.52.50
39Note that this may not be a homeomorphism, i.e. we only get a N-action but not a

Z-action.

4 ABSTRACT TOPOLOGICAL DYNAMICS 72



Proof.

TU`Vpxq “ pU ` Vq-lim
k

T kpxq

“ U-lim
m

V-lim
n

Tm`npxq

Tm continuous
“ U-lim

m
TmpV-lim

n
Tnpxqq

“ TU pTVpxqq.

Homework:
Check the
details that
were omitted
during the
lecture.

[Lecture 25, 2024-01-26]

Let βN denote the set of ultrafilters on N.

Fact 4.52.48. • This is a topological space, where a basis consist of
sets VA :“ tp P βN : A P pu, A Ď N.

(For A,B Ď N we have VAXB “ VA X VB and βN “ VN.)

• Note also that for A,B Ď N, VAYB “ VA Y VB , VAc “ βNzVA.

Observe. Note that the basis is clopen. In particular any closed set can be
written as an intersection of sets of the form VA:

If F is closed, then U “ βNzF “
Ť

iPI VAi , so F “
Ş

iPI VNzAi
.

Fact 4.52.49. βN is Hausdorff.

Proof. Let U ‰ V P βN. Then there is some A P UzV, so Ac P V, so U P VA and
V P V c

A.

Fact 4.52.50. βN is compact.

Proof. Let tFiuiPI be non-empty and closed such that for any i1, . . . ., ik P I,

k P N,
Şk

j“1 Fij ‰ H.

We need to show that
Ş

iPI Fi ‰ H. Replacing each Fi by VAi
j
such that

Fi “
Ş

jPJi
VAi

j
(cf. ) we may assume that Fi is of the form VAi

. We get

tFi “ VAi
: i P Iu with the finite intersection property. Hence tAi : i P Iu :“F0

has the finite intersection property.

Then F “ tA Ď N : A Ě Ai1 X . . .XAik , k P N, i1, . . . , ik P Iu is a filter.

Let U be an ultrafilter extending F . Then U P
Ş

iPI VAi
“

Ş

iPI Fi.
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Fact 4.52.51. Consider N as a subspace of βN via N ãÑ βN, n ÞÑ n̂ :“
tA Ď N : n P Au. Then

• tn̂u is open in βN for all n P N.

• N Ď βN is dense.

Theorem 4.53. For every compact Hausdorff space X, a sequence pxnq in
X, and U P βN, we have that U-lim

n
xn “ x exists and is unique, i.e. for all

x P G
open
Ď X we have tn P N : xn P Gu P U .

Proof. Towards a contradiction assume that there is no such x.

For every x take x P Gx

open
Ď X such that tn P N : xn P Gxu R U . So tGxuxPX

is an open cover of X. Since X is compact, there exists a finite subcover
Gx1 , . . . , Gxm .

But then

N “ tn P N : xn P
m
ď

i“1

Gxi
u

“

m
ď

i“1

RU
hkkkkkkkkkkikkkkkkkkkkj

tn P N : xn P Gxi
u

looooooooooooomooooooooooooon

RU

,

since B1 Y . . .YBm P U ðñ Di ă m. Bi P U .

It is clear that U-lim
n

xn is unique, since X is Hausdorff.

Theorem 4.54. Let X be a compact Hausdorff space. For any f : NÑ X
there is a unique continuous extension f̃ : βNÑ X.

Proof. Let

f̃ : βN ÝÑ X

U ÞÝÑ U-lim
n

fpnq.

Exercise:
Check that
f̃ is continu-
ous.

f̃ is uniquely determined, since N Ď βN is dense.

Trivial Nonsense: 4.54.52. β is a functor from the category of topolog-
ical spaces to the category of compact Hausdorff spaces. It is left adjoint
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to the inclusion functor.

βN is equipped with ` which extends ` : Nˆ NÑ N,

U ` V “ tA Ď N : pUmq ppUnqtm` n P Auqu.

This is associative, but not commutative.

Fact 4.54.53. ` : βNˆ βNÑ βN is left continuous, i.e. for V fixed, U ÞÑ
U ` V is continuous.

Proof. Fix A and consider VA. We need to show that the inverse image of VA
is open.

We have

U ` V P VA ðñ A P U ` V
ðñ pUmqpVnqtm` n P Au

ðñ tm P N : pVnqm` n P Au P U
ðñ U P VtmPN:pVnqm`nPAu.

Corollary 4.55. pβN,`q is a compact semigroup, i.e. it is compact,
Hausdorff, associative and left-continuous.

So we can apply the Ellis-Numakura Lemma (4.19) to obtain

Corollary 4.56. There is U P βN such that U ` U “ U .

Observe. Principal ultrafilters ‰ 0̂ are not idempotent. We can restrict to
βNzN to get an idempotent element that is not principal.

Theorem 4.57 (Hindman). If N is partitioned into finitely many sets, then
there is is an infinite subset H Ď N such that all finite sums of distinct
elements of H belong to the same set of the partition.

Proof of Theorem 4.57 (Galvin,Glazer). Let U P βNzN be such that U`U “ U .
Let P be the piece of the partition that is in U . So pUnqn P P . Let us define a
sequence x1, x2, . . .

• U is idempotent, so pUnqpUkqn` k P P . We get

pUnq pn P P ^ pUkqn` k P P q

. Pick x1 that satisfies this, i.e. x1 P P and pUkqx1 ` k P P .
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• U is idempotent, so

pUnqrn P P ^ pUkqn` k P P ^ x1 ` n P P ^ pUkqx1 ` n` k P P s

Take x2 ą x1 that satisfies this.

• Suppose we have chosen xxi : i ă ny. Since U is idempotent, we have

pUnq n P P

^ pUkqn` k P P

^ @I Ď n. p
ÿ

iPI

xi ` n P P q

^ pUkq

˜

@I Ď n. p
ÿ

iPI

xi ` n` kq P P

¸

.

Chose xn ą xn´1 that satisfies this.

Set H :“ txi : i ă ωu.

Next time we’ll see another proof of this theorem.
[Lecture 26, 2024-01-30]

Let T : X Ñ X be a continuous map. This gives NñX.

Definition 4.58. A point x P X is called uniformly recurrent iff for
each neighbourhood G of x, there is M P N`, such that

@n P N. Dk ă m. Tn`kpxq P G.

Definition 4.59. A pair x, y P X is proximala iff for all neighbourhoods
G of the diagonalb infinitely many n satisfy pTnpxq, Tnpyqq P G.

asee also Definition 4.1, where we defined proximal for metric spaces
brecall that the diagonal is defined to be ∆ :“ tpx, xq : x P Xu

Theorem 4.60. Let X be a compact Hausdorff space and T : X Ñ X
continuous. Consider pX,T q.Then for every x P X there is a uniformly
recurrent y P X such that y is proximal to x.

We do a second proof of Theorem 4.57:

Proof of Theorem 4.57 (Furstenberg). A partition of N into k-many pieces can
be viewed as a function f : NÑ k.

Let X “ kN be the set of all such functions. Equip X with the product topology.
Then X is compact and Hausdorff.
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Let T : X Ñ X be the shift given by

T : kN ÝÑ kN

py : NÑ kq ÞÝÑ

ˆ

N ÝÑ k
n ÞÝÑ ypn` 1q,

˙

i.e. T pyqpnq “ ypn` 1q.

Let x be the given partition. We want to find an infinite set H for x as in the
theorem. Let y be uniformly recurrent and proximal to x.

• Since x and y are proximal, we get that for everyN P N, there are infinitely
many n such that Tnpxq|N “ Tnpyq|N .40

• Consider the neighbourhood

Gn :“ tz P X : z|n “ y|nu

of y. By the uniform recurrence of y, we get that41

@n. DN. @r. pyprq, ypr ` 1q, . . . , ypr `N ´ 1q

contains pyp0q, yp1q, . . . , ypnqq as a subsequence.

Consider yp0q. We will prove that this color works and construct a corresponding
H.

x h0 h1 h2 h3

h0 ` h1 ` h2 ` h3
h1 ` h2 ` h3

yph1 ` h2q

h0 ` h2 ` h3

yph0 ` h2q

h2 ` h3

yph2q

h0 ` h1 ` h3

yph0 ` h1q

h1 ` h3

yph1q

h0 ` h3

yph0q

h0 ` h1 ` h2
h1 ` h2

yph1q

h0 ` h2

yph0q

h0 ` h1

yp0q yp0q yph0q yp0q yph0 ` h1q yp0q yph0 ` h1 ` h2q

• Let G0 :“ ryp0qs and let N0 be such that

@r. pyprq, . . . , ypr `N0 ´ 1qq contains yp0q.

By proximality, there exist infinitely many r such that pyprq, . . . , pypr `
N0 ´ 1qq “ pxprq, . . . , xpr `N0 ´ 1qq. Fix h0 P N such that xph0q “ yp0q.

• Let Gn0 “ rpyp0q, . . . , yph0qs. Choose N1.

For all r, pyprq, . . . , ypr `N ´ 1qq contains p yp0q
loomoon

“C

, . . . , yph0q
loomoon

“C

q.

Pick r ą h0 such that pxprq, . . . , xpr ` N ´ 1qq contains pyp0q, . . . yph0qq.
Let pxpr` sq, . . . , xpr` s` h0qq “ pyp0q, . . . , yph0qq. Then set h1 “ r` s.

Then xph0q “ c, xph1q “ yp0q “ c and xph0 ` h1q “ yph0q “ c.

40Consider GN “ tpa, bq P X2 : a|N “ b|N u This is a neighbourhood of the diagonal.
41Note that here we might need to choose a bigger N than the M in Definition 4.58, but

2M suffices.
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• Let Gh0`h1 “ ryp0q, . . . , yph0 ` h1qs. Let r ą h0 ` h1. Choose N2 large
enough such that pyp0q, . . . , yph0 ` h1qq is contained in pxprq, . . . , xpr `
N ´ 1qq. Let pyp0q, . . . , yph0 ` h1qq “ pxpr ` sq, . . . , xpr ` s`N ´ 1qq.

• Repeat this: Inductively choose hi such that xps ` hiq “ yps ` hiq “ c
for all sums s of subsets of th0, . . . , hi´1u. To do this, find Ni such that
every Ni consecutive terms of y contain pyp0q, . . . , yp

ř

jăi hjqq. Then find
hi ą hi´1 such that pxphiq, . . . , xp

ř

jăi hjqq “ pyp0q, . . . , yp
ř

jăi hjqq.

In order to prove Theorem 4.60, we need to rephrase the problem in terms of
βN:

Theorem 4.61. Let X be a compact Hausdorff space. Let T : X Ñ X be
continuous.

(1) x P X is recurrent iff TU pxq “ x for some U P βNzN.

(2) x P X is uniformly recurrent iff for every V P βN, there is U P βN with
TU pTVpxqq “ x.

(3) x, y P X are proximal iff there is U P βN such that TU pxq “ TU pyq.

Proof of Theorem 4.61 (sketch). We only prove (2) here, as it is the most inter-
esting point. other parts

will be in the
official notesSubproof ((2), ùñ ). Suppose that x is uniformly recurrent. Take some V P

βN. Let G0 be a neighbourhood of x. Then x P G Ď G0, where G is a closed
neighbourhood, i.e. X P intG.

Let M be such that
@n. Dk ăM. Tn`kpxq P G.

So there is a k ăM such that

pVnqTn`kpxq P G.

Hence

pVnqTnpxq P T´kp

closed
hkkikkj

G q
loooooomoooooon

closed

.

Therefore V-lim
n

Tnpxq P T´kpGq. So T kpTVpxqq P G Ď G0.

We have shown that for every open neighbourhood G of x, the set YG “ tk P
N : T kpTVpxqq P Gu ‰ H. The sets tYG : G open neighbourhood of Gu form a
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filter basis,42 since YG1 X YG2 “ YG1XG2 . Let U be an ultrafilter containing all
the YG.

Then
pUkqRkpTVqpxqq P G

i.e. TU pTVpxqq P G.

Since we get this for every neighbourhood, it follows that TU pTVpxqq “ x. ■

[Lecture 27, 2024-02-02]

Continuation of proof of Theorem 4.61. Subproof ((2), ðù , sketch). Assume that
x is not uniformly recurrent. Then there is a neighbourhood G Q x such that
for all M P N

YM “ tn P N : @k ăM. Tn`kpxq R Gu ‰ H.

Note that Y1 Ě Y2 Ě Y3 Ě . . . Take V P βN containing all Yn.

We aim to show that there is no U P βN such that TU pTVpxqq “ x. Towards a
contradiction suppose that such U exists.

For every k ` 1 we have Yk`1 P V. In particular

tn P N : Tn`kpxq R Gu Ě Yk`1,

so
pVnqTn`kpxq R G,

i.e.
pVnqTnpxq R T´kpGq

looomooon

open

.

Thus
V-lim

n
Tnpxq

loooooomoooooon

TVpxq

R T´kpGq.

We get that
@k. T kpTVpxqq R G.

It follows that @U P βN. TU pTVpxqq R G.

■

Take X “ βN, S : βNÑ βN, SpUq “ 1̂` U . Then

SVpUq “ V-lim
n

SnpUq “ V-lim
n
pn̂` Uq “ V-lim

n
n̂` U “ V ` U .

42The sets and their supersets form a filter.
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Corollary 4.62. U is recurrent iff

DV P βNzN. SVpUq “ U .

U is uniformly recurrent iff

@V. DW. W ` V ` U “ U .

U1 and U2 are proximal iff DV. V ` U1 “ V ` U2.

Definition 4.63. We say that I Ď βN is a left ideal , if

@U P I. @V P βN. V ` U P I.

Theorem 4.64. (1) U is uniformly recurrent in βN iff U belongs to a
minimala (closed) left ideal in βN.

(2) U is an idempotent in βN iff U belong to a minimal closed subsemigroup
of βN.

awrt. Ď

Proof. (1) Note that any U P βN yields a left ideal βN ` U . It is closed, since
it is the image of βN under the continuous maps V ÞÑ V ` U and βN is
compact. U belongs to a minimal left ideal iff βN ` U is minimal, since
every ideal containing U contains βN`U . Note that βN`V`U Ď βN`U
and if I Ĺ βN` U , we have V0 “ V ` U P I and βN` V ` U Ď βN` U . So
U belongs to a minimal left ideal iff

@V P βN. βN` V ` U “ βN` U .

This is the case iff
@V. DW. W ` V ` U “ U .
loooooooooooooooomoooooooooooooooon

V uniformly recurrent

(For one direction take W such that W ` V ` U “ 0̂ ` U . For the other
direction note that for every V0, V0`U can be written as V0`W`pV`Uq.
Where we take W such that W ` V ` U “ U .

(2) This is very similar to the proof of the Ellis-Numakura Lemma (4.19).

If U is idempotent, then tUu is a semigroup. Let C be a minimal closed
subsemigroup of βN. Then C`U is a closed subsemigroup. By minimality,
we get C “ C ` U .

Let D “ tV P C. V ` U “ Uu. We have D ‰ H. D is a closed semigroup,
so D “ C be minimality. Hence U ` U “ U .
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Corollary 4.65. Idempotent and uniformly recurrent elements exist.

Proof. Use Theorem 4.64 and Zorn’s lemma.

Theorem 4.66. (1) ùñ (2) ùñ (3) where

(1) U is uniformly recurrent and proximal to 0̂.

(2) U is an idempotent.

(3) U is recurrent and proximal to 0̂.

Proof. (1) ùñ (2): Let U be uniformly recurrent and proximal to 0̂. Take V
such that V ` U “ V ` 0̂ “ V.

Since U is uniformly recurrent, there exists W such that W ` V ` U “ U ,
i.e. W ` V “ U . Then U ` U “W ` V ` U “ U .

(2) ùñ (3): Let U be an idempotent. Then V ` U “ V (proximal to 0) and
V ` U “ U (recurrent) are satisfied for V :“ U .

Corollary 4.67. U is uniformly recurrent and proximal to 0 iff U is an
idempotent and belongs to some minimal left ideal of βN.

Finally:

Proof of Theorem 4.60. Let T : X Ñ X and x P X. We want to find y P X such
that y is uniformly recurrent and proximal to x.

We first prove a version for ultrafilters and then transfer it to X.

There exists a uniformly recurrent V P βN. So for anyW,W`V is also uniformly
recurrent: Take V0. We need to find X such that X ` V0 `W ` V “ W ` V.
By uniform recurrence of V we find X 1 such that X 1`pV0`Wq`V “ V. Then
X “ W ` X 1 works. So all elements of βN ` V are uniformly recurrent. It
is a closed ideal and hence a closed semigroup. So βN ` V contains a minimal
closed semigroup. In particular, there exists an idempotent U P βN` V.

U is idempotent and uniformly recurrent hence it is proximal to 0.

Now let us consider X. Take y “ TU pxq.

Claim 4.60.1. y uniformly recurrent.
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Subproof. Recall that TV1`V2 “ TV1 ˝ TV2 .

Since U is uniformly recurrent, @V. DW. W ` V ` U “ U , i.e. TW`V`U pxq “
TWpTVpyqq “ TU pxq “ y. ■

Claim 4.60.2. y is proximal to x.

Subproof. U is proximal to 0. So DV. V`U “ V`0̂ “ V, i.e. TVpyq “ TV`U pxq “
TVpxq. Thus x and y are proximal. ■
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A Tutorial and Exercises
[Tutorial 01, 2023-10-17]

Fact A.0.54. A countable product of separable spaces pXnqnPN is separa-
ble.

Proof. Choose a countable dense subset Dn Ď Xn Fix some point pa1, a2, . . .q P
ś

nXn and consider
Ť

iPN
ś

nďiDn ˆ
ś

nąitanu.

Fact A.0.55. • Let X be a topological space. Then X 2nd countable
ùñ X separable.

• If X is a metric space and separable, then X is 2nd countable.

Proof. For the first point, choose some point from every basic open set.

For the second point consider balls of rational radius around the points of a
countable dense subset.

Definition A.1. A topological space is Lindelöf iff every open cover has
a countable subcover.

Fact A.1.56. Let X be a metric space. If X is Lindelöf, then it is 2nd

countable.

Proof. For all q P Q consider the cover Bqpxq, x P X and choose a countable
subcover. The union of these subcovers is a countable base.

Fact A.1.57. Let X be a topological space. If X is 2nd countable, then it
is Lindelöff.

Proof. Let A0, A1, . . . be a countable base.

Let tUiuiPI be a cover. Consider J :“ tj : Di P I. Aj P Uiu. For every j P J
choose a Ui such that Aj Ď Uj . Let I 1 Ď I be the subset of chosen indices.
Then tUiuiPI1 is a countable subcover.

Remark A.1.58. For metric spaces the notions of being 2nd countable,
separable and Lindelöf coincide.

In arbitrary topological spaces, Lindelöf is the weakest of these notions.
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Definition: A.1.59. A metric space X is totally bounded iff for ev-
ery ε ą 0 there exists a finite set of points x1, . . . , xn such that X “
Ťn

i“1Bεpxiq.

A.1 Sheet 1
[Tutorial 02, 2023-10-24]

A.1.1 Exercise 1

Let pX, dq be a metric space andH ‰ A Ď X. Let dpx,Aq :“ infpdpx, aq : a P Au.

• dp´, Aq is uniformly continuous:

Clearly |dpx,Aq ´ dpy,Aq| ď dpx, yq. Add details

• dpx,Aq “ 0 ðñ x P A.

dpx,Aq “ 0 iff there is a sequence in A converging towards x iff x P A.

A.1.2 Exercise 2

Let X be a discrete space. For f, g P XN define

dpf, gq :“

#

p1`mintn : fpnq ‰ gpnquq´1 : f ‰ g,

0 : f “ g.

(a) d is an ultrametric, i.e. dpf, gq ď maxtdpf, hq, dpg, hqu for all f, g, h P XN

:

Let f, g, h P XN.

We need to show that dpf, gq ď maxpdpf, hq, dpg, hqq.

If f “ g this is trivial. Otherwise let n be minimal such that fpnq ‰ gpnq.
Then hpnq ‰ fpnq or hpnq ‰ gpnq must be the case. W.l.o.g. hpnq ‰ fpnq.
Then dpf, gq “ 1

1`n ď dpf, hq.

(b) d induces the product topology on XN:

It suffices to show that the ε-balls with respect to d are exactly the basic
open set of the product topology, i.e. the sets of the form

tx1u ˆ . . .ˆ txnu ˆX
N

for some n P N, x1, . . . , xn P X.

Let ε ą 0. Let n be minimal such that 1
1`n ě ε. Then BεppxiqiPNq “

tx1u ˆ txnu ˆXN. Since N Q n ÞÑ 1
1`n is injective, every basic open set of

the product topology can be written in this way.
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(c) d is complete:

Let pfnqnPN be a Cauchy sequence with respect to d. For n P N take Nn P N
such that dpfi, fjq ă

1
1`n . Clearly fipnq “ fjpnq for all n ą Nn.

Define f P XN by fpnq :“ fNn
pnq. Then pfnqnPN converges to f , since for

all n ą Nn fn

(d) If X is countable, then XN with the product topology is a Polish space:

(We assume that X is non-empty, as otherwise the claim is wrong)

We need to show that there exists a countable dense subset. To this end,
pick some x0 P X and consider the set D :“

Ť

nPNpX
nˆtx0u

Nq. Since X is
countable, so isD. Take some panqnPN P X

N and consider B :“ BεppanqnPNq.
Let m be such that 1

1`m ă ε. Then pbnqnPN P B X D, where bn :“ an for
n ď m and bn :“ x0 otherwise. Hence D is dense.

A.1.3 Exercise 3

Consider N as a discrete space and NN with the product topology. Let

S8 “ tf : NÑ N bijectiveu Ď NN.

(a) S8 is a Polish space:

From Sheet 1, Exercise 2 (A.1.2) we know that NN is Polish. Hence it suffices
to show that S8 is Gδ with respect to NN.

Consider the sets I :“
Ş

pi,jqPN2,iăjtf P NN|fpiq ‰ fpjqu and S :“
Ş

nPNtf P

NN|n P im fu.

We have that tf P NN|fpiq ‰ fpjqu “
Ť

nPN Ni´1ˆtnuˆNi´j´1ˆpNztnuqˆ
NN is open. Hence I is Gδ.

Furthermore tf P NN|n P im fu “
Ť

kPN NkˆtnuˆNNj is open, thus S is Gδ

as well. In particular SXG is Gδ. Since I is the subset of injective functions
and S is the subset of surjective functions, we have that S8 “ I X S.

(b) S8 is not locally compact:

Consider the point x “ piqiPN P S8. Let x P B be open. We need to show
that there is no closed compact set C Ě B W.l.o.g. let B “ pt0u ˆ . . . ˆ
tnu ˆ NNq X S8 for some n P N. Let C Ě B be some closed set. Consider
the open covering

tS8zBu Y tBj |j ą nu.

where
Bj :“ pt0u ˆ . . .ˆ tnu ˆ tju ˆ NNq X S8.

Clearly there cannot exist a finite subcover as B is the disjoint union of the
Bj .
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A.1.4 Exercise 4

Fact A.1.60. Let X be a compact Hausdorff space. Then the following
are equivalent:

(i) X is Polish,

(ii) X is metrisable,

(iii) X is second countable.

Proof. (i) ùñ (ii) clear

(i) ùñ (iii) clear

(ii) ùñ (i) Consider the cover tBεpxq|x P Xu for every ε P Q and chose a finite
subcover. Then the midpoints of the balls from the cover form a countable dense
subset.

The metric is complete as X is compact. (For metric spaces: compact ðñ

seq. compact ðñ complete and totally bounded)

(iii) ùñ (ii) Use Urysohn’s metrisation theorem and the fact that compact
Hausdorff spaces are normal

Let X be compact Polish43 and Y Polish. Let CpX,Y q be the set of continuous
functionsX Ñ Y . Consider the uniform metric dupf, gq :“ supxPX |dpfpxq, gpxqq|.
Clearly du is a metric.

Claim 1. du is complete.

Subproof. Let pfnq be a Cauchy sequence in CpX,Y q. A Y is complete, there
exists a pointwise limit f .

fn converges uniformly to f :

dpfnpxq, fpxqq ď

pfnq is Cauchy
hkkkkkkkkikkkkkkkkj

dpfnpxq, fmpxqq` dpfmpxq, fpxqq
loooooooomoooooooon

small for appropriate m

.

f is continuous by the uniform convergence theorem. ■

Claim 2. There exists a countable dense subset.

Subproof. Fix a metric dX on X defining its topology. Let

Cm,n :“ tf P CpX,Y q : @x, y P X.
ˆ

dXpx, yq ă
1

m` 1
ùñ dpfpxq, fpyqq ă

1

n` 1

˙

u.

43compact metrisable ùñ compact Polish
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Choose Xm Ď X finite with X Ď
Ť

xPXm
B 1

m`1
pxq. Let Dm,n Ď Cm,n be

countable, such that for every f P Cm,n and every η ą 0, there is g P Dm,n with
dpfpyq, gpyqq ă η

3 for each y P Xm. Then
Ť

m,nDm,n is dense in CpX,Y q: Indeed
if f P CpX,Y q and η ą 0, we find n ą 3

η and m such that f P Cm,n, since f is

uniformly continuous. Let g P Dm,n be such that @y P Xm. dpfpyq, gpyqq ă
1

n`1 .
We have dupf, gq ď η, since for every x P X, we find y P Xm with dXpx, yq ă

1
m`1 , hence

dY pfpxq, gpxqq ď dY pfpxq, fpyqq ` dY pfpyq, gpyqq ` dY pgpyq, gpxqq

ď
1

n` 1
`

1

n` 1
`

1

n` 1
ď η.

■

A.2 Sheet 2
[Tutorial 03, 2023-10-31]

Remark A.1.61. Fσ stands for fermé sum denumerable.

A.2.1 Exercise 1

Let X be a Polish space. Then there exists an injection f : X Ñ 2ω such that
for each n ă ω, the set f´1ptpynq P 2ω : yn “ 1uq is open. Moreover if V Ď 2ω

is closed, then f´1pV q is Gδ.

Let pUiqiăω be a countable base of X. Define

f : X ÝÑ 2ω

x ÞÝÑ pxiqiăω

where xi “ 1 iff x P Ui and xi “ 0 otherwise. Then f´1pty “ pynq P 2ω|yn “
1uq “ Un is open. We have that f is injective since X is T1.

Let f : X ãÑ 2ω be such that f´1pty “ pynq P 2
ω|yn “ 1uq.

Let V Ď 2ω be closed. Then 2ωzV is open, i.e. has the form
Ť

iPIpp
ś

jănj
Xi,jqˆ

2ωq for some Xi,j Ď 2. As 2ω is second countable, we may assume I to be
countable.

Then V “
Ş

iPI

´

2ωzpp
ś

iănj
Xi,jq ˆ 2ωq

¯

. Since f is injective, we have f´1p
Ş

aPA aq “
Ş

aPA f
´1paq. Thus it suffices to show that f´1p2ωzpp

ś

iănXiq ˆ 2ωqq is Gδ, as
a countable intersection of Gδ-sets is Gδ.

We have that Uk :“ f´1pty “ pyiq P 2ω : yk “ 1uq is open. Since f is injective
f´1pty “ pyiq P 2ω : yk “ 0uq “ XzUk is closed, in particular it is Gδ. Let
x “ px1, . . . , xnq P 2

nzp
ś

iănXiq. Then f
´1ptxuˆ2ωq “

Ş

iăn

Ş

U 1
n is Gδ, were

U 1
i “ Ui if xk “ i and U 1

i “ XzUi otherwise.

Since 2nz p
ś

iănXiq is finite, we get that f´1p2ωzpp
ś

iănXiq ˆ 2ωqq is Gδ as a
finite union of Gδ sets.
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A.2.2 Exercise 2

Let X be a Polish space. Then X is homeomorphic to a closed subspace of Rω

: handwritten
solution

A.2.3 Exercise 3

Example A.2. Consider

f : R ÝÑ r0, 1s
p

q
ÞÝÑ

1

q
RzQ Q x ÞÝÑ 0

Then oscf p
p
q q “

1
q and oscf pxq “ 0 for x R Q.

Definition A.3. We say that f : X Ñ Y is continuous at a P X, if for N

a neighbourhood of fpaq (i.e. there exists fpaq P U
open
Ď N , then f´1pNq is

a neighbourhood of a.

Theorem A.4 (Kuratowski). Let X be metrizable, Y completely metriz-
able, S Ď X and f : S Ñ Y continuous. Then f can be extended to a
continuous function f̃ on a Gδ set G with S Ď G Ď S.

Proof. Let G :“ S X tx P X| oscf pxq “ 0u. Clearly S Ď G as f is continouos on
f .

Claim 1. G is Gδ

Subproof. S is closed and

č

ně1

tx : oscf pxq ă
1

n
u

is an intersection of open sets. ■

is an intersection of open sets.

For x P G, as x P S, there exists pxnqxnăω, xn P S such that xn Ñ x. We have
that pfpxnqqn is Cauchy, as oscf pxq “ 0. Something is

missing here

Corollary A.5. Let X be Polish and Y Ď X Polish. Then Y is Gδ.

Proof. TODO
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A.2.4 Exercise 4

Define

f : ωω ÝÑ 2ω

pxnq ÞÝÑ 0x010x11 . . . .

(1) f is a topological embedding: Consider a basic open set B “
ś

iănXiˆω
ω

for some Xi Ď ω.

Then fpBq “
´

Ť

xP
ś

iăn Xi
Bx

¯

X fpωωq is open in fpωωq, where Bx :“

t0x010x11 . . . 10xn´11u ˆ 2ω.

On the other hand let C “ tx0x1x2x3x4 . . . xn´1u ˆ 2ω be some basic open
set of 2ω. W.l.o.g. x0x1 . . . xn´1 has the form 0a010a11 . . . 10akxn´1. If
xn´1 “ 1, we get

f´1pC X fpωωqq “ tpa0, a1, . . . , akqu ˆ ω
ω.

In the case of xn´1 “ 0, it is

f´1pC X fpωωqq “
ď

bąak

tpa0, a1, . . . , ak´1, bqu ˆ ω
ω.

In both cases the preimage is open.

(2) C :“ 2ωzfpωωq is countable and dense in 2ω.

We have C “ tx P 2ω|xi “ 0 for all but finitely many iu “
Ť

iăωp2
i ˆ 1ωq.

Clearly this is countable.

For denseness take some x P 2ω. Let xpnq be defined by x
pnq

i “ xi for i ă n

and x
pnq

i “ 0 for i ě n. Then xpnq P C for all n, and xpnq converges to x.

(3) fpωωq is Gδ:

We have

fpωωq “ 2ωz

˜

ď

iăω

p2i ˆ 1ωq

¸

“
č

iăω

`

2ωzp2i ˆ 1ωq
˘

.

(4) C as in (2) is homeomorphic to Q.

Go to the right in the even digits, go to the left for the odd digits, i.e. let
C “ p1,´1, 1,´1, . . .q and set x ă y iff C ¨ x ălex C ¨ y, where ălex denotes
the lexicographical ordering. Note that the order topology of ă on C agrees
with the subspace topology from 2ω.

By Cantor’s theorem for countable, unbounded, dense linear linear orders,
we get an order isomorphism C Ø Q. This is also a homeomorphism, as
the topologies on C and Q are the respective order topologies.
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A.3 Sheet 3
[Tutorial 04, ]

A.3.1 Exercise 1

Let A ‰ H be discrete. For D Ď Aω, let

TD :“ tx|n P A
ăω|x P D,n P Nu.

(a) For any D Ď Aω, TD is a pruned tree:

Clearly TD is a tree. Let x P TD. Then there exists d P D such that x “ d|n.
Hence x Ď d|n`1 P TD. Thus x is not a leaf, i.e. TD is pruned.

(b) For any T Ď Aăω, rT s is a closed subset of Aω:

Let a P AωzrT s. Then there exists some n such that a|n R T . Hence
ta0u ˆ . . .ˆ tan`1u ˆA

ω is an open neighbourhood of a disjoint from rT s.

(c) T ÞÑ rT s is a bijection between the pruned trees on A and the closed subsets
of Aω.

Claim 3. rTDs “ D for any closed subset D Ď Aω.

Subproof. Clearly D Ď rTDs. Let x P rTDs. Then for every n ă ω, there
exists some dn P D such that dn|n “ x|n. Clearly the dn converge to x.
Since D is closed, we get x P D. ■

This shows that T ÞÑ rT s is surjective.

Now let T ‰ T 1 be pruned trees. Then there exists x P T △T 1, wlog. x P
T zT 1. Since T is pruned by applying the axiom of countable choice we get
an infinite branch x1 P rT szrT 1s. Hence the map is injective.

(d) Let Ns :“ tx P Aω|s Ď xu. Show that every open U Ď Aω can be written
as U “

Ť

sPS Ns for some set of pairwise incompatible S Ď Aăω.

Let U be open. Then U has the form

U “
ď

iPI

Xi ˆA
ω

for some Xi Ď Ani , ni ă ω. Clearly U “
Ť

sPS1 Ns for S
1 :“

Ť

iPI Xi. Define

S :“ ts P S1|␣Dt P S1. t Ď s^ |t| ă |s|u.

Then the elements of S are pairwise incompatible and U “
Ť

sPS Ns.

(e) Let T Ď Aăω be an infinite tree which is finitely splitting. Then rT s is
nonempty:

Let us recursively construct a sequence of compatible sn P T with |sn| “ n
such that tsnu ˆ Aăω X T is infinite. Let s0 be the empty sequence; by
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assumption T is infinite. Suppose that sn has been chosen. Since T is
finitely splitting, there are only finitely many a P A with sn

⌢ a P T . Since
tsnu ˆ Aăω X T is infinite, there must exist at least on a P A such that
tsn

⌢ au ˆAăω X T is infinite. Define sn`1 :“ sn
⌢ a.

Then the union of the sn is an infinite branch of T , i.e. rT s is nonempty.

(f) Then rT s is compact: TODO

A.3.2 Exercise 2 handwritten

A.3.3 Exercise 3 handwritten

A.3.4 Exercise 4

Notation A.5.62. For A Ď X let A1 denote the set of accumulation points
of A.

Theorem A.6. Let X be a Polish space. Then there exists a unique
partition X “ P \ U of X into a perfect closed subset P and a countable
open subset U .

Proof. Let P be the set of condensation points of X and U :“ XzP .

Claim 1. U is open and countable.

Subproof. Let S be a countable dense subset. For each x P U , there is an εx ą 0,
sx P S such that x P Bεxpsxq is at most countable. Clearly Bεxpsxq Ď U , as for
every y P Bεxpsxq, Bεxpsxq witnesses that y R P . Thus U “

Ť

xPU Bεxpsxq is
open. Wlog. εx P Q for all x. Then the RHS is the union of at most countably
many countable sets, as S ˆQ is countable. ■

Claim 2. P is perfect.

Subproof. Let x P P 1 and x P U an open neighbourhood. Then there exists y P
P XU . In particular, U is an open neighbourhood of y, hence U is uncountable.
It follows that x P P .

On the other hand let x P P and let U be an open neighbourhood. We need to
show that U X P ztxu is not empty. Suppose that for all y P U X P ztxu, there
is an open neighbourhood Uy such that Uy is at most countable. Wlog. Uy “

Bεy psyq for some sy P S, εy ą 0, where S is again a countable dense subset.
Wlog. εy P Q. But then

U “ txu Y
ď

yPU

Bεy psyq
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is at most countable as a countable union of countable sets, contradiction x P P .
■

Claim 3. Let P,U be defined as above and let P2 Ď X, U2 Ď X be such that P2

is perfect and closed, U2 is countable and open and X “ P2\U2. Then P2 “ P
and U2 “ U .

TODO

Corollary A.7. Any Polish space is either countable or has cardinality
equal to c.

Subproof. Let X “ P \U where P is perfect and U is countable. If P ‰ H, we
have |P | “ c by Corollary 1.21. ■

A.4 Sheet 4
[Tutorial 05, 2023-11-14]

A.4.1 Exercise 1

(a) xXα : αy is a descending chain of closed sets (transfinite induction).

Since X is second countable, there cannot exist uncountable strictly de-
creasing chains of closed sets:

Suppose xXα, α ă ω1y was such a sequence, then XzXα is open for every α,
Let tUn : n ă ωu be a countable basis. ThenNpαq “ tn|UnXpXzXαq ‰ Hu,
is a strictly ascending chain in ω.

(b) We need to show that Xα0
is perfect and closed. It is closed since all Xα

are, and perfect, as a closed set F is perfect iff it coincides F 1.

XzXα0
is countable: XαzXα`1 is countable as for every x there exists a

basic open set U , such that UXXα “ txu, and the space is second countable.
Hence XzXα0

is countable as a countable union of countable sets.

A.4.2 Exercise 2 handwritten

A.4.3 Exercise 3

• Let Y Ď R be Gδ such that Y and RzY are dense in R. Then Y – N .

Y is Polish, since it is Gδ.

Y is 0-dimensional, since the sets pa, bq X Y for a, b P RzY form a clopen
basis.
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Each compact subset of Y has empty interior: Let K Ď Y be compact
and U Ď K be open in Y . Then we can find cover of U that has no finite
subcover  .

• Let Y Ď R be Gδ and dense such that RzY is dense as well. Define
Z :“ tx P R2||x| P Y u Ď R2. Then Z is dense in R2 and R2zZ is dense in
R2.

We have that for every y P Y BByp0q Ď Z.

Other example: Consider R2zQ2.

A.4.4 Exercise 4

(a) Let d be a compatible, complete metric on X, wlog. d ď 1. Set UH :“ X.
Suppose that Us has already been chosen. Then Ds :“ XzUs is closed.

Hence U
pnq
s :“ tx P X|distpx,Dsq ą

1
nu is open. Letm be such that D

pmq
s ‰

H. Clearly U
pnq
s Ď Us. Let pBkqkăω be a countable cover of X consisting

of balls of diameter 2´|s|´2. Take some bijection φ : ω Ñ ω ˆ pωzmq and

set U
s⌢ i

:“ U
pπ1pφpiqqq
s XBπ2pφpiqq, where there πi denote the projections (if

this is empty, set U
s⌢ i

:“ U
π1pφpjqq
s X Bπ2pφpjqq for some arbitarily chosen

j ă ω such that it is not empty). Then U
s⌢ i

Ď U
pnq
s Ď Us,

ď

iăω

U
s⌢ i

“
ď

năω

U pnq
s “ Us

and diampU
s⌢ i

q ď diampBπ2pφpiqqq.

(b) Let s P ωω. Then
č

năω

Us|n

contains exactly one point. Let f be the function that maps an s P ωω to
the unique point in the intersection of the Us|n . Let x P X be some point.
Then by induction we can construct a sequence s P ωω such that x P Us|n

for all n, hence x “ fpsq, i.e. f is surjective.

Let B
open
Ď X. Then B “

Ť

iPI Ui for some i Ď ωăω, as every basic open set
can be recovered as a union of Ui and f

´1pBq “
Ť

iPI

`

ti0u ˆ . . . ti|i|´1u
˘

ˆ

ωω is open, hence f is continuous.

On the other hand, consider an open ball B :“ t
ś

iăntxiuu ˆ ωω Ď ωω.
Then fpBq “ Upx0,...,xn´1q is open, hence f is open.

A.5 Sheet 5
[Tutorial 06, ]
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A.5.1 Exercise 1

Fact A.7.63. X is Baire iff every non-empty open set is non-meager.

In particular, let X be Baire, then U
open
Ď X is Baire.

(a) Let X be a non-empty Baire space and let A Ď X. Show that A cannot be
both meager and comeager.

Suppose that A Ď X is meager and comeager. Then A “
Ť

năω Un and
XzA “

Ť

năω Vn for some nwd sets Un, Vn. Then X “ A Y pXzAq is
meager. Let X “

Ť

năωWn be a union of nwd sets. Wlog. the Wn are
closed (otherwise replace themWn) ThenH “

Ş

năωpXzWnq is a countable
intersection of open, dense sets, hence dense  

(b) Let X be a topological space. The relation “˚ is transitive:

Suppose A “˚ B and B “˚ C. Then A△C Ď pA△BYB△Cq is contained
in a meager set. Since a subset of a nwd set is nwd, a subset of a meager
set is meager. Hence A△C is meager, thus A “˚ C.

(c) Let X be a topological space. Let A Ď X be a set with the Baire property,
then at least one of the following hold:

(i) A is meager,

(ii) there exists H “ U
open
Ď X such that AX U is comeager in U .

Suppose there was A Ď X such that (i) does not hold. Then there exists

U
open
Ď X such that A “˚ U . In particular, A△U is meager, hence U X

pA△Uq “ UzA is meager. Thus AX U is comeager in U .

Now suppose that X is a Baire space. Suppose that for A (i) and (ii) hold.

Let H ‰ U
open
Ď X be such that AXU is comeager in U . Since U is a Baire

space, this contradicts (a).

A.5.2 Exercise 2

Let pUiqiăω be a countable base of Y . We want to find a Gδ set A Ď X such
that f |A is continuous. It suffices make sure that f´1|ApUiq is open for all i ă ω.
Take some i ă ω. Then VizMi Ď f´1pUiq Ď ViYMi, where Vi is open andMi is
meager. Let M 1

i ĚMi be a meager Fσ-set. Now let A :“ Xz
Ť

iăωM
1
i . We have

that A is a countable intersection of open dense sets, hence it is dense and Gδ.
For any i ă ω, ViXA Ď f |´1

A pUiq Ď pViYMiqXA “ ViXA, so f |
´1
A pUiq “ ViXA

is open.

A.5.3 Exercise 3 handwritten

A.5.4 Exercise 4
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Lemma A.8. There exists a non-meager subset A Ď R2 such that no three
points of A are collinear.

This requires the use of the axiom of choice.

Proof. Enumerate the continuum-many Fσ subsets of R2 as pFiqiăc. We will
inductively construct a sequence paiqiăc of points of R2 such that for each i ă c:

(i) taj |j ď iu is not a subset of Fi and

(ii) taj |j ď iu does not contain any three collinear points.

(a) Let B “ tx P R|pFiqx is meageru. Then B is comeager in R and |B| “ c.

We have |B| “ c: B contains a comeager Gδ set, say B1. B1 is Polish, hence
B1 “ P Y C for P perfect and C countable, and |P | P tc, 0u. But B1 can’t
contain an isolated point.

(b) We use B to find a suitable point ai:

To ensure that (i) holds, it suffices to chose ai R Fi. Since |B| “ c and
|tai|j ă iu| “ |i| ă c, there exists some x P Bztπ1pajq|j ă iu, where π
denotes the projection. Choose one such x. We need to find y P R, such
that px, yq R Fi and taj |j ă iu Y tpx, yqu does not contain three collinear
points.

Since pFiqx is meager, we have that |txu ˆ RzFi| “ |RzpFiqx| “ c. Let
L :“ ty P R|Dj ă k ă i. aj , ak, px, yqare collinearu. Since every pair aj ‰
ak, j ă k ă i, adds at most one point to L, we get |L| ď |i|2 ă c. Hence
|RzpFiqxzL| “ c. In particular, the set is non empty, and we find y as desired
and can set ai :“ px, yq.

(c) A is by construction not a subset of any Fσ meager set. Hence it is not
meager, since any meager set is contained in an Fσ meager set.

(d) For every x P R we have that Ax contains at most two points, hence it
is meager. In particular tx P R|Ax is meageru “ R is comeager. However
A is not meager. Hence A can not be a set with the Baire property by
Kuratowski-Ulam (2.9). In particular, the assumption of the set having
the BP is necessary.

A.6 Sheet 6
[Tutorial 07, 2023-11-28]

A.6.1 Exercise 1

Warning A.9. Note that not every set has a density!
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(a) Let X “ Iω. Let C0 “ tpxnq : xn Ñ 0u. Claim: C0 P Π0
3pXq (intersections

of Fσ sets).

We have
x P C0 ðñ @q P Q`. DN. @n ě N. xn ď q,

i.e.
C0 “

č

qPQ`

ď

Năω

č

nąN

txn : xn ď qu.

Clearly this is a Π0
3 set.

(b) Let Z :“ tf P 2ω : fpNq has density 0u. Claim: Z P Π0
3p2

Nq. It is

Z “
č

qPQ`

ď

Năω

č

něN

tf P 2ω :

ř

iăn fpiq

n
ď nqu.

Clearly this is a Π0
3-set.

A.6.2 Exercise 2

Recall Theorem 3.7:

Fact A.9.64. Let pX, τq be a Polish space and A P BpXq. Then there
exists τ 1 Ě τ with the same Borel sets as τ such that A is clopen.

(Do it for A closed, then show that the sets which work form a σ-algebra).

(a) Let pX, τq be Polish. We want to expand τ to a Polish topology τ0 main-
taining the Borel sets, such that pX, τ 1q is 0d.

Let pUnqnăω be a countable base of pX, τq. Each Un is open, hence Borel,
so by a theorem from the lecture™ there exists a Polish topology τn such
that Un is clopen, preserving Borel sets.

Hence we get τ8 such that all the Vn are clopen in τ8. Let τ1 :“ τ8. Do
this ω-many times to get τω. τω has a base consisting of finite intersections
A1 X . . .X An, where Ai is a basis element we chose to construct τi, hence
clopen.

(b) Let pX, τXq, Y be Polish and f : X Ñ Y Borel. Show Dτ 1 Ě τ maintaining
the Borel structure with f continuous.

Let pUnqn be a countable base of Y . Clopenize all the preimages of the
pUnqn.

(c) Let f : X Ñ Y be a Borel isomorphism. Then there are finer topologies
preserving the Borel structure such that f : X 1 Ñ Y 1 is a homeomorphism.

Repeatedly apply (c). Get τ1X to make f continuous. Then get τ1Y to make
f´1 continuous (possibly violating continuity of f) and so on.

Let τωX :“ xτnXy and similarly for τωY .
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Idea. If you do something and it didn’t work, try doing it again (ω-many times).

A.6.3 Exercise 3

(a) Show that if Γ is self-dual (closed under complements) and closed under
continuous preimages, then for any topological space X, there does not
exist an X-universal set for ΓpXq.

Suppose there is an X-universal set for ΓpXq, i.e. U Ď X ˆ X such that
U P ΓpX ˆXq ^ tUx :P Xu “ ΓpXq.

Consider X
d

ÝÝÝÝÝÑ
x ÞÑpx,xq

X ˆX.

Let V “ U c. Then V P ΓpX ˆXq and d´1pV q P ΓpXq. Then d´1pV q “ Ux

for some x. But then px, xq P U ðñ x P d´1pV q ðñ px, xq R U .

(b) Let ξ be an ordinal and let X be a topological space. Show that neither
BpXq nor ∆0

ξpXq can have X-universal sets.

Clearly BpXq is self-dual and closed under continuous preimages. Clearly
∆0

ξpXq is self-dual and closed under continuous preimages (by a trivial in-
duction).

A.6.4 Exercise 4

Recall:

Fact A.9.65 (Sheet 5, Exercise 1). Let H ‰ X be a Baire space. Then
@A Ď X, A is either meager or locally comeager.

Theorem A.10. a Let X,Y be Polish.

For H ‰ U
open
Ď Y let

AU :“ tx P X : Ax is not meager in Uu.

Define
A :“ tA P BpX ˆ Y q : @H ‰ U

open
Ď Y. AU is Borelu.

Then A contains all Borel sets.

aSee Kechris 16.1

Proof. (i) Show for V P BpXq,W
open
Ď Y that V ˆW P A.

Clearly V ˆW is Borel and tx P X :W X U is not meageru P tH, V u.

(ii) Let pAnqnăω P Aω. Then
Ş

nAn P A. (p
Ť

nAnqU “
Ť

npAnqU ).
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(iii) LetA P A andB “ Ac. FixH ‰ U Ď Y . Then tx : Axis not meager in Uu
is Borel, i.e. tx : Ac

x is not meager in Uu is Borel.

Since A is Borel, Ax is Borel as well. Hence by the fact:

tx : Ac
x is not meager in Uu

“ tx : Ac
x is locally comeager in Uu

“ tx : DH ‰ V
open
Ď V. Ax is meager in V u

“
ď

H‰V
open

Ď U

Ac
V

(a countable union suffices, since we only need to check this for V of the

basis; if A Ď V is nwd, then AX U Ď U is nwd for all U
open
Ď V ).

A.7 Sheet 7
[Tutorial 08, 2023-12-05]

A.7.1 Exercise 1

• For ξ “ 1 this holds by the definition of the subspace topology.

We now use transfinite induction, to show that the statement holds for all
ξ. Suppose that Σ0

ζpY q and Π0
ζpY q are as claimed for all ζ ă ξ.

Then

Σ0
ξpY q “ t

ď

năω

An : An P Π
0
αn
pY q, αn ă ξu

“ t
ď

năω

pAn X Y q : An P Π
0
αn
pXq, αn ă ξu

“ tY X
ď

năω

An : An P Π
0
αn
pXq, αn ă ξu

“ tY XA : A P Σ0
ξpXqu.

and

Π0
ξpY q “ ␣Σ

0
ξpY q

“ tY zA : A P Σ0
ξpY qu

“ tY zpAX Y q : A P Σ0
ξpXqu

“ tY X pXzAq : A P Σ0
ξpXqu

“ tY XA : A P Π0
ξpXqu.

• Let V P BpY q.
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We show that f´1pV q P BpY q, by induction on the minimal ξ such that
V P Σ0

ξ . For ξ “ 0 this is clear. Suppose that we have already shown

f´1pV 1q P BpY q for all V 1 P Σ0
ζ , ζ ă ξ. Then f´1pY zV 1q “ Xzf´1pV 1q P

BpV q, since complements of Borel sets are Borel. In particular, this also
holds for Π0

ζ sets and ζ ă ξ. Let V P Σ0
ξ . Then V “

Ş

n Vn for some

Vn P Π
0
αn

, αn ă ξ. In particular f´1pV q “
Ť

n f
´1pVnq P BpXq.

A.7.2 Exercise 2

Recall ??.

Let pAiqiăω be analytic subsets of a Polish space X. Then there exists Polish
spaces Yi and fi : Yi Ñ X continuous such that fipBiq “ Ai for some Bi P BpYiq.

•
Ť

iAi is analytic: Consider the Polish space Y :“
š

iăω Yi and f :“
š

i fi,
i.e. Yi Q y ÞÑ fipyq. f is continuous,

š

iăω Bi P BpY q and

fp
ž

iăω

Biq “
ď

i

Ai.

•
Ş

iAi is analytic: Let Z “
ś

Yi and let D Ď Z be defined by

D :“ tpynq : fipyiq “ fjpyjq @i, ju.

D is closed, at it is the preimage of the diagonal under Z
pf0,f1,...q
ÝÝÝÝÝÝÑ XN.

Then
Ş

Ai is the image of D under Z
pynqÞÑf0py0q
ÝÝÝÝÝÝÝÝÑ X.

Other solution:

Let Fn Ď X ˆN be closed, and C Ď X ˆNN defined by

C :“ tpx, pypnqqq : @n. px, ypnqq P Fnu.

C is closed and
Ş

Ai “ projXpCq.

A.7.3 Exercise 3

Lemma A.11. LetX be a second-countable topological space. Then every
base of X contains a countable subset which is also a base of X.

Proof. Let C “ tCn : n ă ωu be a countable base of X and let B “ tBi : i P Iu
be a base of X with (possibly uncountable) index set I.

Fix n ă ω. It suffices to show that Cn is a union of countably many elements of
B. As B is a base, Cn “

Ť

jPJ Bj for some J Ď I. Since C is a base, there exists
Mj Ď N such that Bj “

Ť

mPMj
Cm for all j P J . Let M “

Ť

jPJ Mj Ď N. For

each m PM , there exists fpmq P J such that m PMfpmq. Then
Ť

mPM Bfpmq “

Cn.
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Remark A.11.66. We don’t actually need this.

• We use the same construction as in exercise 2 (a) on sheet 6. Let A Ď X
be analytic, i.e. there exists a Polish space Y and f : Y Ñ X Borel with
fpY q “ X. Then f is still Borel with respect to the new topology, since
Borel sets are preserved and by exercise 1 (b).

• Suppose that there exist no disjoint clopen sets U0, U1, such that W XU0

and W X U1 are uncountable.

Let W0 :“ W Then there exist disjoint clopen sets C
p0q

i such that W0 Ď
Ť

iăω C
p0q

i and diampCiq ă 1, since X is zero-dimensional.

By assumption, exactly one of the C
p0q

i has uncountable intersection with

W0. Let i0 be such thatW0XC
p0q

i0
is uncountable and setW1 :“W0XC

p0q

i0
.

Note that W0zW1 “
Ť

i‰i0
C

p0q

i is countable.

Let us recursively continue this construction: Suppose that Wn uncount-

able has been chosen. Then choose C
pnq

i clopen, disjoint with diameter

ď 1
n such that Wn Ď

Ť

i C
pnq

i and let in be the unique index such that

Wn X C
pnq

in
is uncountable.

Since diampC
pnq

in
q

nÑ8
ÝÝÝÑ 0 and the C

pnq

in
are closed, we get that

Ş

n C
pnq

in
contains exactly one point. Let that point be x.

However then

W “

˜

ď

năω

ď

i‰in

pC
pnq

i XW q

¸

Y
č

n

pWXC
pnq

in
q “

˜

ď

năω

ď

i‰in

pC
pnq

i XW q

¸

Ytxu

is countable as a countable union of countable sets  .

Other proof (without using the existence of a countable clopen basis):

We can cover X by countably many clopen sets of diameter ă 1
n : Cover

X with open balls of diameter ă 1
n . Write each open ball as a union of

clopen sets. That gives us a cover by clopen sets of diameter ă 1
n . As

X is Lindelöf, there exists a countable subcover. Then continue as in the
first proof.

• Note that this step does not help us to prove the statement. It was an
error on the exercise sheet.

Clearly this defines a Cantor scheme.

• Let Y be a Polish space and A Ď Y analytic and uncountable. Expand
the topology on Y so that Y is zero dimensional and A is still analytic.

Then there exists a Polish space X and a continuous function f : X Ñ Y
such that fpXq “ A.
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A is uncountable, so by (2) there exists non-empty disjoint clopen V0, V1
such that V0 XA and V1 XA are uncountable.

Let W0 “ f´1pV0 X Aq and W1 “ f´1pV1 X Aq. W0 and W1 are clopen
and disjoint. We can coverW0 with countably many open sets of diameter
ď 1

n and similarly for W1. Then pick open sets such that there image is
uncountable.

Repeating this construction we get a Cantor scheme on X. So we get
2N

s
ãÑ X and by construction of the cantor scheme, we get that f ˝ s is

injective and continuous.

A.7.4 Exercise 4

Proof of Schröder-Bernstein:

Let X0 :“ X, Y0 :“ Y and define Xi`1 :“ gpYiq, Yi`1 :“ fpXiq. We have
Xi`1 Ď Xi and similarly for Yi. f and g are bijections between Xω :“

Ş

Xi and
Yω :“

Ş

Yi.

XzXω “ pX0zX1q Y pX1zX2q Y pX2zX3q ¨ ¨ ¨

Y zYω “ pY0zY1q Y pY1zY2q Y pY2zY3q ¨ ¨ ¨
f

g f
g

By Theorem 3.23 the injective image via a Borel function of a Borel set is Borel.

Theorem 3.23 also gives that the inverse of a bijective Borel map is Borel. So
we can just do the same proof and every set will be Borel.

[Tutorial 09, 2023-12-12]

Fact A.11.67. Let X,Y be topological spaces X (quasi-)compact and Y
Hausdorff. Let f : X Ñ Y be a continuous bijection. Then f is a homeo-
morphism.

Proof. Compact subsets of Hausdorff spaces are closed.

A.8 Sheet 8

Material on topological dynamics:

• Terence Tao’s notes on ergodic theory 254A: [Tao08]

• [Fur63] (uses very different notation!).

A.8.1 Exercise 1

Remark A.11.68. Σ1
1-complete sets are in some sense the “worst” Σ1

1-
sets: Deciding whether an element is contained in the Σ1

1-complete set is
at least as “hard” as as for any Σ1

1 set.
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In particular, Σ1
1-complete sets are not Borel.

Similarly as in Proposition 3.30 it can be shown that L P Σ1
1pXq: Consider

tpx, βq P X ˆ N : @n. xβn
|xβn`1

u. This is closed in X ˆ N , since it is a
countable intersection of clopen sets and L “ projXpDq.

Since IF Ď Tr is Σ1
1-complete, it suffices to find a Borel map f : Tr Ñ X such

that x P IF ðñ fpxq P L. Let φ : ω2 ` ω Ñ ω be bijective and let pi denote
the i-th prime. Define

ψ : ωăω ÝÑ ωzt0u

ps0, s1, . . . , sn´1q ÞÝÑ
ź

iăn

pφpω¨i`siq.

Note that ψ is injective and that s P ωăω is an initial segment of t P ωăω iff
ψpsq|ψptq. Let

f 1 : Tr ÝÑ Ppωzt0uq
T ÞÝÑ tφpsq : s P T u.

We can turn this into a function f : Tr Ñ pωzt0uqω by mapping a subset of
ωzt0u to the unique strictly increasing sequence whose elements are from that
subset (appending φpω2 ` nq, n P ω, if the subset was finite). Note that T P
IF ðñ fpT q P L. Furthermore f is Borel, since fixing a finite initial sequence
(i.e. a basic open set of pωzt0uqω) amounts to a finite number of conditions on
the preimage.

A.8.2 Exercise 2 handwritten

A.8.3 Exercise 3

• LOpNq
closed
Ď 2NˆN:

We have ăP LOpNq iff

– @x, y. px ‰ y ùñ px ă y _ x ą yqq,

– @x. px ă xq,

– @x, y, x. px ă y ă z ùñ x ă zq.

Write this with
Ş

, i.e.

LOpNq “
č

nPN
tR : pn, nq R Ru

X
č

mănPN
ptR : pn,mq P Ru Y tR : pm,nq P Ruq

X
č

a,b,cPN
ptR : pa, bq P R^ pb, cq P R ùñ pa, cq P Ru.

This is closed as an intersection of clopen sets.
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• We apply Theorem 3.16 (iv). Let F Ď LOpNq ˆ N be such that the
N -coordinate encodes a strictly decreasing sequence, i.e.

pR, sq P F :ðñ @n P N. pspn` 1q, spnqq P R.

We have that

F “
č

nPN
tpR, sq P LOpNq ˆN : pspn` 1q, spnqq P Ru

is closed as an intersection of clopen sets.

Clearly projLOpNqpFq is the complement of WOpNq, hence WOpNq is co-
analytic.

A.8.4 Exercise 4

Remark A.11.69. In the lecture we only look at metrizable flows, so the
definitions from the exercise sheet and from the lecture don’t agree.

Everywhere but here we will use the definition from the lecture.

• Consider

Φ: Z-flows on X ÝÑ HomeopXq

pα : ZˆX Ñ Xq ÞÝÑ αp1, ¨q
ˆ

ZˆX ÝÑ X
pz, xq ÞÝÑ βzpxq

˙

ÐÝ [ β P HomeopXq.

Clearly this has the desired properties.

• Let X be a compact Polish space. What is the Borel complexity of
HomeopXq inside CpX,Xq?

Recall that CpX,Xq is a Polish space with the uniform topology. We have

HomeopXq “ tf P CpX,Xq : f is bijective and f´1 is continuousu

“ tf P CpX,Xq : f is bijectiveu

by the general fact

Fact A.11.70. Let X be compact and Y Hausdorff, f : X Ñ Y a
continuous bijection. Then f is a homeomorphism.

[Tutorial 13, 2024-01-23]

Continuation of sheet 8, exercise 4.
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Definition A.12. Let X be a compact metric space. For K Ď X compact

and U
open
Ď X let

SK,U :“ tf P CpX,Xq : fpKq Ď Uu.

The compact open topology on CpX,Xq is the topology that has SK,U

as a subbase.

Fact A.12.71. If X is compact, then the compact open topology is the
topology induced by the uniform metric d8.

Proof. Take some SK,U . We need to show that this can be written as a union
of open d8-balls. Let f0 P SK,U . Consider the continuous function dp´, U cq.
Since f0pKq is compact, there exists ε :“ min dpf0pKq, U

cq and Bεpf0q Ď SK,U .

On the other hand, consider Bεpf0q for some ε ą 0 and f0 P CpX,Xq.

As f0 is uniformly continuous, there exists δ ą 0 such that dpx, x1q ă δ ùñ

dpf0pxq, f0px
1qq ă ε

3 . Cover X with finitely many δ-balls Bδpa1q, . . . , Bδpakq.
Then

f0pBδpaiqq Ď f0pBδpaiq Ď B ε
3
pf0paiqq Ď B ε

2
pf0paiqq.

For i ď k, let Si :“ S
Bδpaiq,B ε

2
pf0paiqq

. Take
Ş

iďk Si. This is open in the compact

open topology and Bεpf0q Ď
Ş

iďk Si.

Claim 4. f P CpX,Xq is surjective iff for all basic open H ‰ U Ď X there
exists a basic open H ‰ V Ď X with fpV q Ď U .

Note that we can write this as a Gδ-condition.

Subproof. Take Bεpfpx0qq Ď U . Then there exists δ ą 0 such that fpBδpx0qq Ď
B ε

2
pfpx0qq hence fpBδpx0qq Ď Bεpfpx0qq.

For the other direction take y P X. We want to find a preimage. For every
B 1

n
pyq, there exists a basic open set Vn with fpV q Ď B 1

n
pyq. Take xn P Vn.

Since X is compact, it is sequentially compact, so there exists a converging
subsequence. Wlog. xn Ñ x, so fpxnq Ñ fpxq “ y. ■

Claim 5. f P CpX,Xq is injective iff for all basic open U ,V with U X V “ H
we have fpUq X fpV q “ H.

This is a Gδ-condition, since we can write it as

č

U,V

SU,fpV qc
.
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Subproof. ùñ is trivial.

ðù follows since for all pairs x, y P X, we can find x P U , y P V such that
U X V “ H. ■

Hence HomeopX,Xq is Gδ. In particular it is a Polish space.

Let D be the set of Z-flows with dense orbit.

Claim 6. f P D ðñ for all basic open U, V Ď X, there exists n P Z such that
fnpUq X V ‰ H.

Subproof. Suppose that the orbit of x0 P X is dense. Then there exist k, l P Z
such that fkpx0q P U and f lpx0q P V , so f l´kU X V ‰ H.

For basic open sets V let

AV :“ tx P X : Dn. fnpxq P V u.

By assumption, all the AV are dense. Hence
Ş

V AV is dense by the Baire
Category Theorem (2.7).

AV “
Ť

nPZ f
npV q is open. ■

Claim 7. The condition can be written as a Gδ set.

Subproof. For f0pUq X V ‰ H take u P U such that f0puq P V . Then there
exists ε ą 0 such that Bεpf0puqq Ď U , hence Bεpf0q is an open neighbourhood
contained in tf : fpUq X V ‰ Hu.

For n “ 2 note that dpf2puq, f20 puq ď dpfpfpuqq, f0pfpuqqq`dpf0pfpuqq, f0pf0puqqq.
The first part can be bounded by dpf, f0q. For the second part, note that there
exists δ such that

dpa, bq ă δ ùñ dpf0paq, f0pbqq ă
ε

2
.

Let η :“ mintδ, ε2u and consider d8pf, f0q ă ε.

For other n it is some more work, which is left as an exercise. ■

[Tutorial 10, 2023-12-19]

A.9 Sheet 9

A.9.1 Exercise 1

pX, τ 1q
x ÞÑx
ÝÝÝÑ pX, τq is Borel (by one of the equivalent definitions of being Borel).

Thus BpX, τq Ď BpX, τ 1q (by the other equivalent definition of being Borel). Let
U Ď pX, τ 1q be Borel. id |U is injective, hence U is Borel in pX, τq by Lusin-
Suslin.
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Related stuff

Fact A.12.72. Let X,Y be Polish. f : X Ñ Y is Borel iff its graph Γf is
Borel.

Proof. Take a countable open base V0, V1, . . . of Y . Then Γf “ tpx, yq : @n ă
ω. fpxq P Vn ùñ y P Vnu (because the space is Hausdorff). If f is Borel, then
clearly the RHS is Borel since

tpx, yq : @n ă ω. fpxq P Vn ùñ y P Vnu

“
č

năω

pf´1pVnq
cY Y f´1pVnq ˆ Vnu

On the other hand suppose that Γf is Borel. Then

f´1pBq “ πXpX ˆB X Γf q

is analytic.44 On the other hand

f´1pBqc “ f´1pBcq

is analytic and we know that Σ1
1 X Π1

1 “ B by the Corollary of the Lusin
Separation Theorem (3.24).

In fact we have shown

Fact A.12.73. The following are equivalent

• f is Borel,

• Γf is Borel,

• Γf is analytic.

A.9.2 Exercise 2

Definition A.13. Let X be a topological space. Let KpXq be the set of
all compact subspaces of X. The Vietoris Topology, τV , on KpXq is the
topology with basic open sets

rU0;U1, . . . , Uns “ tK P KpXq : K Ď U0 ^ @1 ď i ď n. K X Ui ‰ Hu

for Ui

open
Ď X.

44Note that the projection of a Borel set is not necessarily Borel. Moreover note that we
only used that Γf is analytic.
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Definition A.14. Let pX, dq be a matric space with d ď 1. We define a
metric dH on KpXq as follows: dHpH,Hq :“ 0, dHpK,Hq :“ 1 for K ‰ H

and
dHpK0,K1q :“ maxtmax

xPK0

dpx,K1q,max
xPK1

dpx,K0qu

for K0,K1 ‰ H.

Fact A.14.74. dH is indeed a metric.

Proof. Let δpK,Lq :“ maxxPK dpx, Lq. It suffices to show δpX,Zq ď δpX,Y q `
δpY, Zq, since then

dHpX,Zq ď maxtδpX,Y q ` δpY,Zq, δpZ, Y q ` δpY,Xqu

ď dHpX,Y q ` dHpY,Zq.

Using the fact that dp¨, Zq is uniformly continuous, specifically

|dpx, Zq ´ dpy, Zq| ď dpx, yq,

we get

dpx, Zq ď dpx, yq ` dpy, Zq

ď dpx, yq ` δpY,Zq

ùñ dpx, Zq ´ δpY,Zq ď dpx, Y q

ùñ dpx, Zq ď δpX,Y q ` δpY,Zq

ùñ δpX,Zq ď δpX,Y q ` δpY,Zq.

• We have

dHpK0,K1q ă ε ðñ maxtmax
xPK0

dpx,K1q,max
xPK1

dpx,K0qu ă ε

ðñ max
xPK0

dpx,K1q ă ε^ max
xPK1

dpx,K0q ă ε

ðñ K0 Ď BεpK1q ^K1 Ď BεpK0q.

• Note that a subbase of τV is given by rU s and xUy :“ rX;U s for U
open
Ď X.

Let K P rU s. Then dp¨, U cq : U Ñ Rě0 is always non-zero and continuous.
So dpK,U cq attains a minimum ε ą 0. Then BH

ε pKq Ď U , so rU s is open
in τV .

Let K P xUy. Take some k P K X U . Then there is some ε ą 0 such that
Bεpkq Ď U . Then K P BH

ε pKq Ď xUy. Other direc-
tion
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• Consider a countable dense subset of X. Let K be the set of finite subsets
of that countable dense subset. Then K Ď KpXq is dense: TakeK P KpXq
an let ε ą 0. K can be covered with finitely many ε-balls with centers
from the countable dense subsets. Let K 1 P K be the set of the centers.
Then dHpK,K

1q ď ε.

A.9.3 Exercise 3

• By transfinite induction we get that α is an ordinal, since ă is well-founded
and the supremum of a sets of ordinals is an ordinal. Since ρă : X Ñ α is
a surjection, it follows that α ď |X|, i.e. α ă |X|`.

• By induction on ρăX
pxq we show that ρăX

pxq ď ρăY
pfpxqq. For 0 this

is trivial. Suppose that ρăX
pxq “ α and the statement was shown for all

β ă α. Then

ρăY
pfpxqq “ suptρăY

py1q ` 1|y1 ă fpxqu

ě suptρăY
pfpx1qq ` 1|fpx1q ă fpxqu

ě suptρăY
pfpx1qq ` 1|x1 ă xu

ě suptρăX
px1q ` 1|x1 ă xu

“ ρăX
pxq.

• Infinite branches of Tă correspond to infinite descending chain of ă, hence
Tă is well-founded iff ă is well-founded.

Suppose that ă is well-founded. Note that ρT psq depends only on the
last element of s, as for s, s1 P T with the same last element, we have
s ⌢ x P T ðñ s1 ⌢ x P T .

Let s “ ps0, . . . , snq. Let us show that ρT psq “ ρăpsnq. We use induction
on ρT psq. For leaves this is immediate. From the last exercise sheet we
know that

ρT psq “ suptρT ps
⌢ aq ` 1|s ⌢ a P T u.

Hence

ρT psq “ suptρT ps
⌢ aq ` 1|s ⌢ a P T u

“ suptρăpaq ` 1|s ⌢ a P T u

“ suptρăpaq ` 1|a ă snu

“ ρăpsnq.

A.9.4 Exercise 4

A solution can be found in [Ros12].

[Tutorial 11, 2024-01-09]

An equivalent definition of subflows can be given as follows:
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Definition A.15. Let pX,T q be a flow with action αx. Let Y Ď X be
a compact subspace of X. If Y is invariant under αx, we say that pY, T q
(with action αx|TˆY is a subflow of pX,T q.

Example A.16 (Flows with a non-closed orbit). 1. Consider pS1,Zq with
action given by 1 ¨ x “ x` c for a fixed c P RzQ.a Then the orbit of 0,
tnc : n P Zu is dense but consists only of irrationals (except 0), so it is
not closed.

2. Consider pS1,Qq with action qx :“ x` q. The orbit of 0, Q Z Ď S1, is
dense but not closed.

pS1,Qq is minimal.

aWe identify S1 and R
Z.

Example A.17 (Left Bernoulli shift). Consider pt0, 1uZ, T q, where T “
Z and the action is given by

Zˆ t0, 1uZ ÝÑ Z
pm, pxnqnPZq ÞÝÑ pxn`mqnPZ.

The orbit of z :“ p0qnPZ consist of only on point. In particular it is closed.

Let x :“ prn “ 0sqnPZ. Then Tx “ tprn “ msqnPZ|m P Zu. Clearly z R Tx.

Claim 8. z P Tx

Proof. Consider a basic open z P UI “ ty : yi “ 0, i P Iu where I Ď Z is
finite. Then UIXTx ‰ H as we can shift the 1 out of I, i.e. pmax I`1qx P
UI .

Flows are always on non-empty spaces X.

Fact A.17.75. Consider a flow pX,T q. The following are equivalent:

(i) Every T -orbit is dense.

(ii) There is no proper subflow,

If these conditions hold, the flow is called minimal.

Proof. (i) ùñ (ii): Let pY, T q be a subflow of pX,T q. take y P Y . Then Ty is
dense in X. But Ty Ď Y , so Y is dense in X. Since Y is closed, we get Y “ X.

(ii) ùñ (i): Take x P X. Consider Tx. It suffices to show that Tx is a subflow.
Clearly Tx is closed, so it suffices to show that it is T -invariant. Let y P Tx
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and t P T . Take ty P U
open
Ď X. Since t´1 acts as a homeomorphism we have

y P t´1U
open
Ď X. We find some t1x P t´1U since y P Tx. So tt1x P TxX U .

Fact A.17.76. Every flow pX,T q contains a minimal subflow.

Proof. We use Zorn’s lemma: Let S be the set of all subflows of pX,T q ordered
by Y ď Y 1 : ðñ Y Ě Y 1. We need to show that for a chain xYi : i P Iy, there
exists a lower bound. Consider

Ş

iPI Yi. This a subflow:

• It is closed as it is an intersection of closed sets.

• It is T -invariant, since each of the Yi is.

• It is non-empty by Fact A.17.77.

Fact A.17.77. Let X be a topological space. Then X is compact iff every
family of closed sets with FIPa has non-empty intersection.

afinite intersection property, i.e. the intersection of every finite sub-family is non-
empty

Proof. Note that families of closed sets correspond to families of open sets by
taking complements. A family of open sets is a cover iff the corresponding family
has empty intersection, and is admits a finite subcover iff the corresponding
family has the FIP.

[Tutorial 12b, 2024-01-16T13:09:02]

A.10 Sheet 10 Copy from
Abdelrahman
and ShigumaA.10.1 Exercise 2 Def skew
shift flow (on
pR{Zq

2!)The Bernoulli shift, Zñt0, 1uZ, is not distal. Let x “ p0q and y “ pδ0,iqiPZ. Let
tn Ñ8. Then tny Ñ p0q “ tnx.

Proof of Fact: 4.26.38. . d and d1px, yq :“ suptPT dptx, tyq induce the same
topology. Let τ, τ 1 be the corresponding topologies.

τ Ď τ 1 easy, τ 1 Ď τ 1 : use equicontinuity.

[Tutorial 12, 2024-01-16T12:00]

Question A.17.78. What is an example of a flow with a dense orbit that
isn’t minimal.
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Example A.18. Consider the Bernoulli shift. T “ Zñt0, 1uZ. p0q is
a subflow. Let φ : Z Ñ t0, 1uăω be an enumeration of all finite binary
sequences. Consider the concatenation

. . . ⌢ φp´2q ⌢ φp´1q ⌢ φp0q ⌢ φp1q ⌢ φp2q ⌢ . . .

A.11 Sheet 11

Fact A.18.79. If A, B are topological spaces, then f : AÑ B, is continu-
ous iff fpSq Ď fpSq for all S Ď A.

Proof. Suppose that f is continuous. Take a P S. Take any fpaq P U
open
Ď B.

f´1pUq is open and f´1pUq Q a. So there exists s P S such that s P f´1pUq and
fpsq P U .

On the other hand suppose fpSq Ď fpSq for all S Ď A. It suffices to show

that preimages of closed sets are closed. Let V
closed
Ď B. Then fpf´1pV qq Ď

ff´1pV q Ď V , hence

f´1pV q Ď f´1pfpf´1pV qqq Ď f´1pV q.

Fact A.18.80. Let A be compact and B Hausdorff. Let f : A Ñ B be
continuous and S Ď A. Then fpSq “ fpSq.

Subproof. We have already shown fpSq Ď fpSq. Since A is compact, fpSq is
compact and since B is Hausdorff, compact subsets of B are closed. ■

A.11.1 Exercise 1

Let pX,T q be a flow and G “ EpX,T q its Ellis semigroup. Let d be a compatible
metric on X.

(a) Let f0 P X
X be a continuous function. Then Lf0 : X

X Ñ XX , f ÞÑ f0 ˝ f
is continuous.

Consider tf : f0 ˝ f P Uεpx, yqu. We have

f0 ˝ f P Uεpx, yq

ðñ dpx, f0pfpyqqq ă ε

ðñ fpyq P f´1
0 pBεpxqq

ðñ f P
ď

x̃Pf´1
0 pBεpxqq

Uεx̃px̃, yq
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where εx̃ is such that Bεx̃px̃q Ď f´1
0 pBεpxqq. (This is possible since f0 is

continuous, hence f´1
0 pBεpxqq is open.) Clearly the RHS is open.

(b) If f0 is not continuous, then Lf0 is in general not continuous: Let X “ r0, 1s,
and f0 :“ 1Q. Consider U :“ U 1

2
p1, 1q. Then tf : f0 ˝ f P Uu “ tf : fp1q P

Qu is not open.

(c) Let x0 P X. The evaluation map

evx0
: XX ÝÑ X

f ÞÝÑ fpx0q

is continuous:

Let y P X and consider Bεpyq Ď X. By definition evx0
pBεpyqq “ Uεpy, x0q

is open.

(d) For any x P X, we have Gx “ Tx:

By definition G “ tx ÞÑ tx : t P T u. Consider evx : X
X Ñ X. XX is com-

pact and X is Hausdorff. Hence we can apply Fact A.18.80.

(e) Let x0 ‰ x1 P X. Then px0, x1q is a proximal pair iff dpgx0, gx1q “ 0 for
some g P G:

Let px0, x1q be proximal. Consider pevx0 , evx1q : X
X Ñ X ˆX and d : X ˆ

X Ñ R. Both maps are continuous. Consider D :“ tdpgx0, gx1q : g P Gu.
G is compact, hence D is compact. D contains elements arbitrarily close to
0 and D is closed, so 0 P D.

On the other hand let g P G be such that dpgx0, gx1q “ 0. We want to show
that px0, x1q is proximal.

As gx0 “ gx1, we have that there eixsts ε ą 0 such that g P Uεpgx0, x1q X
Uεpgx1, x0q As g P T for all ε ą 0, there exists t P T with t P Uεpgx0, x1q X
Uεpgx1, x0q. Hence dptx1, gx0q ă ε and dptx0, gx1q ă ε.

(f) pX,T q contains a minimal subflow:

We apply Zorn’s lemma. It suffices to show that a chain of subflows X Ě

X1 Ě X2 Ě . . . has a limit. We claim that p
Ş

nXn, T q is a subflow,
i.e.

Ş

nXn is T -invariant. Indeed, since all the Xn are T -invariant, we
have T p

Ş

nXnq Ď
Ş

n TXn Ď
Ş

nXn.

It is clear that
Ş

nXn is closed. Since X is compact the intersection is also
non-empty.

(g) Show that if T is a compact metrisable topological flow, then pX,T q is
equicontinuous.

Suppose that pX,T q is not equicontinuous. Then there exists ε ą 0 such
that

@δ ą 0. Dx, y P X, t P Y. dpx, yq ă δ ^ dptx, tyq ě ε.
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Take δn “ 1
n . Choose bad xn, yn, tn. Since X and T are compact,

wlog. xn Ñ x1, yn Ñ y1, tn Ñ t1. So dpt1x1, t1y1q ą ε, but x1 “ y1  
[Tutorial 14, 2024-01-30]

A.12 Sheet 12

A.12.1 Exercise 1

Let LOpNq
closed
Ď 2NˆN denote the set of linear orders on N.

Let S Ď LOpNq be the set of orders having a least element and such that every
element has an immediate successor.

• S is Borel in LOpNq:

Let Mn Ď LOpNq be the set of orders with minimal element n. Let
In,m Ď LOpNq be the set of orders such that m is the immediate successor
of n.

Clearly S “
`
Ş

n

Ť

m‰n In,m
˘

X
Ť

nMn, so it suffices to show that Mn

and In,m are Borel. It is Mn “
Ş

m‰ntă: m ć nu and In,m “ tă: n ă

mu X
Ş

ită: n ĺ i ĺ m ùñ n “ i_ n “ mu.

• Give an example of an element of S which is not well-ordered:

Consider t1´ 1
n : n P N`uYt1` 1

n : n P N`u Ď R with the order ăR. This
is an element of S, but tx P S : x ě 1u has no minimal element, hence it
is not well-ordered.

A.12.2 Exercise 2

Recall the definition of the circle shift flow pR{Z,Zq with parameter α P R,
1 ¨ x :“ x` α.

• If α R Q, then pR{Z,Zq is minimal:

This is known as Dirichlet’s Approximation Theorem.

• Consider R{Z as a topological group. Any subgroup H of R{Z is dense in
R{Z or of the form H “ tx P R{Z|mx “ 0u for some m P Z.

If H contains an irrational element α, then it is dense by the previous
point.

Suppose that H Ď Q{Z. Let D be the set of denominators of elements
of H written as irreducible fractions. If D is finite, then H “ tx P R{Z :
lcmpDqx “ 0u. Otherwise H is dense, as it contains elements of arbitrarily
large denominator.
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A.12.3 Exercise 3

(a) pX,T q is distal iff it does not have a proximal pair, i.e. a ‰ b, c such that
tn P T , tna, tnbÑ c.

Equivalently, for all a, b there exists an ε, such that for all t P T , dpta, tbq ą ε.

(b) TODO

A.12.4 Exercise 4

LetX be a metrizable topological space and letKpXq :“ tK Ď X : K compactu.

The Vietoris topology has a basis given by tK Ď Uu, U open (type 1) and
tK : K X U ‰ Hu, U open (type 2).

The Hausdorff metric on KpXq, dHpK,Lq is the smallest ε such that K Ď

BεpLq ^ L Ď BεpKq. This is equal to the maximal point to set distance,
maxaPA dpa,Bq.

On previous sheets, we checked that dH is a metric. If X is separable, then so
is KpXq.

Fact A.18.81. Let pX, dq be a complete metric space. Then so is pKpXq, dHq.

Proof of Fact A.18.81. We need to show that pKpXq, dHq is complete.

Let pKnqnăω be Cauchy in pKpXq, dHq. Wlog. Kn ‰ H for all n.

Let K “ tx P X : @x P U
open
Ď X. U XKn ‰ H for infinitely many nu.

Equivalently,K “ tx : x is a cluster point of some subsequence pxnq with xn P Kn for all Knu.

(A cluster point is a limit of some subsequence).

Claim A.18.81.1. Kn Ñ K.

Proof of Claim A.18.81.1. Note that K is closed (the complement is open).

Claim A.18.81.1.1. K ‰ H.

Subproof. As pKnq is Cauchy, there exists a sequence pxnq with xn P Kn such
that there exists a subsequence pxni

q with dpxni
, xni`1

q ă 1
2i`1 .

Let n0, n1, . . . be such that dHpKa,Kbq ă 2´i´1 for a, b ě ni.

Pick xn0 P Kn0 . Then let xni`1 P Kni`1 be such that dpxni , xni`1q is minimal.

Then xni

iÑ8
ÝÝÝÑ x and we have x P K. ■

Claim A.18.81.1.2. K is compact.
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Subproof. We show that K is complete and totally bounded. Since K is a closed
subset of a complete space, it is complete.

So it suffices to show that K is totally bounded. Let ε ą 0. Take N such that
dHpKi,Kjq ă ε for all i, j ě N .

Cover KN with finitely many ε-balls with centers zi.

Take x P K. Then the ε-ball around x intersects Kj for some j ě N , so there
exists zi such that dpx, ziq ă 3ε.

Note that a subset of a bigger space is totally bounded iff it is totally bounded
in itself. ■

Now we show that Kn Ñ K in KpXq.

Let ε ą 0. Take N such that for all m,n ě N , dHpKm,Knq ă
ε
2 . We’ll first

show that δpK,Knq ă ε for all n ą N .

Let x P K. Take pxni
q with xni

P Kni
, xni

Ñ x. Then for large i, we have
ni ě N and dpxni , xq ă

ε
2 . Take n ě N . Then there exists yn P Kn with

dpyn, xniq ă
ε
2 . So dpx, ynq ă ε.

Now show that δpKn,Kq ă ε for all n ě N .

Take y P Kn. Show that dpy,Kq ă ε. To do this, construct a sequence of yni
P

Kni
starting with y such that dpyni

, yni`1
q ă ε

2i`2 . (same trick as before).

Fact A.18.82. If X is compact metrisable, then so is KpXq.

Proof. We have just shown that X is complete. So it suffices to show that it is
totally bounded.

Let ε ą 0. Cover X with finitely many ε-balls. Let F be the set of the centers
of these balls.

Consider PpF qztHu. Clearly tBdH
x : x P PpF qztHuu is a finite cover of KpXq.

A.13 Additional Tutorial
[Tutorial 15, 2024-01-31]

The following is not relevant for the exam, but aims to give a more general
picture.

Let X be a topological space and let F be a filter on X.

x P X is a limit point of F iff the neighbourhood filter Nx, all sets containing
an open neighbourhood of x, is contained in F .
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Fact A.18.83. X is Hausdorff iff every filter has at most one limit point.

Proof. Neighbourhood filters are compatible iff the corresponding points can
not be separated by open subsets.

Fact A.18.84. X is (quasi-) compact iff every ultrafilter converges.

Proof. Suppose that X is compact. Let U be an ultrafilter. Consider the family
V “ tA : A P Uu of closed sets. By the FIP we get that there exist c P X such
that c P A for all A P U . Let N be an open neighbourhood of c. If N c P U , then
c P N c So we get that N P U .

Let tVi : i P Iu be a family of closed sets with the FIP. Consider the filter
generated by this family. We extend this to an ultrafilter. The limit of this
ultrafilter is contained in all the Vi.

Let X,Y be topological spaces, B a filter base on X, F the filter generated by
B and f : X Ñ Y . Then fpBq is a filter base on Y , since fp

Ş

Aiq Ď
Ş

fpAiq.
We say that lim

F
f “ y, if fpFq Ñ y.

Equivalently f´1pNq P F for all neighbourhoods N of y.

In the lecture we only considered X “ N. If B is the base of an ultrafilter, so is
fpBq.

Fact A.18.85. Let X be a topological space and let Y be Hausdorff. Let
f, g : X Ñ Y be continuous. Let A Ď X be dense such that f |A “ g|A.
Then f “ g.

Proof. Consider pf, gq´1p∆q Ě A. The LHS is a dense closed set, i.e. the entire
space.

We can uniquely extend a continuous f : X Ñ Y to a continuous f : βX Ñ Y
by setting fpUq :“ lim

U
f .

I missed the
last 5 minutes

B Facts

B.1 Topological Dynamics

Fact B.0.86 ([Sua]). Let H be a topological group and G Ď H a subgroup.
Then G is a topological group.

Moreover if H is Hausdorff and G is abelian, then is G is abelian.
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Proof. Let g, h P G. We need to show that g ¨ h P G. Take some open neigh-

bourhood g ¨ h P U
open
Ď H. Let V

open
Ď H ˆ H be the preimage of U under

pa, bq ÞÑ a ¨ b. Let AˆB Ď V for some open neighbourhoods of g resp. h. Take
g1 P AXG and h1 P B XG. Then g1h1 P U XG, hence U XG ‰ H.

Similarly one shows that G is closed under inverse images.

Now suppose that H is Hausdorff and G is abelian. Consider f : pg, hq ÞÑ
rg, hs45. Clearly this is continuous. Since G is abelian, we have fpGˆGq “ t1u.
Since H is Hausdorff, t1u is closed, so

t1u “ fpGˆGq Ě fpGˆGq “ fpGˆGq.

45Recall that the commutator is rg, hs :“ g´1hgh´1.
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Π1

1-Complete, 34
Σ1

1-Complete, 34
U-Almost all, 71
Tr, 33
σ-Algebra, 16
d-Skew shift, 61

Analytic, 27

Baire property, 15
Baire space, 7, 17
Body, 11
Borel, 28
Borel Schröder-Bernstein, 32
Borel sets, 20
Borel-separable, 29
BP, 15

Cantor scheme, 11
Cantor set, 7
Clopenization™, 23
Coanalytic, 28
Cofinal, 40
Comeager, 15
Commutator, 117
Compact open topology, 104
Compact semigroup, 51, 75
Compatible, 11
Complete analytic, 34
Complete coanalytic, 34
Completely metrisable, 4
Concatenation, 11

Distal, 45

E-topology, 53
Ellis semigroup, 50
Equicontinuous, 56
Extension, 11

F-topology, 53
Factor, 45
Factor map, 45
Fermé sum denumerable, 87

Fiber product, 46
First category, 15
Flow, 45

Generic, 68
Graph, 28
Group action, 44

Hilbert cube, 7

Idempotent, 51
Ill-founded, 34
Incompatible, 11
Infinite branch, 11
Initial segment, 11
Isometric, 45
Isometric extension, 46
Isometry, 45
Isomorphism, 45
Isomorphism Theorem, 32

Kleene-Brouwer ordering, 37

Leave, 11
Left Bernoulli shift, 109
Left ideal, 80
Length, 10
Limit, 46
Lindelöf, 5, 83
Lusin scheme, 12
Lusin separation theorem, 29

Maximal isometric extension, 58
Meager, 15
Minimal, 45, 109

Nodes, 11
Normal, 5, 59
Nowhere dense, 15
Nwd, 15

Orbit, 44
Order, 49

Parametrizes, 25
Perfect, 11
Polish space, 4
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Prewellordering, 38
Product topology, 4
Proximal, 45, 76
Pruned, 11

Quasi-isometric extension, 48
Quasi-isometric flow, 48

Rank, 36, 38, 49
Π1

1-rank, 39
Recurrent, 72
Retraction, 14

Second countable, 4
Section at x, 35
Separable, 4
Sequence, 10
Sequentially compact, 5
Stabilizer subgroup, 44
Subflow, 45
Symmetric difference, 15

Topological group, 44
Topological sum, 24
Totally bounded, 5, 84
Transitive, 44
Tree, 11, 33

Ultrafilter, 70
principal, 71
trivial, 71

Ultrametric, 84
Uniform metric, 86
uniformization, 40
Uniformly equicontinuous, 56
Uniformly recurrent, 72, 76
Upper semi-continuous, 53

Vietoris Topology, 106

Well-founded, 34
Winding number, 63
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